Nilpotent Groups

Dailu Li Qingdao University of Science and Technology China

Xiquan Liang Qingdao University of Science and Technology China

Yanhong Men
Qingdao University of Science
and Technology
China

Summary. This article describes the concept of the nilpotent group and some properties of the nilpotent groups.

MML identifier: GRNILP_1, version: 7.11.04 4.130.1076

The papers [2], [3], [4], [6], [7], [5], [8], [9], [10], and [1] provide the terminology and notation for this paper.

For simplicity, we adopt the following convention: x denotes a set, G denotes a group, A, B, H, H_1 , H_2 denote subgroups of G, a, b, c denote elements of G, F denotes a finite sequence of elements of the carrier of G, and i, j denote elements of \mathbb{N} .

One can prove the following propositions:

- (1) $a^b = a \cdot [a, b].$
- (2) $[a,b]^{-1} = [a,b^{-1}]^b$.
- (3) $[a,b]^{-1} = [a^{-1},b]^a$.
- (4) $([a, b^{-1}]^b)^{-1} = [b^{-1}, a]^b$.
- (5) $[a, b^{-1}, c]^b = [[a, b^{-1}]^b, c^b].$
- $(6) \quad \left[a, b^{-1} \right]^b = [b, a].$
- (7) $[a, b^{-1}, c]^b = [b, a, c^b].$
- (8) $[a, b, c^a] \cdot [c, a, b^c] \cdot [b, c, a^b] = \mathbf{1}_G.$

- (9) [A, B] is a subgroup of [B, A].
- $(10) \quad [A, B] = [B, A].$

Let us consider G, A, B. Let us note that the functor [A, B] is commutative. One can prove the following propositions:

- (11) If B is a subgroup of A, then the commutators of $A \& B \subseteq \overline{A}$.
- (12) If B is a subgroup of A, then [A, B] is a subgroup of A.
- (13) If B is a subgroup of A, then [B, A] is a subgroup of A.
- (14) If $[H_1, \Omega_G]$ is a subgroup of H_2 , then $[H_1 \cap H, H]$ is a subgroup of $H_2 \cap H$.
- (15) $[H_1, H_2]$ is a subgroup of $[H_1, \Omega_G]$.
- (16) A is a normal subgroup of G iff $[A, \Omega_G]$ is a subgroup of A.

Let us consider G. The normal subgroups of G yields a set and is defined by:

(Def. 1) $x \in \text{the normal subgroups of } G \text{ iff } x \text{ is a strict normal subgroup of } G.$

Let us consider G. One can verify that the normal subgroups of G is non empty.

Next we state three propositions:

- (17) Let F be a finite sequence of elements of the normal subgroups of G and given j. If $j \in \text{dom } F$, then F(j) is a strict normal subgroup of G.
- (18) The normal subgroups of $G \subseteq \operatorname{SubGr} G$.
- (19) Every finite sequence of elements of the normal subgroups of G is a finite sequence of elements of SubGr G.

Let I_1 be a group. We say that I_1 is nilpotent if and only if the condition (Def. 2) is satisfied.

- (Def. 2) There exists a finite sequence F of elements of the normal subgroups of I_1 such that
 - (i) $\operatorname{len} F > 0$,
 - (ii) $F(1) = \Omega_{(I_1)}$,
 - (iii) $F(\text{len } F) = \{1\}_{(I_1)}, \text{ and }$
 - (iv) for every i such that $i, i+1 \in \text{dom } F$ and for all strict normal subgroups G_1, G_2 of I_1 such that $G_1 = F(i)$ and $G_2 = F(i+1)$ holds G_2 is a subgroup of G_1 and $G_1/G_2/G_1$ is a subgroup of $\mathbb{Z}(I_1/G_2)$.

Let us note that there exists a group which is nilpotent and strict.

We now state four propositions:

- (20) Let G_1 be a subgroup of G and N be a strict normal subgroup of G. Suppose N is a subgroup of G_1 and $G_1/(N)_{(G_1)}$ is a subgroup of $G_1/(N)$. Then $[G_1, \Omega_G]$ is a subgroup of N.
- (21) Let G_1 be a subgroup of G and N be a normal subgroup of G. Suppose N is a strict subgroup of G_1 and $[G_1, \Omega_G]$ is a strict subgroup of N. Then $G_1/(N)_{(G_1)}$ is a subgroup of Z(G/N).

