The Correspondence Between n-dimensional Euclidean Space and the Product of n Real Lines

Artur Korniłowicz
Institute of Informatics
University of Białystok
Sosnowa 64, 15-887 Białystok, Poland

Abstract

Summary. In the article we prove that a family of open n-hypercubes is a basis of n-dimensional Euclidean space. The equality of the space and the product of n real lines has been proven.

MML identifier: EUCLID_9, version: $\underline{7.11 .054 .134 .1080}$

The terminology and notation used in this paper have been introduced in the following papers: [2], [6], [10], [4], [7], [18], [8], [13], [1], [3], [5], [15], [16], [17], [21], [22], [9], [19], [20], [11], [14], and [12].

For simplicity, we use the following convention: x, y are sets, i, n are natural numbers, r, s are real numbers, and f_{1}, f_{2} are n-long real-valued finite sequences.

Let s be a real number and let r be a non positive real number. One can check the following observations:

* $] s-r, s+r$ is empty,
* $[s-r, s+r$ [is empty, and
* $] s-r, s+r]$ is empty.

Let s be a real number and let r be a negative real number. Observe that [$s-r, s+r]$ is empty.

Let f be an empty yielding function and let us consider x. Observe that $f(x)$ is empty.

Let us consider i. Observe that $i \mapsto 0$ is empty yielding.
Let f be an n-long complex-valued finite sequence. One can check the following observations:

* $-f$ is n-long,
* f^{-1} is n-long,
* f^{2} is n-long, and
* $|f|$ is n-long.

Let g be an n-long complex-valued finite sequence. One can verify the following observations:

* $f+g$ is n-long,
* $f-g$ is n-long,
* $f g$ is n-long, and
* f / g is n-long.

Let c be a complex number and let f be an n-long complex-valued finite sequence. One can check the following observations:

* $c+f$ is n-long,
* $f-c$ is n-long, and
* $c f$ is n-long.

Let f be a real-valued function. Note that $\{f\}$ is real-functions-membered. Let g be a real-valued function. One can verify that $\{f, g\}$ is real-functionsmembered.

Let D be a set and let us consider n. Note that D^{n} is finite sequencemembered.

Let us consider n. Note that \mathcal{R}^{n} is finite sequence-membered.
Let us consider n. Observe that \mathcal{R}^{n} is real-functions-membered.
Let us consider x, y and let f be an n-long finite sequence. Observe that $f+\cdot(x, y)$ is n-long.

One can prove the following three propositions:
(1) For every n-long finite sequence f such that f is empty holds $n=0$.
(2) For every n-long real-valued finite sequence f holds $f \in \mathcal{R}^{n}$.
(3) For all complex-valued functions f, g holds $|f-g|=|g-f|$.

Let us consider f_{1}, f_{2}. The functor max-diff-index $\left(f_{1}, f_{2}\right)$ yields a natural number and is defined as follows:
(Def. 1) max-diff-index $\left(f_{1}, f_{2}\right)$ is the element of $\left|f_{1}-f_{2}\right|^{-1}\left(\left\{\right.\right.$ sup rng $\left.\left.\left|f_{1}-f_{2}\right|\right\}\right)$.
Let us note that the functor max-diff-index $\left(f_{1}, f_{2}\right)$ is commutative.
One can prove the following propositions:
(4) If $n \neq 0$, then max-diff-index $\left(f_{1}, f_{2}\right) \in \operatorname{dom} f_{1}$.
(5) $\left|f_{1}-f_{2}\right|(x) \leq\left|f_{1}-f_{2}\right|\left(\max -\operatorname{diff}-\operatorname{index}\left(f_{1}, f_{2}\right)\right)$.

One can verify that the metric space of real numbers is real-membered.
Let us observe that $\left(\mathcal{E}^{0}\right)_{\text {top }}$ is trivial.
Let us consider n. Observe that \mathcal{E}^{n} is constituted finite sequences.
Let us consider n. One can verify that every point of \mathcal{E}^{n} is real-valued.

