Sperner's Lemma

Karol Pąk
Institute of Informatics
University of Białystok
Poland

Abstract

Summary. In this article we introduce and prove properties of simplicial complexes in real linear spaces which are necessary to formulate Sperner's lemma. The lemma states that for a function f, which for an arbitrary vertex v of the barycentric subdivision \mathcal{B} of simplex \mathcal{K} assigns some vertex from a face of \mathcal{K} which contains v, we can find a simplex S of \mathcal{B} which satisfies $f(S)=\mathcal{K}$ (see [10]).

MML identifier: SIMPLEX1, version: $\underline{7.11 .074 .146 .1112}$

The notation and terminology used in this paper have been introduced in the following papers: [2], [11], [19], [9], [6], [7], [1], [5], [3], [4], [13], [15], [12], [22], [23], [16], [18], [20], [14], [17], [21], and [8].

1. Preliminaries

We follow the rules: x, y, X denote sets and n, k denote natural numbers. The following two propositions are true:
(1) Let R be a binary relation and C be a cardinal number. If for every x such that $x \in X$ holds $\operatorname{Card}\left(R^{\circ} x\right)=C$, then $\operatorname{Card} R=\operatorname{Card}(R \upharpoonright(\operatorname{dom} R \backslash$ $X)+C \cdot \operatorname{Card} X$.
(2) Let Y be a non empty finite set. Suppose $\operatorname{Card} X=\overline{\bar{Y}}+1$. Let f be a function from X into Y. Suppose f is onto. Then there exists y such that $y \in Y$ and $\operatorname{Card}\left(f^{-1}(\{y\})\right)=2$ and for every x such that $x \in Y$ and $x \neq y$ holds $\operatorname{Card}\left(f^{-1}(\{x\})\right)=1$.

Let X be a 1 -sorted structure. A simplicial complex structure of X is a simplicial complex structure of the carrier of X. A simplicial complex of X is a simplicial complex of the carrier of X.

Let X be a 1 -sorted structure, let K be a simplicial complex structure of X, and let A be a subset of K. The functor ${ }^{@} A$ yielding a subset of X is defined by:
(Def. 1) ${ }^{@} A=A$.
Let X be a 1 -sorted structure, let K be a simplicial complex structure of X, and let A be a family of subsets of K. The functor ${ }^{@} A$ yielding a family of subsets of X is defined by:
(Def. 2) ${ }^{@} A=A$.
We now state the proposition
(3) Let X be a 1-sorted structure and K be a subset-closed simplicial complex structure of X. Suppose K is total. Let S be a finite subset of K. Suppose S is simplex-like. Then the complex of $\left\{{ }^{@} S\right\}$ is a subsimplicial complex of K.

2. The Area of an Abstract Simplicial Complex

For simplicity, we adopt the following rules: R_{1} denotes a non empty RLS structure, K_{1}, K_{2}, K_{3} denote simplicial complex structures of R_{1}, V denotes a real linear space, and K_{4} denotes a non void simplicial complex of V.

Let us consider R_{1}, K_{1}. The functor $\left|K_{1}\right|$ yields a subset of R_{1} and is defined by:
(Def. 3) $\quad x \in\left|K_{1}\right|$ iff there exists a subset A of K_{1} such that A is simplex-like and $x \in \operatorname{conv}^{@} A$.

One can prove the following propositions:
(4) If the topology of $K_{2} \subseteq$ the topology of K_{3}, then $\left|K_{2}\right| \subseteq\left|K_{3}\right|$.
(5) For every subset A of K_{1} such that A is simplex-like holds conv ${ }^{@} A \subseteq$ $\left|K_{1}\right|$.
(6) Let K be a subset-closed simplicial complex structure of V. Then $x \in|K|$ if and only if there exists a subset A of K such that A is simplex-like and $x \in \operatorname{Int}\left({ }^{@} A\right)$.
(7) $\left|K_{1}\right|$ is empty iff K_{1} is empty-membered.
(8) For every subset A of R_{1} holds \mid the complex of $\{A\} \mid=\operatorname{conv} A$.
(9) For all families A, B of subsets of R_{1} holds \mid the complex of $A \cup B|=|$ the complex of $A|\cup|$ the complex of $B \mid$.

