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Summary. In this article we define the notion of abstract simplicial com-
plexes and operations on them. We introduce the following basic notions: simplex,
face, vertex, degree, skeleton, subdivision and substructure, and prove some of
their properties.
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The articles [2], [5], [6], [10], [8], [14], [1], [7], [3], [4], [11], [13], [16], [12], [15],
and [9] provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following convention: x, y, X, Y, Z are sets, D
is a non empty set, n, k are natural numbers, and i, i1, i2 are integers.

Let us consider X. We introduce X has empty element as an antonym of X
has non empty elements.

Note that there exists a set which is empty and finite-membered and every
set which is empty is also finite-membered. Let X be a finite set. Note that { X}
is finite-membered and 2% is finite-membered. Let Y be a finite set. Observe
that {X,Y} is finite-membered.

Let X be a finite-membered set. Observe that every subset of X is finite-
membered. Let Y be a finite-membered set. One can check that X UY is finite-
membered.

Let X be a finite finite-membered set. Note that | J X is finite.

One can verify the following observations:

* every set which is empty is also subset-closed,
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% every set which has empty element is also non empty,

* every set which is non empty and subset-closed has also empty element,

and

* there exists a set which has empty element.

Let us consider X. Observe that SubFin(X) is finite-membered and there exi-
sts a family of subsets of X which is subset-closed, finite, and finite-membered.

Let X be a subset-closed set. One can check that SubFin(X) is subset-closed.

Next we state the proposition

(1) Y is subset-closed iff for every X such that X € Y holds 2X C Y.

Let A, B be subset-closed sets. Note that A U B is subset-closed and AN B
is subset-closed.

Let us consider X. The subset-closure of X yields a subset-closed set and is
defined by the conditions (Def. 1).

(Def. 1)(i) X C the subset-closure of X, and
(ii)  for every Y such that X CY and Y is subset-closed holds the subset-
closure of X C Y.
The following proposition is true
(2) x € the subset-closure of X iff there exists y such that z C y and y € X.

Let us consider X and let F' be a family of subsets of X. Then the subset-
closure of F' is a subset-closed family of subsets of X.

Observe that the subset-closure of () is empty. Let X be a non empty set.
Note that the subset-closure of X is non empty.

Let X be a set with a non-empty element. One can check that the subset-
closure of X has a non-empty element.

Let X be a finite-membered set. Note that the subset-closure of X is finite-
membered.

The following propositions are true:

(3) If X CY and Y is subset-closed, then the subset-closure of X C Y.

(4) The subset-closure of {X} = 2%.

(5) The subset-closure of X UY = (the subset-closure of X) U (the subset-
closure of Y).

(6) X is finer than Y iff the subset-closure of X C the subset-closure of Y.

(7) If X is subset-closed, then the subset-closure of X = X.

(8) If the subset-closure of X C X, then X is subset-closed.

Let us consider Y, X and let n be a set. The subsets of X and Y with
cardinality limited by n yields a family of subsets of Y and is defined by the
condition (Def. 2).

(Def. 2) Let Abeasubset of Y. Then A € the subsets of X and Y with cardinality
limited by n if and only if A € X and Card A C Cardn.
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Let us consider D. One can verify that there exists a family of subsets of D
which is finite, subset-closed, and finite-membered and has a non-empty element.

Let us consider Y, X and let n be a finite set. One can check that the subsets
of X and Y with cardinality limited by n is finite-membered.

Let us consider Y, let X be a subset-closed set, and let n be a set. Note that
the subsets of X and Y with cardinality limited by n is subset-closed.

Let us consider Y, let X be a set with empty element, and let n be a set.
One can check that the subsets of X and Y with cardinality limited by n has
empty element.

Let us consider D, let X be a subset-closed family of subsets of D with a
non-empty element, and let n be a non empty set. Note that the subsets of X
and D with cardinality limited by n has a non-empty element.

Let us consider X, let Y be a family of subsets of X, and let n be a set. We
introduce the subsets of Y with cardinality limited by n as a synonym of the
subsets of Y and X with cardinality limited by n.

Let us observe that every set which is empty is also C-linear and there exists
a set which is empty and C-linear.
Let X be a C-linear set. Note that every subset of X is C-linear.

The following propositions are true:
(9) If X is non empty, finite, and C-linear, then |J X € X.

