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Poland

Summary. We introduce the notions of the geometric interior and the
centre of mass for subsets of real linear spaces. We prove a number of theorems
concerning these notions which are used in the theory of abstract simplicial com-
plexes.
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The papers [1], [6], [11], [2], [5], [3], [4], [13], [7], [16], [10], [14], [12], [8], [9], and
[15] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: x denotes a set, r, s denote
real numbers, n denotes a natural number, V denotes a real linear space, v, u,
w, p denote vectors of V , A, B denote subsets of V , A1 denotes a finite subset
of V , I denotes an affinely independent subset of V , I1 denotes a finite affinely
independent subset of V , F denotes a family of subsets of V , and L1, L2 denote
linear combinations of V .

Next we state four propositions:

(1) Let L be a linear combination of A. Suppose L is convex and v 6=
∑
L

and L(v) 6= 0. Then there exists p such that p ∈ convA \ {v} and
∑
L =

L(v) · v + (1− L(v)) · p and 1
L(v) ·

∑
L+ (1− 1

L(v)) · p = v.

(2) Let p1, p2, w1, w2 be elements of V . Suppose that v, u ∈ conv I and
u /∈ conv I \ {p1} and u /∈ conv I \ {p2} and w1 ∈ conv I \ {p1} and
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w2 ∈ conv I \ {p2} and r · u+ (1− r) · w1 = v and s · u+ (1− s) · w2 = v

and r < 1 and s < 1. Then w1 = w2 and r = s.

(3) Let L be a linear combination of A1. Suppose A1 ⊆ conv I1 and sumL =
1. Then

(i)
∑
L ∈ Affin I1, and

(ii) for every element x of V there exists a finite sequence F of elements
of R and there exists a finite sequence G of elements of V such that
(
∑
L→ I1)(x) =

∑
F and lenG = lenF and G is one-to-one and rngG =

the support of L and for every n such that n ∈ domF holds F (n) =
L(G(n)) · (G(n)→ I1)(x).

(4) For every subset A2 of V such that A2 is affine and convA∩convB ⊆ A2
and convA \ {v} ⊆ A2 and v /∈ A2 holds convA \ {v}∩ convB = convA∩
convB.

2. The Geometric Interior

Let V be a non empty RLS structure and let A be a subset of V . The functor
IntA yields a subset of V and is defined by:

(Def. 1) x ∈ IntA iff x ∈ convA and it is not true that there exists a subset B
of V such that B ⊂ A and x ∈ convB.

Let V be a non empty RLS structure and let A be an empty subset of V .
Observe that IntA is empty.

We now state a number of propositions:

(5) For every non empty RLS structure V and for every subset A of V holds
IntA ⊆ convA.

(6) Let V be a real linear space-like non empty RLS structure and A be a
subset of V . Then IntA = A if and only if A is trivial.

(7) If A ⊂ B, then convA misses IntB.

(8) convA =
⋃
{IntB : B ⊆ A}.

(9) convA = IntA ∪
⋃
{convA \ {v} : v ∈ A}.

(10) If x ∈ IntA, then there exists a linear combination L of A such that L
is convex and x =

∑
L.

(11) For every linear combination L of A such that L is convex and
∑
L ∈

IntA holds the support of L = A.

(12) For every linear combination L of I such that L is convex and the support
of L = I holds

∑
L ∈ Int I.

(13) If IntA is non empty, then A is finite.

(14) If v ∈ I and u ∈ Int I and p ∈ conv I \ {v} and r · v + (1 − r) · p = u,

then p ∈ Int(I \ {v}).
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3. The Center of Mass

Let us consider V . The center of mass of V yielding a function from
2the carrier of V+ into the carrier of V is defined by the conditions (Def. 2).

(Def. 2)(i) For every non empty finite subset A of V holds (the center of mass
of V )(A) = 1

A
·
∑
A, and

(ii) for every A such that A is infinite holds (the center of mass of V )(A) =
0V .

One can prove the following propositions:

(15) There exists a linear combination L of A1 such that
∑
L = r ·

∑
A1 and

sumL = r · A1 and L = 0LCV +·(A1 7−→ r).

(16) If A1 is non empty, then (the center of mass of V )(A1) ∈ convA1.

(17) If
⋃
F is finite, then (the center of mass of V )◦F ⊆ conv

⋃
F.

(18) If v ∈ I1, then ((the center of mass of V )(I1)→ I1)(v) = 1
I1
.

(19) (The center of mass of V )(I1) ∈ I1 iff I1 = 1.

(20) If I1 is non empty, then (the center of mass of V )(I1) ∈ Int I1.

(21) If A ⊆ I1 and (the center of mass of V )(I1) ∈ AffinA, then I1 = A.

(22) If v ∈ A1 and A1\{v} is non empty, then (the center of mass of V )(A1) =
(1− 1

A1
) · (the center of mass of V )A1\{v} + 1

A1
· v.

(23) If convA ⊆ conv I1 and I1 is non empty and convA misses Int I1, then
there exists a subset B of V such that B ⊂ I1 and convA ⊆ convB.

(24) If
∑
L1 6=

∑
L2 and sumL1 = sumL2, then there exists v such that

L1(v) > L2(v).

(25) Let p be a real number. Suppose (r ·L1+ (1− r) ·L2)(v) ≤ p ≤ (s ·L1+
(1−s) ·L2)(v). Then there exists a real number r1 such that (r1 ·L1+(1−
r1) ·L2)(v) = p and if r ≤ s, then r ≤ r1 ≤ s and if s ≤ r, then s ≤ r1 ≤ r.

(26) If v, u ∈ convA and v 6= u, then there exist p, w, r such that p ∈ A and
w ∈ convA \ {p} and 0 ≤ r < 1 and r · u+ (1− r) · w = v.

(27) A ∪ {v} is affinely independent iff A is affinely independent but v ∈ A
or v /∈ AffinA.

(28) If A1 ⊆ I and v ∈ A1, then (I \ {v}) ∪ {(the center of mass of V )(A1)}
is an affinely independent subset of V .

(29) Let F be a ⊆-linear family of subsets of V . Suppose
⋃
F is finite and

affinely independent. Then (the center of mass of V )◦F is an affinely in-
dependent subset of V .

(30) Let F be a ⊆-linear family of subsets of V . Suppose
⋃
F is affinely

independent and finite. Then Int((the center of mass of V )◦F ) ⊆ Int
⋃
F.
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