3. The Subdivision of a Simplicial Complex

Let us consider R_{1}, K_{1}. A simplicial complex structure of R_{1} is said to be a subdivision structure of K_{1} if it satisfies the conditions (Def. 4).
(Def. 4)(i) $\left|K_{1}\right| \subseteq|i t|$, and
(ii) for every subset A of it such that A is simplex-like there exists a subset B of K_{1} such that B is simplex-like and $\operatorname{conv}^{@} A \subseteq \operatorname{conv}^{\circledR} B$.
The following proposition is true
(10) For every subdivision structure P of K_{1} holds $\left|K_{1}\right|=|P|$.

Let us consider R_{1} and let K_{1} be a simplicial complex structure of R_{1} with a non-empty element. Observe that every subdivision structure of K_{1} has a non-empty element.

We now state four propositions:
(11) K_{1} is a subdivision structure of K_{1}.
(12) The complex of the topology of K_{1} is a subdivision structure of K_{1}.
(13) Let K be a subset-closed simplicial complex structure of V and S_{1} be a family of subsets of K. Suppose $S_{1}=\operatorname{SubFin}($ the topology of K). Then the complex of S_{1} is a subdivision structure of K.
(14) For every subdivision structure P_{1} of K_{1} holds every subdivision structure of P_{1} is a subdivision structure of K_{1}.
Let us consider V and let K be a simplicial complex structure of V. Note that there exists a subdivision structure of K which is finite-membered and subset-closed.

Let us consider V and let K be a simplicial complex structure of V. A subdivision of K is a finite-membered subset-closed subdivision structure of K.

We now state the proposition
(15) Let K be a simplicial complex of V with empty element. Suppose $|K| \subseteq$ Ω_{K}. Let B be a function from $2_{+}^{\text {the }}$ carrier of V into the carrier of V. Suppose that for every simplex S of K such that S is non empty holds $B(S) \in$ conv ${ }^{@} S$. Then subdivision (B, K) is a subdivision structure of K.
Let us consider V, K_{4}. One can verify that there exists a subdivision of K_{4} which is non void.

4. The Barycentric Subdivision

Let us consider V, K_{4}. Let us assume that $\left|K_{4}\right| \subseteq \Omega_{\left(K_{4}\right)}$. The functor BCS K_{4} yields a non void subdivision of K_{4} and is defined by:
(Def. 5) BCS $K_{4}=$ subdivision(the center of mass of V, K_{4}).
Let us consider n and let us consider V, K_{4}. Let us assume that $\left|K_{4}\right| \subseteq \Omega_{\left(K_{4}\right)}$. The functor $\operatorname{BCS}\left(n, K_{4}\right)$ yields a non void subdivision of K_{4} and is defined by:
(Def. 6) $\operatorname{BCS}\left(n, K_{4}\right)=\operatorname{subdivision}\left(n\right.$, the center of mass of $\left.V, K_{4}\right)$.
Next we state several propositions:
(16) If $\left|K_{4}\right| \subseteq \Omega_{\left(K_{4}\right)}$, then $\operatorname{BCS}\left(0, K_{4}\right)=K_{4}$.
(17) If $\left|K_{4}\right| \subseteq \Omega_{\left(K_{4}\right)}$, then $\operatorname{BCS}\left(1, K_{4}\right)=\operatorname{BCS} K_{4}$.
(18) If $\left|K_{4}\right| \subseteq \Omega_{\left(K_{4}\right)}$, then $\Omega_{\mathrm{BCS}\left(n, K_{4}\right)}=\Omega_{\left(K_{4}\right)}$.
(19) If $\left|K_{4}\right| \subseteq \Omega_{\left(K_{4}\right)}$, then $\left|\operatorname{BCS}\left(n, K_{4}\right)\right|=\left|K_{4}\right|$.
(20) If $\left|K_{4}\right| \subseteq \Omega_{\left(K_{4}\right)}$, then $\operatorname{BCS}\left(n+1, K_{4}\right)=\operatorname{BCSBCS}\left(n, K_{4}\right)$.
(21) If $\left|K_{4}\right| \subseteq \Omega_{\left(K_{4}\right)}$ and degree $\left(K_{4}\right) \leq 0$, then the topological structure of $K_{4}=\mathrm{BCS} K_{4}$.
(22) If $n>0$ and $\left|K_{4}\right| \subseteq \Omega_{\left(K_{4}\right)}$ and degree $\left(K_{4}\right) \leq 0$, then the topological structure of $K_{4}=\operatorname{BCS}\left(n, K_{4}\right)$.
(23) Let S_{2} be a non void subsimplicial complex of K_{4}. If $\left|K_{4}\right| \subseteq \Omega_{\left(K_{4}\right)}$ and $\left|S_{2}\right| \subseteq \Omega_{\left(S_{2}\right)}$, then $\operatorname{BCS}\left(n, S_{2}\right)$ is a subsimplicial complex of $\operatorname{BCS}\left(n, K_{4}\right)$.
(24) If $\left|K_{4}\right| \subseteq \Omega_{\left(K_{4}\right)}$, then Vertices $K_{4} \subseteq \operatorname{Vertices} \operatorname{BCS}\left(n, K_{4}\right)$.