(10) For every finite C-linear set X such that X has non empty elements
holds Card X C Card | X.

(11) If X is C-linear and |J X misses z, then X U {JX Uz} is C-linear.
(12) Let X be a non empty set. Then there exists a family Y of subsets of X
such that
(i) Y is C-linear and has non empty elements,
(i) X €Y,
(ili) Card X = CardY, and
) for every Z such that Z € Y and Card Z # 1 there exists  such that
x€Zand Z\{z} €Y.

(13) Let Y be a family of subsets of X. Suppose Y is finite and C-linear and
has non empty elements and X € Y. Then there exists a family Y’ of
subsets of X such that

Yy CY,

(iv

(i)
(i) Y’ is C-linear and has non empty elements,
(ii) Card X = CardY’, and
) for every Z such that Z € Y/ and Card Z # 1 there exists = such that
x€Zand Z\{z} €Y'

(iv
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2. SIMPLICIAL COMPLEXES

A simplicial complex structure is a topological structure.
In the sequel K denotes a simplicial complex structure.
Let us consider K and let A be a subset of K. We introduce A is simplex-like
as a synonym of A is open.
Let us consider K and let S be a family of subsets of K. We introduce S is
simplex-like as a synonym of .S is open.
Let us consider K. One can check that there exists a family of subsets of K
which is empty and simplex-like.
The following proposition is true
(14) For every family S of subsets of K holds S is simplex-like iff S C the
topology of K.
Let us consider K and let v be an element of K. We say that v is vertex-like
if and only if:
(Def. 3) There exists a subset S of K such that S is simplex-like and v € S.
Let us consider K. The functor Vertices K yielding a subset of K is defined
by:
(Def. 4) For every element v of K holds v € Vertices K iff v is vertex-like.
Let K be a simplicial complex structure. A vertex of K is an element of
Vertices K.
Let K be a simplicial complex structure. We say that K is finite-vertices if
and only if:
(Def. 5) Vertices K is finite.
Let us consider K. We say that K is locally-finite if and only if:

(Def. 6) For every vertex v of K holds {S C K: S is simplex-like A v € S} is
finite.

Let us consider K. We say that K is empty-membered if and only if:
(Def. 7) The topology of K is empty-membered.
We say that K has non empty elements if and only if:
(Def. 8) The topology of K has non empty elements.

Let us consider K. We introduce K has a non-empty element as an antonym
of K is empty-membered. We introduce K has empty element as an antonym
of K has non empty elements.

Let us consider X. A simplicial complex structure is said to be a simplicial
complex structure of X if:

(Def 9) Qit C X.

Let us consider X and let K; be a simplicial complex structure of X. We
say that K is total if and only if:



ABSTRACT SIMPLICIAL COMPLEXES 99

(Def 10) Q(K1) = X.
One can check the following observations:
* every simplicial complex structure which has empty element is also non
void,
* every simplicial complex structure which has a non-empty element is
also non void,

* every simplicial complex structure which is non void and empty-membered
has also empty element,

* every simplicial complex structure which is non void and subset-closed
has also empty element,

* every simplicial complex structure which is empty-membered is also
subset-closed and finite-vertices,

* every simplicial complex structure which is finite-vertices is also locally-
finite and finite-degree, and

* every simplicial complex structure which is locally-finite and subset-
closed is also finite-membered.

Let us consider X. Observe that there exists a simplicial complex structure
of X which is empty, void, empty-membered, and strict.

Let us consider D. Note that there exists a simplicial complex structure of D
which is non empty, non void, total, empty-membered, and strict and there exists
a simplicial complex structure of D which is non empty, total, finite-vertices,
subset-closed, and strict and has empty element and a non-empty element.

Let us observe that there exists a simplicial complex structure which is non
empty, finite-vertices, subset-closed, and strict and has empty element and a
non-empty element.

Let K be a simplicial complex structure with a non-empty element. Observe
that Vertices K is non empty.

Let K be a finite-vertices simplicial complex structure. Note that every fa-
mily of subsets of K which is simplex-like is also finite.

Let K be a finite-membered simplicial complex structure. Note that every
family of subsets of K which is simplex-like is also finite-membered.

Next we state several propositions:

(15) Vertices K is empty iff K is empty-membered.