- (22) Let G be a group. Then G is nilpotent if and only if there exists a finite sequence F of elements of the normal subgroups of G such that len F > 0 and $F(1) = \Omega_G$ and $F(\text{len } F) = \{1\}_G$ and for every i such that $i, i+1 \in \text{dom } F$ and for all strict normal subgroups G_1, G_2 of G such that $G_1 = F(i)$ and $G_2 = F(i+1)$ holds G_2 is a subgroup of G_1 and $G_2 = F(i+1)$ is a subgroup of G_2 .
- (23) Let G be a group, H, G_1 be subgroups of G, G_2 be a strict normal subgroup of G, H_1 be a subgroup of H, and H_2 be a normal subgroup of H. Suppose G_2 is a subgroup of G_1 and $G_1/(G_2)(G_1)$ is a subgroup of $G_1/(G_2)(G_1)$ and $G_1/(G_2)(G_1)$ is a subgroup of $G_1/(G_2)(G_1)$ and $G_1/(G_2)(G_1)$ is a subgroup of $G_1/(G_2)(G_1)$ is a subgroup of $G_1/(G_2)(G_1)$.

Let G be a nilpotent group. Note that every subgroup of G is nilpotent.

Let us mention that every group which is commutative is also nilpotent and every group which is cyclic is also nilpotent.

We now state four propositions:

- (24) Let G, H be strict groups, h be a homomorphism from G to H, A be a strict subgroup of G, and a, b be elements of G. Then $h(a) \cdot h(b) \cdot h^{\circ}A = h^{\circ}(a \cdot b \cdot A)$ and $h^{\circ}A \cdot h(a) \cdot h(b) = h^{\circ}(A \cdot a \cdot b)$.
- (25) Let G, H be strict groups, h be a homomorphism from G to H, A be a strict subgroup of G, a, b be elements of G, H_1 be a subgroup of $\operatorname{Im} h$, and a_1 , b_1 be elements of $\operatorname{Im} h$. If $a_1 = h(a)$ and $b_1 = h(b)$ and $H_1 = h^{\circ}A$, then $a_1 \cdot b_1 \cdot H_1 = h(a) \cdot h(b) \cdot h^{\circ}A$.
- (26) Let G, H be strict groups, h be a homomorphism from G to H, G_1 be a strict subgroup of G, G_2 be a strict normal subgroup of G, H_1 be a strict subgroup of $\operatorname{Im} h$, and H_2 be a strict normal subgroup of $\operatorname{Im} h$. Suppose G_2 is a strict subgroup of G_1 and $G_1/G_2/G_1$ is a subgroup of $\operatorname{Z}(G_1/G_2)$ and $G_1/G_1/G_2$ is a subgroup of $\operatorname{Z}(G_1/G_2)$ and $G_1/G_1/G_1/G_1$ is a subgroup of $\operatorname{Z}(G_1/G_1/G_1)$.
- (27) Let G, H be strict groups, h be a homomorphism from G to H, and A be a strict normal subgroup of G. Then $h^{\circ}A$ is a strict normal subgroup of $\operatorname{Im} h$.

Let G be a strict nilpotent group, let H be a strict group, and let h be a homomorphism from G to H. One can check that Im h is nilpotent.

Let G be a strict nilpotent group and let N be a strict normal subgroup of G. Note that G/N is nilpotent.

One can prove the following three propositions:

- (28) Let G be a group. Given a finite sequence F of elements of the normal subgroups of G such that
 - (i) len F > 0,
- (ii) $F(1) = \Omega_G$,
- (iii) $F(\operatorname{len} F) = \{\mathbf{1}\}_G$, and

- (iv) for every i such that i, $i + 1 \in \text{dom } F$ and for every strict normal subgroup G_1 of G such that $G_1 = F(i)$ holds $[G_1, \Omega_G] = F(i + 1)$. Then G is nilpotent.
- (29) Let G be a group. Given a finite sequence F of elements of the normal subgroups of G such that
 - (i) $\operatorname{len} F > 0$,
- (ii) $F(1) = \Omega_G$,
- (iii) $F(\operatorname{len} F) = \{\mathbf{1}\}_G$, and
- (iv) for every i such that $i, i+1 \in \text{dom } F$ and for all strict normal subgroups G_1, G_2 of G such that $G_1 = F(i)$ and $G_2 = F(i+1)$ holds G_2 is a subgroup of G_1 and $G_2 = G_2$ is a commutative group. Then G is nilpotent.
- (30) Let G be a group. Given a finite sequence F of elements of the normal subgroups of G such that
 - (i) $\operatorname{len} F > 0$,
- (ii) $F(1) = \Omega_G$,
- (iii) $F(\operatorname{len} F) = \{\mathbf{1}\}_G$, and
- (iv) for every i such that $i, i+1 \in \text{dom } F$ and for all strict normal subgroups G_1, G_2 of G such that $G_1 = F(i)$ and $G_2 = F(i+1)$ holds G_2 is a subgroup of G_1 and $G_2 = G_2$ is a cyclic group.

Then G is nilpotent.

Let us mention that every group which is nilpotent is also solvable.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955–962, 1990.
- [6] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [7] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855–864, 1990.
- [8] Wojciech A. Trybulec. Commutator and center of a group. Formalized Mathematics, 2(4):461–466, 1991.
- [9] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573–578, 1991.
- [10] Katarzyna Zawadzka. Solvable groups. Formalized Mathematics, 5(1):145–147, 1996.

Received November 10, 2009