Let us consider n, V and let K be a non void total simplicial complex of V. Note that $\operatorname{BCS}(n, K)$ is total.

Let us consider n, V and let K be a non void finite-vertices total simplicial complex of V. Note that $\operatorname{BCS}(n, K)$ is finite-vertices.

5. Selected Properties of Simplicial Complexes

Let us consider V and let K be a simplicial complex structure of V. We say that K is affinely-independent if and only if:
(Def. 7) For every subset A of K such that A is simplex-like holds ${ }^{@} A$ is affinelyindependent.
Let us consider R_{1}, K_{1}. We say that K_{1} is simplex-join-closed if and only if:
(Def. 8) For all subsets A, B of K_{1} such that A is simplex-like and B is simplexlike holds conv ${ }^{@} A \cap \operatorname{conv}^{@} B=\operatorname{conv}^{@} A \cap B$.
Let us consider V. Note that every simplicial complex structure of V which is empty-membered is also affinely-independent. Let F be an affinely-independent family of subsets of V. Observe that the complex of F is affinely-independent.

Let us consider R_{1}. One can verify that every simplicial complex structure of R_{1} which is empty-membered is also simplex-join-closed.

Let us consider V and let I be an affinely-independent subset of V. One can check that the complex of $\{I\}$ is simplex-join-closed.

Let us consider V. One can check that there exists a subset of V which is non empty, trivial, and affinely-independent.

Let us consider V. One can check that there exists a simplicial complex of V which is finite-vertices, affinely-independent, simplex-join-closed, and total and has a non-empty element.

Let us consider V and let K be an affinely-independent simplicial complex structure of V. One can verify that every subsimplicial complex of K is affinelyindependent.

Let us consider V and let K be a simplex-join-closed simplicial complex structure of V. One can check that every subsimplicial complex of K is simplex-join-closed.

Next we state the proposition
(25) Let K be a subset-closed simplicial complex structure of V. Then K is simplex-join-closed if and only if for all subsets A, B of K such that A is simplex-like and B is simplex-like and $\operatorname{Int}\left({ }^{(} A\right)$ meets $\operatorname{Int}\left({ }^{@} B\right)$ holds $A=B$.
For simplicity, we follow the rules: K_{5} is a simplex-join-closed simplicial complex of V, A_{1}, B_{1} are subsets of K_{5}, K_{6} is a non void affinely-independent simplicial complex of V, K_{7} is a non void affinely-independent simplex-joinclosed simplicial complex of V, and K is a non void affinely-independent simplex-join-closed total simplicial complex of V.

Let us consider V, K_{6} and let S be a simplex of K_{6}. Note that ${ }^{@} S$ is affinelyindependent.

One can prove the following propositions:
(26) If A_{1} is simplex-like and B_{1} is simplex-like and $\operatorname{Int}\left({ }_{(}^{@} A_{1}\right)$ meets conv ${ }^{@} B_{1}$, then $A_{1} \subseteq B_{1}$.
(27) If A_{1} is simplex-like and ${ }^{@} A_{1}$ is affinely-independent and B_{1} is simplexlike, then $\operatorname{Int}\left({ }^{@} A_{1}\right) \subseteq \operatorname{conv}{ }^{@} B_{1}$ iff $A_{1} \subseteq B_{1}$.
(28) If $\left|K_{6}\right| \subseteq \Omega_{\left(K_{6}\right)}$, then BCS K_{6} is affinely-independent.