Let us consider n. One can check that every point of \mathcal{E}^{n} is n-long. The following two propositions are true:
(6) The open set family of $\mathcal{E}^{0}=\{\emptyset,\{\emptyset\}\}$.
(7) For every subset B of \mathcal{E}^{0} holds $B=\emptyset$ or $B=\{\emptyset\}$.

In the sequel e, e_{1} are points of \mathcal{E}^{n}.
Let us consider n, e. The functor ${ }^{@} e$ yields a point of $\left(\mathcal{E}^{n}\right)_{\text {top }}$ and is defined by:
(Def. 2) ${ }^{@} e=e$.
Let us consider n, e and let r be a non positive real number. Observe that $\operatorname{Ball}(e, r)$ is empty.

Let us consider n, e and let r be a positive real number. Note that $\operatorname{Ball}(e, r)$ is non empty.

We now state three propositions:
(8) For all points p_{1}, p_{2} of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $i \in \operatorname{dom} p_{1}$ holds $\left(p_{1}(i)-p_{2}(i)\right)^{2} \leq$ $\sum^{2}\left(p_{1}-p_{2}\right)$.
(9) Let n be an element of \mathbb{N} and a, o, p be elements of $\mathcal{E}_{\mathrm{T}}^{n}$. If $a \in \operatorname{Ball}(o, r)$, then for every set x holds $|(a-o)(x)|<r$ and $|a(x)-o(x)|<r$.
(10) For all points a, o of \mathcal{E}^{n} such that $a \in \operatorname{Ball}(o, r)$ and for every set x holds $|(a-o)(x)|<r$ and $|a(x)-o(x)|<r$.
Let f be a real-valued function and let r be a real number. The functor Intervals (f, r) yields a function and is defined as follows:
(Def. 3) $\quad \operatorname{dom} \operatorname{Intervals}(f, r)=\operatorname{dom} f$ and for every set x such that $x \in \operatorname{dom} f$ holds $(\operatorname{Intervals}(f, r))(x)=] f(x)-r, f(x)+r[$.
Let us consider r. Note that $\operatorname{Intervals}(\emptyset, r)$ is empty.
Let f be a real-valued finite sequence and let us consider r. One can check that $\operatorname{Intervals}(f, r)$ is finite sequence-like.

Let us consider n, e, r. The functor OpenHypercube (e, r) yielding a subset of $\left(\mathcal{E}^{n}\right)_{\text {top }}$ is defined by:
(Def. 4) OpenHypercube $(e, r)=\Pi$ Intervals (e, r).
Next we state the proposition
(11) If $0<r$, then $e \in \operatorname{OpenHypercube}(e, r)$.

Let n be a non zero natural number, let e be a point of \mathcal{E}^{n}, and let r be a non positive real number. Observe that OpenHypercube (e, r) is empty.

One can prove the following proposition
(12) For every point e of \mathcal{E}^{0} holds OpenHypercube $(e, r)=\{\emptyset\}$.

Let e be a point of \mathcal{E}^{0} and let us consider r. Note that OpenHypercube (e, r) is non empty.

Let us consider n, e and let r be a positive real number. One can check that OpenHypercube (e, r) is non empty.

