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Summary. The following theorem is due to Dilworth [8]: Let P be a
partially ordered set. If the maximal number of elements in an independent subset
(anti-chain) of P is k, then P is the union of k chains (cliques).

In this article we formalize an elegant proof of the above theorem for finite
posets by Perles [13]. The result is then used in proving the case of infinite posets
following the original proof of Dilworth [8].

A dual of Dilworth’s theorem also holds: a poset with maximum clique m is
a union of m independent sets. The proof of this dual fact is considerably easier;
we follow the proof by Mirsky [11]. Mirsky states also a corollary that a poset
of r × s + 1 elements possesses a clique of size r + 1 or an independent set of
size s + 1, or both. This corollary is then used to prove the result of Erdős and
Szekeres [9].

Instead of using posets, we drop reflexivity and state the facts about anti-
symmetric and transitive relations.

MML identifier: DILWORTH, version: 7.11.04 4.130.1076

The articles [1], [15], [14], [7], [2], [16], [3], [12], [17], [5], [10], [4], and [6] provide
the notation and terminology for this paper.

1. Preliminaries

The scheme FraenkelFinCard1 deals with a finite non empty set A, a finite
set B, a unary functor F yielding a set, and a unary predicate P, and states
that:
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B ≤ A
provided the following condition is satisfied:
• B = {F(w);w ranges over elements of A : P[w]}.

Next we state the proposition

(1) For all sets X, Y , x such that x /∈ X holds X \ (Y ∪ {x}) = X \ Y.
Let us note that every set which is empty is also ⊆-linear and there exists a

set which is empty and ⊆-linear.
Let X be a ⊆-linear set. Note that every subset of X is ⊆-linear.
One can prove the following four propositions:

(2) Let X, Y be sets, F be a family of subsets of X, and G be a family of
subsets of Y . Then F ∪G is a family of subsets of X ∪ Y.

(3) Let X, Y be sets, F be a partition of X, and G be a partition of Y . If
X misses Y , then F ∪G is a partition of X ∪ Y.

(4) For all sets X, Y and for every partition F of Y such that Y ⊂ X holds
F ∪ {X \ Y } is a partition of X.

(5) For every infinite set X and for every natural number n there exists a
finite subset Y of X such that Y > n.

2. Cliques and Stable Sets

Let R be a relational structure and let S be a subset of R. We say that S is
connected if and only if:

(Def. 1) The internal relation of R is connected in S.

Let R be a relational structure and let S be a subset of R. We introduce S
is a clique as a synonym of S is connected.

Let R be a relational structure. Note that every subset of R which is trivial
is also a clique.

Let R be a relational structure. One can check that there exists a subset of
R which is a clique.

Let R be a relational structure. A clique of R is a clique subset of R.
We now state the proposition

(6) Let R be a relational structure and S be a subset of R. Then S is a
clique of R if and only if for all elements a, b of R such that a, b ∈ S and
a 6= b holds a ≤ b or b ≤ a.

Let R be a relational structure. Observe that there exists a clique of R which
is finite.

Let R be a reflexive relational structure. One can check that every subset of
R which is connected is also strongly connected.

Let R be a non empty relational structure. Observe that there exists a clique
of R which is finite and non empty.
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One can prove the following propositions:

(7) Let R be a non empty relational structure and a1, a2 be elements of R.
If a1 6= a2 and {a1, a2} is a clique of R, then a1 ≤ a2 or a2 ≤ a1.

(8) Let R be a non empty relational structure and a1, a2 be elements of R.
If a1 ≤ a2 or a2 ≤ a1, then {a1, a2} is a clique of R.

(9) For every relational structure R and for every clique C of R holds every
subset of C is a clique of R.

(10) Let R be a relational structure, C be a finite clique of R, and n be a
natural number. If n ≤ C , then there exists a finite clique B of R such
that B = n.

(11) Let R be a transitive relational structure, C be a clique of R, and x, y
be elements of R. If x is maximal in C and x ≤ y, then C ∪{y} is a clique
of R.

(12) Let R be a transitive relational structure, C be a clique of R, and x, y
be elements of R. If x is minimal in C and y ≤ x, then C ∪ {y} is a clique
of R.