Let us consider V and let K_{6} be a non void affinely-independent total simplicial complex of V. Observe that BCS K_{6} is affinely-independent. Let us consider n. Observe that $\operatorname{BCS}\left(n, K_{6}\right)$ is affinely-independent.

Let us consider V, K_{7}. One can verify that (the center of mass of V) |the topology of K_{7} is one-to-one.

We now state the proposition
(29) If $\left|K_{7}\right| \subseteq \Omega_{\left(K_{7}\right)}$, then BCS K_{7} is simplex-join-closed.

Let us consider V, K. Note that $\operatorname{BCS} K$ is simplex-join-closed. Let us consider n. Observe that $\operatorname{BCS}(n, K)$ is simplex-join-closed.

The following four propositions are true:
(30) Suppose $\left|K_{4}\right| \subseteq \Omega_{\left(K_{4}\right)}$ and for every n such that $n \leq \operatorname{degree}\left(K_{4}\right)$ there exists a simplex S of K_{4} such that $\overline{\bar{S}}=n+1$ and ${ }^{@} S$ is affinelyindependent. Then degree $\left(K_{4}\right)=\operatorname{degree}\left(\operatorname{BCS} K_{4}\right)$.
(31) If $\left|K_{6}\right| \subseteq \Omega_{\left(K_{6}\right)}$, then degree $\left(K_{6}\right)=\operatorname{degree}\left(\mathrm{BCS} K_{6}\right)$.
(32) If $\left|K_{6}\right| \subseteq \Omega_{\left(K_{6}\right)}$, then degree $\left(K_{6}\right)=\operatorname{degree}\left(\operatorname{BCS}\left(n, K_{6}\right)\right)$.
(33) Let S be a simplex-like family of subsets of K_{7}. If S has non empty elements, then Card $S=\operatorname{Card}\left((\text { the center of mass of } V)^{\circ} S\right)$.
For simplicity, we adopt the following convention: A_{2} denotes a finite affinelyindependent subset of V, A_{3}, B_{2} denote finite subsets of V, B denotes a subset of V, S, T denote finite families of subsets of V, S_{3} denotes a \subseteq-linear finite finite-membered family of subsets of V, S_{4}, T_{1} denote finite simplex-like families of subsets of K, and A_{4} denotes a simplex of K.

The following propositions are true:
(34) Let S_{6}, S_{5} be simplex-like families of subsets of K_{7}. Suppose that
(i) $\left|K_{7}\right| \subseteq \Omega_{\left(K_{7}\right)}$,
(ii) S_{6} has non empty elements,
(iii) (the center of mass of $V)^{\circ} S_{5}$ is a simplex of BCS K_{7}, and
(iv) (the center of mass of $V)^{\circ} S_{6} \subseteq(\text { the center of mass of } V)^{\circ} S_{5}$.