One can prove the following propositions:
(13) If $r \leq s$, then OpenHypercube $(e, r) \subseteq$ OpenHypercube (e, s).
(14) If $n \neq 0$ or $0<r$ and if $e_{1} \in$ OpenHypercube (e, r), then for every set x holds $\left|\left(e_{1}-e\right)(x)\right|<r$ and $\left|e_{1}(x)-e(x)\right|<r$.
(15) If $n \neq 0$ and $e_{1} \in$ OpenHypercube (e, r), then $\sum^{2}\left(e_{1}-e\right)<n \cdot r^{2}$.
(16) If $n \neq 0$ and $e_{1} \in \operatorname{OpenHypercube}(e, r)$, then $\rho\left(e_{1}, e\right)<r \cdot \sqrt{n}$.
(17) If $n \neq 0$, then OpenHypercube $\left(e, \frac{r}{\sqrt{n}}\right) \subseteq \operatorname{Ball}(e, r)$.
(18) If $n \neq 0$, then OpenHypercube $(e, r) \subseteq \operatorname{Ball}(e, r \cdot \sqrt{n})$.
(19) If $e_{1} \in \operatorname{Ball}(e, r)$, then there exists a non zero element m of \mathbb{N} such that OpenHypercube $\left(e_{1}, \frac{1}{m}\right) \subseteq \operatorname{Ball}(e, r)$.
(20) If $n \neq 0$ and $e_{1} \in$ OpenHypercube (e, r), then $r>\left|e_{1}-e\right|\left(\right.$ max-diff-index $\left.\left(e_{1}, e\right)\right)$.
(21) OpenHypercube $\left(e_{1}, r-\left|e_{1}-e\right|\left(\right.\right.$ max-diff-index $\left.\left.\left(e_{1}, e\right)\right)\right) \subseteq$ OpenHypercube (e, r).
(22) $\operatorname{Ball}(e, r) \subseteq$ OpenHypercube (e, r).

Let us consider n, e, r. Observe that OpenHypercube (e, r) is open.
We now state two propositions:
(23) Let V be a subset of $\left(\mathcal{E}^{n}\right)_{\text {top }}$. Suppose V is open. Let e be a point of \mathcal{E}^{n}. If $e \in V$, then there exists a non zero element m of \mathbb{N} such that OpenHypercube $\left(e, \frac{1}{m}\right) \subseteq V$.
(24) Let V be a subset of $\left(\mathcal{E}^{n}\right)_{\text {top }}$. Suppose that for every point e of \mathcal{E}^{n} such that $e \in V$ there exists a real number r such that $r>0$ and OpenHypercube $(e, r) \subseteq V$. Then V is open.
Let us consider n, e. The functor OpenHypercubes e yields a family of subsets of $\left(\mathcal{E}^{n}\right)_{\text {top }}$ and is defined by:
(Def. 5) OpenHypercubes $e=\left\{\right.$ OpenHypercube $\left(e, \frac{1}{m}\right): m$ ranges over non zero elements of $\mathbb{N}\}$.
Let us consider n, e. Observe that OpenHypercubes e is non empty, open, and e-quasi-basis.

Next we state four propositions:
(25) For every 1-sorted yielding many sorted set J indexed by $\operatorname{Seg} n$ such that $J=\operatorname{Seg} n \longmapsto \mathbb{R}^{\mathbf{1}}$ holds $\mathbb{R}^{\operatorname{Seg} n}=\Pi$ (the support of $\left.J\right)$.
(26) Let J be a topological space yielding many sorted set indexed by $\operatorname{Seg} n$. Suppose $n \neq 0$ and $J=\operatorname{Seg} n \longmapsto \mathbb{R}^{\mathbf{1}}$. Let P_{1} be a family of subsets of $\left(\mathcal{E}^{n}\right)_{\text {top }}$. If $P_{1}=$ the product prebasis for J, then P_{1} is quasi-prebasis.
(27) Let J be a topological space yielding many sorted set indexed by $\operatorname{Seg} n$. Suppose $J=\operatorname{Seg} n \longmapsto \mathbb{R}^{\mathbf{1}}$. Let P_{1} be a family of subsets of $\left(\mathcal{E}^{n}\right)_{\text {top }}$. If $P_{1}=$ the product prebasis for J, then P_{1} is open.
(28) $\quad\left(\mathcal{E}^{n}\right)_{\text {top }}=\Pi\left(\operatorname{Seg} n \longmapsto \mathbb{R}^{\mathbf{1}}\right)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[6] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[9] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[11] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[12] Jarosław Gryko. Injective spaces. Formalized Mathematics, 7(1):57-62, 1998.
[13] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[14] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43-60, 2009, doi:10.2478/v10037-009-0005-y.
[15] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103108, 1993.
[16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[17] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[19] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received November 30, 2009