(16) Vertices K = | (the topology of K).

(17) For every subset S of K such that S is simplex-like holds S C Vertices K.
(18) If K is finite-vertices, then the topology of K is finite.

(19) 1If the topology of K is finite and K is non finite-vertices, then K is non

finite-membered.

(20) If K is subset-closed and the topology of K is finite, then K is finite-
vertices.
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3. THE SIMPLICIAL COMPLEX GENERATED ON THE SET

Let us consider X and let Y be a family of subsets of X. The complex of Y
yielding a strict simplicial complex structure of X is defined as follows:

(Def. 11) The complex of Y = (X, the subset-closure of Y).

Let us consider X and let Y be a family of subsets of X. One can verify that
the complex of Y is total and subset-closed.

Let us consider X and let Y be a non empty family of subsets of X. Note
that the complex of Y has empty element.

Let us consider X and let Y be a finite-membered family of subsets of X.
Note that the complex of Y is finite-membered.

Let us consider X and let Y be a finite finite-membered family of subsets of
X. Observe that the complex of Y is finite-vertices.

One can prove the following proposition

(21) If K is subset-closed, then the topological structure of K = the complex
of the topology of K.

Let us consider X. A simplicial complex of X is a finite-membered subset-
closed simplicial complex structure of X.

Let K be a non void simplicial complex structure. A simplex of K is a
simplex-like subset of K.

Let K be a simplicial complex structure with empty element. One can check
that every subset of K which is empty is also simplex-like and there exists a
simplex of K which is empty.

Let K be a non void finite-membered simplicial complex structure. Note
that there exists a simplex of K which is finite.

4. THE DEGREE OF SIMPLICIAL COMPLEXES

Let us consider K. The functor degree(K) yields an extended real number
and is defined as follows:

(Def. 12)(1)  For every finite subset S of K such that S is simplex-like holds S <
degree(K)+1 and there exists a subset S of K such that S is simplex-like
and Card S = degree(K) + 1 if K is non void and finite-degree,

(ii)  degree(K) = —1 if K is void,
(iii)  degree(K) = 400, otherwise.
Let K be a finite-degree simplicial complex structure. Note that degree(K)+
1 is natural and degree(K) is integer.
The following propositions are true:

(22) degree(K) = —1 iff K is empty-membered.
(23) —1 < degree(K).
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(24) For every finite subset S of K such that S is simplex-like holds S <
degree(K) + 1.
(25) Suppose K is non void or ¢ > —1. Then degree(K) < i if and only if the
following conditions are satisfied:
(i) K is finite-membered, and
(ii)  for every finite subset S of K such that S is simplex-like holds S < i+1.

(26) For every finite subset A of X holds degree(the complex of {A}) = A-1.

5. SUBCOMPLEXES

Let us consider X and let K7 be a simplicial complex structure of X. A

simplicial complex of X is said to be a subsimplicial complex of K if:
(Def. 13) Qi € Q(g,) and the topology of it C the topology of Kj.

In the sequel K denotes a simplicial complex structure of X and S; denotes
a subsimplicial complex of K.

Let us consider X, Kj. One can check that there exists a subsimplicial
complex of K7 which is empty, void, and strict.

Let us consider X and let K be a void simplicial complex structure of X.
Observe that every subsimplicial complex of K7 is void.

Let us consider D and let Ko be a non void subset-closed simplicial complex
structure of D. Note that there exists a subsimplicial complex of Ko which is
non void.

Let us consider X and let K be a finite-vertices simplicial complex structure
of X. One can check that every subsimplicial complex of K7 is finite-vertices.

Let us consider X and let K7 be a finite-degree simplicial complex structure
of X. Note that every subsimplicial complex of K is finite-degree.

Next we state several propositions:

(27) Every subsimplicial complex of S; is a subsimplicial complex of Kj.

(28) Let A be a subset of K7 and S be a finite-membered family of subsets
of A. Suppose the subset-closure of S C the topology of Ki. Then the
complex of S is a strict subsimplicial complex of Kj.

(29) Let K; be a subset-closed simplicial complex structure of X, A be a
subset of K7, and S be a finite-membered family of subsets of A. Suppose
S C the topology of K;. Then the complex of S is a strict subsimplicial
complex of Kj.