Then $S_{6} \subseteq S_{5}$ and S_{5} is \subseteq-linear.
(35) Suppose S has non empty elements and $\cup S \subseteq A_{2}$ and $\overline{\bar{S}}+n+1 \leq \overline{\overline{A_{2}}}$. Then the following statements are equivalent
(i) $\quad B_{2}$ is a simplex of $n+\overline{\bar{S}}$ and BCS (the complex of $\left\{A_{2}\right\}$) and (the center of mass of $V)^{\circ} S \subseteq B_{2}$,
(ii) there exists T such that T misses S and $T \cup S$ is \subseteq-linear and has non empty elements and $\overline{\bar{T}}=n+1$ and $\cup T \subseteq A_{2}$ and $B_{2}=$ (the center of mass of $V)^{\circ} S \cup(\text { the center of mass of } V)^{\circ} T$.
(36) Suppose S_{3} has non empty elements and $\cup S_{3} \subseteq A_{2}$. Then the following statements are equivalent
(i) (the center of mass of $V)^{\circ} S_{3}$ is a simplex of $\overline{\overline{\mathrm{US}}}-1$ and BCS (the complex of $\left\{A_{2}\right\}$),
(ii) for every n such that $0<n \leq \overline{\overline{\bigcup S_{3}}}$ there exists x such that $x \in S_{3}$ and $\operatorname{Card} x=n$.
(37) Let given S. Suppose S is \subseteq-linear and has non empty elements and $\overline{\bar{S}}=\operatorname{Card} \cup S$. Let given A_{3}, B_{2}. Suppose A_{3} is non empty and A_{3} misses $\cup S$ and $\cup S \cup A_{3}$ is affinely-independent and $\cup S \cup A_{3} \subseteq B_{2}$. Then (the center of mass of $V)^{\circ} S \cup(\text { the center of mass of } V)^{\circ}\left\{\cup S \cup A_{3}\right\}$ is a simplex of $\overline{\bar{S}}$ and BCS (the complex of $\left\{B_{2}\right\}$).
(38) Let given S_{3}. Suppose S_{3} has non empty elements and $\overline{\overline{S_{3}}}=\overline{\bar{\bigcup} \overline{S_{3}}}$. Let v be an element of V. Suppose $v \notin \bigcup S_{3}$ and $\cup S_{3} \cup\{v\}$ is affinelyindependent. Then $\left\{S_{6} ; S_{6}\right.$ ranges over simplexes of $\overline{\overline{S_{3}}}$ and BCS (the complex of $\left\{\cup S_{3} \cup\{v\}\right\}$): (the center of mass of $\left.\left.V\right)^{\circ} S_{3} \subseteq S_{6}\right\}=\{$ (the center of mass of $\left.V)^{\circ} S_{3} \cup(\text { the center of mass of } V)^{\circ}\left\{\cup S_{3} \cup\{v\}\right\}\right\}$.
(39) Let given S_{3}. Suppose S_{3} has non empty elements and $\overline{\overline{S_{3}}}+1=\overline{\overline{\bigcup S_{3}}}$ and $\cup S_{3}$ is affinely-independent. Then $\operatorname{Card}\left\{S_{6} ; S_{6}\right.$ ranges over simplexes of $\overline{\overline{S_{3}}}$ and BCS (the complex of $\left\{\cup S_{3}\right\}$): (the center of mass of $\left.\left.V\right)^{\circ} S_{3} \subseteq S_{6}\right\}=2$.
(40) Suppose A_{2} is a simplex of K. Then B is a simplex of BCS (the complex of $\left.\left\{A_{2}\right\}\right)$ if and only if B is a simplex of BCS K and conv $B \subseteq \operatorname{conv} A_{2}$.
(41) Suppose S_{4} has non empty elements and $\overline{\overline{S_{4}}}+n \leq \operatorname{degree}(K)$. Then the following statements are equivalent
(i) $\quad A_{3}$ is a simplex of $n+\overline{\overline{S_{4}}}$ and BCS K and (the center of mass of $V)^{\circ} S_{4} \subseteq A_{3}$,
(ii) there exists T_{1} such that T_{1} misses S_{4} and $T_{1} \cup S_{4}$ is \subseteq-linear and has non empty elements and $\overline{\overline{T_{1}}}=n+1$ and $A_{3}=$ (the center of mass of $V)^{\circ} S_{4} \cup(\text { the center of mass of } V)^{\circ} T_{1}$.
(42) Suppose S_{4} is \subseteq-linear and has non empty elements and $\overline{\overline{S_{4}}}=\overline{\overline{\bigcup S_{4}}}$ and $\cup S_{4} \subseteq A_{4}$ and $\overline{\overline{A_{4}}}=\overline{\overline{S_{4}}}+1$. Then $\left\{S_{6} ; S_{6}\right.$ ranges over simplexes of $\overline{\overline{S_{4}}}$ and BCS K : (the center of mass of $V)^{\circ} S_{4} \subseteq S_{6} \wedge$ conv ${ }^{@} S_{6} \subseteq$ conv $\left.{ }^{@} A_{4}\right\}=$ $\left\{(\text { the center of mass of } V)^{\circ} S_{4} \cup(\text { the center of mass of } V)^{\circ}\left\{A_{4}\right\}\right\}$.
(43) Suppose S_{4} is \subseteq-linear and has non empty elements and $\overline{\overline{S_{4}}}+1=\overline{\overline{\bigcup S_{4}}}$. Then $\operatorname{Card}\left\{S_{6} ; S_{6}\right.$ ranges over simplexes of $\overline{\overline{S_{4}}}$ and BCS K : (the center of mass of $\left.V)^{\circ} S_{4} \subseteq S_{6} \wedge \operatorname{conv}^{@} S_{6} \subseteq \operatorname{conv}^{\circledR} \cup S_{4}\right\}=2$.
(44) Let given A_{3}. Suppose that
(i) K is a subdivision of the complex of $\left\{A_{3}\right\}$,
(ii) $\overline{\overline{A_{3}}}=n+1$,
(iii) $\operatorname{degree}(K)=n$, and
(iv) for every simplex S of $n-1$ and K and for every X such that $X=$ $\left\{S_{6} ; S_{6}\right.$ ranges over simplexes of n and $\left.K: S \subseteq S_{6}\right\}$ holds if conv ${ }^{@} S$ meets Int A_{3}, then Card $X=2$ and if conv ${ }^{@} S$ misses Int A_{3}, then Card $X=1$.
Let S be a simplex of $n-1$ and BCS K and given X such that $X=\left\{S_{6} ; S_{6}\right.$ ranges over simplexes of n and BCS $\left.K: S \subseteq S_{6}\right\}$. Then
(v) if conv ${ }^{@} S$ meets $\operatorname{Int} A_{3}$, then $\operatorname{Card} X=2$, and
(vi) if conv ${ }^{@} S$ misses Int A_{3}, then Card $X=1$.
(45) Let S be a simplex of $n-1$ and $\operatorname{BCS}\left(k\right.$, the complex of $\left.\left\{A_{2}\right\}\right)$ such that $\overline{\overline{A_{2}}}=n+1$ and $X=\left\{S_{6} ; S_{6}\right.$ ranges over simplexes of n and $\operatorname{BCS}(k$, the complex of $\left\{A_{2}\right\}$): $\left.S \subseteq S_{6}\right\}$. Then
(i) if conv ${ }^{@} S$ meets $\operatorname{Int} A_{2}$, then $\operatorname{Card} X=2$, and
(ii) if conv ${ }^{@} S$ misses Int A_{2}, then Card $X=1$.