Let R be a relational structure and let S be a subset of R. We say that S is
stable if and only if:

(Def. 2) For all elements x, y of R such that x, y ∈ S and x 6= y holds x 6≤ y and
y 6≤ x.

Let R be a relational structure. One can check that every subset of R which
is trivial is also stable. Let R be a relational structure. Note that there exists a
subset of R which is stable.

Let R be a relational structure. A stable set of R is a stable subset of R.
Let R be a relational structure. Note that there exists a stable set of R which

is finite.
Let R be a non empty relational structure. Observe that there exists a stable

set of R which is finite and non empty.
The following propositions are true:

(13) Let R be a non empty relational structure and a1, a2 be elements of R.
If a1 6= a2 and {a1, a2} is a stable set of R, then a1 6≤ a2 and a2 6≤ a1.

(14) Let R be a non empty relational structure and a1, a2 be elements of R.
If a1 6≤ a2 and a2 6≤ a1, then {a1, a2} is a stable set of R.

(15) Let R be a relational structure, C be a clique of R, A be a stable set of
R, and a, b be sets. If a, b ∈ A and a, b ∈ C, then a = b.

(16) For every relational structure R and for every stable set A of R holds
every subset of A is a stable set of R.

(17) Let R be a relational structure, A be a finite stable set of R, and n be
a natural number. If n ≤ A, then there exists a finite stable set B of R
such that B = n.
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3. Clique Number and Stability Number

Let R be a relational structure. We say that R has finite clique number if
and only if:

(Def. 3) There exists a finite clique C of R such that for every finite clique D of
R holds D ≤ C .

Let us observe that every relational structure which is finite has also fini-
te clique number and there exists a relational structure which is non empty,
antisymmetric, and transitive and has finite clique number.

Let R be a relational structure with finite clique number. Observe that every
clique of R is finite.

Let R be a relational structure with finite clique number. The functor ω(R)
yields a natural number and is defined as follows:

(Def. 4) There exists a finite clique C of R such that C = ω(R) and for every
finite clique T of R holds T ≤ ω(R).

Let R be an empty relational structure. Note that ω(R) is empty.
Let R be a non empty relational structure with finite clique number. Observe

that ω(R) is positive.
Next we state two propositions:

(18) For every non empty relational structure R with finite clique number
such that ΩR is a stable set of R holds ω(R) = 1.

(19) For every relational structure R with finite clique number such that
ω(R) = 1 holds ΩR is a stable set of R.

Let R be a relational structure. We say that R has finite stability number if
and only if:

(Def. 5) There exists a finite stable set A of R such that for every finite stable
set B of R holds B ≤ A.

One can verify that every relational structure which is finite has also finite
stability number and there exists a relational structure which is antisymmetric,
transitive, and non empty and has finite stability number.

Let R be a relational structure with finite stability number. Note that every
stable set of R is finite.

Let R be a relational structure with finite stability number. The functor
α(R) yielding a natural number is defined by:

(Def. 6) There exists a finite stable set A of R such that A = α(R) and for every
finite stable set T of R holds T ≤ α(R).

Let R be an empty relational structure. Observe that α(R) is empty.
Let R be a non empty relational structure with finite stability number. One

can verify that α(R) is positive.
We now state two propositions:
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(20) For every non empty relational structure R with finite stability number
such that ΩR is a clique of R holds α(R) = 1.

(21) For every relational structure R with finite stability number such that
α(R) = 1 holds ΩR is a clique of R.

Let us mention that every relational structure which has finite clique number
and finite stability number is also finite.

4. Lower and Upper Sets, Minimal and Maximal Elements

Let R be a relational structure and let X be a subset of R. The functor
LowerX yields a subset of R and is defined by:

(Def. 7) LowerX = X ∪ ↓X.
The functor UpperX yielding a subset of R is defined as follows:

(Def. 8) UpperX = X ∪ ↑X.
One can prove the following propositions:

(22) Let R be an antisymmetric transitive relational structure, A be a stable
set of R, and z be a set. If z ∈ UpperA and z ∈ LowerA, then z ∈ A.

(23) Let R be a relational structure with finite stability number and A be a
stable set of R. If A = α(R), then UpperA ∪ LowerA = ΩR.