(30) Let Yy, Y5 be families of subsets of X. Suppose Y is finite-membered
and finer than Y5. Then the complex of Y7 is a subsimplicial complex of
the complex of Y5.

(31) Vertices S; C Vertices K.

(32) degree(S7) < degree(K).
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Let us consider X, K7, S7. We say that 57 is maximal if and only if:
(Def. 14) For every subset A of S; such that A € the topology of K; holds A is
simplex-like.
We now state the proposition
(33) S; is maximal iff 24s1) N the topology of K7 C the topology of Si.
Let us consider X, K7. Note that there exists a subsimplicial complex of K3
which is maximal and strict.
We now state three propositions:
(34) Let Sy be a subsimplicial complex of S1. Suppose S; is maximal and Sy
is maximal. Then S5 is a maximal subsimplicial complex of Kj.
(35) Let S be a subsimplicial complex of Sp. If So is a maximal subsimplicial
complex of K7, then Sy is maximal.
(36) Let K3, K4 be maximal subsimplicial complexes of K.
Suppose Q(f;) = Q(k,)- Then the topological structure of K3 = the topo-
logical structure of Kj.

Let us consider X, let K be a subset-closed simplicial complex structure
of X, and let A be a subset of K;. Let us assume that 24 N the topology of
K is finite-membered. The functor Ki[A yields a maximal strict subsimplicial
complex of K7 and is defined as follows:

(Def 15) QKl [A = A.
In the sequel S5 denotes a simplicial complex of X.

Let us consider X, S3 and let A be a subset of S3. Then S3[A is a maximal
strict subsimplicial complex of S3 and it can be characterized by the condition:

(Def. 16) Qg 14 = A.
The following four propositions are true:

(37) For every subset A of S3 holds the topology of S3[A = 24 Nthe topology
of 53.

(38) For all subsets A, B of S3 and for every subset B’ of S3]A such that
B’ = B holds S3|A|B’ = S3]B.

(39) S3[€g,) = the topological structure of S3.

(40) For all subsets A, B of S3 such that A C B holds S3[ A is a subsimplicial
complex of S3[B.

Let us observe that every integer is finite.

6. THE SKELETON OF A SIMPLICIAL COMPLEX

Let us consider X, K7 and let 7 be a real number. The skeleton of K7 and ¢
yielding a simplicial complex structure of X is defined by the condition (Def. 17).
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(Def. 17) The skeleton of K7 and i = the complex of the subsets of the topology
of K with cardinality limited by ¢ + 1.

Let us consider X, Kj. Observe that the skeleton of K; and —1 is empty-
membered. Let us consider i. Note that the skeleton of K7 and 7 is finite-degree.

Let us consider X, let K7 be an empty-membered simplicial complex struc-
ture of X, and let us consider 7. One can check that the skeleton of K7 and 7 is
empty-membered.

Let us consider D, let K3 be a non void subset-closed simplicial complex
structure of D, and let us consider 7. One can check that the skeleton of Ko and
7 is non void.

One can prove the following proposition

(41) If —1 <43 < ig, then the skeleton of K; and 4; is a subsimplicial complex
of the skeleton of K7 and is.

Let us consider X, let K; be a subset-closed simplicial complex structure
of X, and let us consider i. Then the skeleton of K7 and ¢ is a subsimplicial
complex of Kj.

We now state several propositions:

(42) If K, is subset-closed and the skeleton of K; and i is empty-membered,
then K is empty-membered or i = —1.

(43) degree(the skeleton of K and i) < degree(K7).

(44) 1If —1 <4, then degree(the skeleton of K; and i) < .

(45) If —1 < i and the skeleton of K; and i = the topological structure of
K1, then degree(K;) < i.

(46) If K, is subset-closed and degree(K;) < i, then the skeleton of K; and
1 = the topological structure of Kj.

In the sequel K is a non void subset-closed simplicial complex structure.
Let us consider K and let i be a real number. Let us assume that ¢ is integer.
A finite simplex of K is said to be a simplex of 7 and K if:
(Def. 18)(i) it =i+ 1if —1 < i < degree(K),
(ii) it is empty, otherwise.
Let us consider K. Note that every simplex of —1 and K is empty.
The following three propositions are true:

(47) For every simplex S of ¢ and K such that S is non empty holds i is
natural.