6. The Main Theorem

In the sequel v is a vertex of $\operatorname{BCS}\left(k\right.$, the complex of $\left.\left\{A_{2}\right\}\right)$ and F is a function from Vertices $\operatorname{BCS}\left(k\right.$, the complex of $\left.\left\{A_{2}\right\}\right)$ into A_{2}.

The following two propositions are true:
(46) Let given F. Suppose that for all v, B such that $B \subseteq A_{2}$ and $v \in \operatorname{conv} B$ holds $F(v) \in B$. Then there exists n such that $\operatorname{Card}\{S ; S$ ranges over
simplexes of $\overline{\overline{A_{2}}}-1$ and $\operatorname{BCS}\left(k\right.$, the complex of $\left.\left.\left\{A_{2}\right\}\right): F^{\circ} S=A_{2}\right\}=$ $2 \cdot n+1$.
(47) Let given F. Suppose that for all v, B such that $B \subseteq A_{2}$ and $v \in \operatorname{conv} B$ holds $F(v) \in B$. Then there exists a simplex S of $\overline{\overline{A_{2}}}-1$ and $\operatorname{BCS}(k$, the complex of $\left\{A_{2}\right\}$) such that $F^{\circ} S=A_{2}$.

References

[1] Broderick Arneson and Piotr Rudnicki. Recognizing chordal graphs: Lex BFS and MCS. Formalized Mathematics, 14(4):187-205, 2006, doi:10.2478/v10037-006-0022-z.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek and Yasunari Shidama. Introduction to matroids. Formalized Mathematics, 16(4):325-332, 2008, doi:10.2478/v10037-008-0040-0.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[10] Roman Duda. Wprowadzenie do topologii. PWN, 1986.
[11] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.
[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[13] Adam Naumowicz. On Segre's product of partial line spaces. Formalized Mathematics, 9(2):383-390, 2001.
[14] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[16] Karol Pąk. Affine independence in vector spaces. Formalized Mathematics, 18(1):87-93, 2010, doi: $10.2478 / \mathrm{v} 10037-010-0012-\mathrm{z}$.
[17] Karol Pąk. Abstract simplicial complexes. Formalized Mathematics, 18(1):95-106, 2010, doi: 10.2478/v10037-010-0013-y.
[18] Karol Pąk. The geometric interior in real linear spaces. Formalized Mathematics, 18(3):185-188, 2010, doi: 10.2478/v10037-010-0021-y.
[19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received February 9, 2010