(24) Let R be a transitive relational structure, x be an element of R, and S

be a subset of R. If x is minimal in LowerS, then x is minimal in ΩR.

(25) Let R be a transitive relational structure, x be an element of R, and S

be a subset of R. If x is maximal in UpperS, then x is maximal in ΩR.

Let R be a relational structure. The functor minimals(R) yielding a subset
of R is defined as follows:

(Def. 9)(i) For every element x of R holds x ∈ minimals(R) iff x is minimal in
ΩR if R is non empty,

(ii) minimals(R) = ∅, otherwise.

The functor maximals(R) yielding a subset of R is defined as follows:

(Def. 10)(i) For every element x of R holds x ∈ maximals(R) iff x is maximal in
ΩR if R is non empty,

(ii) maximals(R) = ∅, otherwise.

Let R be a non empty antisymmetric transitive relational structure with fini-
te clique number. One can verify that maximals(R) is non empty and minimals(R)
is non empty.

LetR be a relational structure. Note that minimals(R) is stable and maximals(R)
is stable.

The following two propositions are true:
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(26) For every relational structure R and for every stable set A of R such
that minimals(R) 6⊆ A holds minimals(R) 6⊆ UpperA.

(27) For every relational structure R and for every stable set A of R such
that maximals(R) 6⊆ A holds maximals(R) 6⊆ LowerA.

5. Substructures

Let R be a relational structure and let X be a finite subset of R. Observe
that sub(X) is finite.

One can prove the following propositions:

(28) For every relational structure R and for every subset S of R holds every
clique of sub(S) is a clique of R.

(29) Let R be a relational structure, S be a subset of R, and C be a clique
of R. Then C ∩ S is a clique of sub(S).

(30) For every relational structure R and for every subset S of R holds every
stable set of sub(S) is a stable set of R.

(31) Let R be a relational structure, S be a subset of R, and A be a stable
set of R. Then A ∩ S is a stable set of sub(S).

(32) Let R be a relational structure, S be a subset of R, B be a subset of
sub(S), x be an element of sub(S), and y be an element of R. If x = y

and x is maximal in B, then y is maximal in B.

(33) Let R be a relational structure, S be a subset of R, B be a subset of
sub(S), x be an element of sub(S), and y be an element of R. If x = y

and x is minimal in B, then y is minimal in B.

(34) Let R be a transitive relational structure, A be a stable set of R, C be a
clique of sub(LowerA), and a, b be elements of R. If a ∈ A and a, b ∈ C,
then a = b or b ≤ a.

(35) Let R be a transitive relational structure, A be a stable set of R, C be a
clique of sub(UpperA), and a, b be elements of R. If a ∈ A and a, b ∈ C,
then a = b or a ≤ b.

Let R be a relational structure with finite clique number and let S be a
subset of R. One can verify that sub(S) has finite clique number.

Let R be a relational structure with finite stability number and let S be a
subset of R. One can verify that sub(S) has finite stability number.

The following propositions are true:

(36) Let R be a non empty antisymmetric transitive relational structure with
finite clique number and x be an element ofR. Then there exists an element
y of R such that y is minimal in ΩR but y = x or y < x.

(37) For every antisymmetric transitive relational structure R with finite cli-
que number holds Upper minimals(R) = ΩR.
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(38) Let R be a non empty antisymmetric transitive relational structure with
finite clique number and x be an element ofR. Then there exists an element
y of R such that y is maximal in ΩR but y = x or x < y.

(39) For every antisymmetric transitive relational structure R with finite cli-
que number holds Lower maximals(R) = ΩR.

(40) Let R be an antisymmetric transitive relational structure with finite
clique number and A be a stable set of R. If minimals(R) ⊆ A, then
A = minimals(R).

(41) Let R be an antisymmetric transitive relational structure with finite
clique number and A be a stable set of R. If maximals(R) ⊆ A, then
A = maximals(R).

(42) For every relational structure R with finite clique number and for every
subset S of R holds ω(sub(S)) ≤ ω(R).

(43) Let R be a relational structure with finite clique number, C be a clique
of R, and S be a subset of R. If C = ω(R) and C ⊆ S, then ω(sub(S)) =
ω(R).