(48) Every finite simplex S of K is a simplex of S —1and K.

(49) Let K be a non void subset-closed simplicial complex structure of D, S be
a non void subsimplicial complex of K, i be an integer, and A be a simplex
of i and S. If A is non empty or i < degree(S) or degree(S) = degree(K),
then A is a simplex of ¢ and K.
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Let us consider K and let ¢ be a real number. Let us assume that ¢ is integer
and ¢ < degree(K). Let S be a simplex of i and K. A simplex of max(: —1,—1)
and K is said to be a face of S if:

(Def. 19) It C S.
One can prove the following proposition

(50) Let S be a simplex of n and K. Suppose n < degree(K). Then X is a
face of S if and only if there exists « such that x € S and S\ {z} = X.

7. THE SUBDIVISION OF A SIMPLICIAL COMPLEX

In the sequel P is a function.

Let us consider X, K, P. The functor subdivision(P, K;) yields a strict
simplicial complex structure of X and is defined by the conditions (Def. 20).

(Def 20)(1) qubdivision(P,Kl) = Q(Kl)a and
(ii)  for every subset A of subdivision(P, K7) holds A is simplex-like iff there
exists a C-linear finite simplex-like family S of subsets of K; such that
A= P°S.

Let us consider X, K1, P. One can verify that subdivision(P, K1) is subset-
closed and finite-membered and has empty element.

Let us consider X, let K7 be a void simplicial complex structure of X, and
let us consider P. Observe that subdivision(P, K7) is empty-membered.

The following propositions are true:

(51) degree(subdivision(P, K1)) < degree(K7) + 1.
(52) If dom P has non empty elements, then degree(subdivision(P, K1)) <
degree(K1).

Let us consider X, let K7 be a finite-degree simplicial complex structure of
X, and let us consider P. Note that subdivision(P, K1) is finite-degree.

Let us consider X, let K; be a finite-vertices simplicial complex structure
of X, and let us consider P. One can check that subdivision(P, K1) is finite-
vertices.

One can prove the following propositions:

(53) Let Kj be a subset-closed simplicial complex structure of X and given
P. Suppose that
(i) dom P has non empty elements, and
(ii) for every n such that n < degree(K) there exists a subset S of K such
that S is simplex-like and Card S = n + 1 and Qi C dom P and P°2i is
a subset of Ky and P[Qi is one-to-one.
Then degree(subdivision(P, K7)) = degree(K7).
(54) If Y C Z, then subdivision(P[Y, K;) is a subsimplicial complex of
subdivision(P[Z, K1).
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(55) If dom P N the topology of K; C Y, then subdivision(P]Y, K;) =
subdivision(P, K7).

(56) If Y C Z, then subdivision(Y [P, K7) is a subsimplicial complex of
subdivision(Z[ P, K1).

(57) If P°(the topology of Kj;) C Y, then subdivision(Y [P, K;) =
subdivision(P, K7).

(58) subdivision(P, Sy) is a subsimplicial complex of subdivision(P, K1).
(59) For every subset A of subdivision(P, K1) such that dom P C the topology
of S1 and A = Q(g,) holds subdivision(P, S1) = subdivision(P, K1)[A.
(60) Let K3, K4 be simplicial complex structures of X. Suppose the to-

pological structure of K3 = the topological structure of K,. Then
subdivision(P, K3) = subdivision(P, Ky).
Let us consider X, Kj, P, n. The functor subdivision(n, P, K) yielding a
simplicial complex structure of X is defined by the condition (Def. 21).

(Def. 21) There exists a function F' such that
(i)  F(0) =Ky,
(i)  F(n) = subdivision(n, P, K1),
(iii) domF =N, and
(iv) for every k and for every simplicial complex structure K7 of X such
that K{ = F(k) holds F(k + 1) = subdivision(P, K7/).
Next we state several propositions:
(61) subdivision(0, P, K1) = K.
(62) subdivision(1, P, K1) = subdivision(P, K1).
(63) For every natural number n; such that n; = n + k holds
subdivision(ny, P, K1) = subdivision(n, P, subdivision(k, P, K1)).

(64) qubdivision(n,P,Kl) = Q(Kl)‘
(65) subdivision(n, P, S1) is a subsimplicial complex of subdivision(n, P, K7).
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