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Summary. In this article we present definitions, basic properties and some
examples of periodic functions according to [5].
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The papers [2], [6], [3], [10], [11], [9], [8], [1], [4], and [7] provide the terminology
and notation for this paper.

1. Basic Properties of a Period of a Function

We use the following convention: x, t, t1, t2, r, a, b are real numbers and F ,
G are partial functions from R to R.

Let F be a partial function from R to R and let t be a real number. We say
that t is a period of F if and only if:

(Def. 1) t 6= 0 and for every x holds x ∈ domF iff x+t ∈ domF and if x ∈ domF,

then F (x) = F (x+ t).

Let F be a partial function from R to R. We say that F is periodic if and
only if:

(Def. 2) There exists t which is a period of F .

We now state a number of propositions:
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(1) t is a period of F iff t 6= 0 and for every x such that x ∈ domF holds
x+ t, x− t ∈ domF and F (x) = F (x+ t).

(2) If t is a period of F and a period of G, then t is a period of F +G.

(3) If t is a period of F and a period of G, then t is a period of F −G.
(4) If t is a period of F and a period of G, then t is a period of F G.

(5) If t is a period of F and a period of G, then t is a period of F/G.

(6) If t is a period of F , then t is a period of −F .

(7) If t is a period of F , then t is a period of r F.

(8) If t is a period of F , then t is a period of r + F.

(9) If t is a period of F , then t is a period of F − r.
(10) If t is a period of F , then t is a period of |F |.
(11) If t is a period of F , then t is a period of F−1.

(12) If t is a period of F , then t is a period of F 2.

(13) If t is a period of F , then for every x such that x ∈ domF holds F (x) =
F (x− t).

(14) If t is a period of F , then −t is a period of F .

(15) If t1 is a period of F and t2 is a period of F and t1+ t2 6= 0, then t1+ t2
is a period of F .

(16) If t1 is a period of F and t2 is a period of F and t1− t2 6= 0, then t1− t2
is a period of F .

(17) Suppose t 6= 0 and for every x such that x ∈ domF holds x+ t, x− t ∈
domF and F (x + t) = F (x − t). Then 2 · t is a period of F and F is
periodic.

(18) Suppose t1 + t2 6= 0 and for every x such that x ∈ domF holds x + t1,
x− t1, x+ t2, x− t2 ∈ domF and F (x+ t1) = F (x− t2). Then t1 + t2 is
a period of F and F is periodic.

(19) Suppose t1 − t2 6= 0 and for every x such that x ∈ domF holds x + t1,
x− t1, x+ t2, x− t2 ∈ domF and F (x+ t1) = F (x+ t2). Then t1 − t2 is
a period of F and F is periodic.

(20) Suppose t 6= 0 and for every x such that x ∈ domF holds x+ t, x− t ∈
domF and F (x+t) = F (x)−1. Then 2·t is a period of F and F is periodic.

Let us observe that there exists a partial function from R to R which is
periodic.

Let F be a periodic partial function from R to R. One can check that −F
is periodic.

Let F be a periodic partial function from R to R and let r be a real number.
One can check the following observations:

∗ r F is periodic,

∗ r + F is periodic, and
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∗ F − r is periodic.

Let F be a periodic partial function from R to R. One can check the following
observations:

∗ |F | is periodic,

∗ F−1 is periodic, and

∗ F 2 is periodic.

2. Some Examples

Let us note that the function sin is periodic and the function cos is periodic.
We now state two propositions:

(21) For every element k of N holds 2 ·π ·(k+1) is a period of the function sin.

(22) For every element k of N holds 2·π ·(k+1) is a period of the function cos.

Let us observe that the function cosec is periodic and the function sec is
periodic.

We now state two propositions:

(23) For every element k of N holds 2 ·π ·(k+1) is a period of the function sec.

(24) For every element k of N holds 2·π·(k+1) is a period of the function cosec.

Let us mention that the function tan is periodic and the function cot is
periodic.

Next we state a number of propositions:

(25) For every element k of N holds π · (k+ 1) is a period of the function tan.

(26) For every element k of N holds π · (k+ 1) is a period of the function cot.

(27) For every element k of N holds π · (k+1) is a period of |the function sin|.
(28) For every element k of N holds π · (k + 1) is a period of |the function

cos|.
(29) For every element k of N holds π

2 · (k + 1) is a period of |the function
sin|+ |the function cos|.

(30) For every element k of N holds π ·(k+1) is a period of (the function sin)2.

(31) For every element k of N holds π ·(k+1) is a period of (the function cos)2.

(32) For every element k of N holds π · (k + 1) is a period of (the function
sin) (the function cos).

(33) For every element k of N holds π · (k + 1) is a period of (the function
cos) (the function sin).

(34) For every element k of N holds 2 · π · (k + 1) is a period of b + a (the
function sin).

(35) For every element k of N holds 2 ·π · (k+ 1) is a period of a (the function
sin)−b.



248 bo li et al.

(36) For every element k of N holds 2 · π · (k + 1) is a period of b + a (the
function cos).

(37) For every element k of N holds 2 ·π · (k+ 1) is a period of a (the function
cos)−b.

(38) If domF = R and for every real number x holds F (x) = a, then for
every element k of N holds k + 1 is a period of F .
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