(44) For every relational structure R with finite stability number and for
every subset S of R holds α(sub(S)) ≤ α(R).

(45) Let R be a relational structure with finite stability number, A be a
stable set of R, and S be a subset of R. If A = α(R) and A ⊆ S, then
α(sub(S)) = α(R).

6. Partitions into Cliques and Stable Sets

Let R be a relational structure and let P be a partition of the carrier of R.
We say that P is clique-wise if and only if:

(Def. 11) For every set x such that x ∈ P holds x is a clique of R.

Let R be a relational structure. Observe that there exists a partition of the
carrier of R which is clique-wise.

Let R be a relational structure. A clique-partition of R is a clique-wise
partition of the carrier of R.

Let R be an empty relational structure. One can verify that every partition
of the carrier of R which is empty is also clique-wise.

Next we state four propositions:

(46) For every finite relational structure R and for every clique-partition C

of R holds C ≥ α(R).

(47) Let R be a relational structure with finite stability number, A be a stable
set of R, and C be a clique-partition of R. Suppose CardC = CardA. Then
there exists a function f from A into C such that f is bijective and for
every set x such that x ∈ A holds x ∈ f(x).
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(48) Let R be a finite relational structure, A be a stable set of R, and C be a
clique-partition of R. Suppose C = A. Let c be a set. If c ∈ C, then there
exists an element a of A such that c ∩A = {a}.

(49) LetR be an antisymmetric transitive non empty relational structure with
finite stability number, A be a stable set of R, U be a clique-partition
of sub(UpperA), and L be a clique-partition of sub(LowerA). Suppose
A = α(R) and CardU = α(R) and CardL = α(R). Then there exists a
clique-partition C of R such that CardC = α(R).

Let R be a relational structure and let P be a partition of the carrier of R.
We say that P is stable-wise if and only if:

(Def. 12) For every set x such that x ∈ P holds x is a stable set of R.

Let R be a relational structure. Observe that there exists a partition of the
carrier of R which is stable-wise.

Let R be a relational structure. A coloring of R is a stable-wise partition of
the carrier of R.

Let R be an empty relational structure. Note that every partition of the
carrier of R is stable-wise.

We now state the proposition

(50) For every finite relational structure R and for every coloring C of R holds
C ≥ ω(R).

7. Dilworth’s Theorem and a Dual

Next we state the proposition

(51) Let R be a finite antisymmetric transitive relational structure. Then
there exists a clique-partition C of R such that C = α(R).

Let R be a non empty relational structure with finite stability number and
let C be a subset of R. We say that C is strong-chain if and only if the condition
(Def. 13) is satisfied.

(Def. 13) Let S be a finite non empty subset of R. Then there exists a clique-
partition P of sub(S) such that P ≤ α(R) and there exists a set c such
that c ∈ P and S ∩ C ⊆ c and for every set d such that d ∈ P and d 6= c

holds C ∩ d = ∅.
Let R be a non empty relational structure with finite stability number. Note

that every subset of R which is strong-chain is also a clique.
Let R be an antisymmetric transitive non empty relational structure with

finite stability number. Observe that every subset of R which is trivial and non
empty is also strong-chain.

The following propositions are true:
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(52) Let R be a non empty antisymmetric transitive relational structure with
finite stability number. Then there exists a non empty subset S of R such
that S is strong-chain and it is not true that there exists a subset D of R
such that D is strong-chain and S ⊂ D.

(53) Let R be an antisymmetric transitive relational structure with finite
stability number. Then there exists a clique-partition C of R such that
CardC = α(R).

(54) Let R be an antisymmetric transitive relational structure with finite
clique number. Then there exists a coloring A of R such that CardA =
ω(R).

8. Erdős-Szekeres Theorem

One can prove the following two propositions:

(55) Let R be a finite antisymmetric transitive relational structure and r, s
be natural numbers. Suppose CardR = r ·s+1. Then there exists a clique
C of R such that C ≥ r + 1 or there exists a stable set A of R such that
A ≥ s+ 1.

(56) Let f be a real-valued finite sequence and n be a natural number. Sup-
pose f = n2+ 1 and f is one-to-one. Then there exists a real-valued finite
subsequence g such that g ⊆ f and g ≥ n + 1 and g is increasing or
decreasing.
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