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Summary. We present the concept and basic properties of the Menger-
Urysohn small inductive dimension of topological spaces according to the books

[7]. Namely, the paper includes the formalization of main theorems from Sections
1.1 and 1.2.
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The terminology and notation used here are introduced in the following articles:

[17],[[8]], (15], [5], [16], [6], [18], [14], [1], 2], [3], [13], [11], [9], [12], [19], [20], [10],
and [4].

1. PRELIMINARIES

For simplicity, we adopt the following rules: T', T;, T> denote topological
spaces, A, B denote subsets of T', F' denotes a subset of TTA, G, GG1, G5 denote
families of subsets of T', U, W denote open subsets of T'[ A, p denotes a point of
TTA, n denotes a natural number, and I denotes an integer.

One can prove the following propositions:

(1) Fr(BNA)CFrBNA.

(2) T isa Ty space if and only if for all closed subsets A, B of T such that A
misses B there exist open subsets U, W of T such that A CU and BC W
and U misses W.

Let us consider T'. The sequence of ind of 1" yields a sequence of subsets of
gthe carrier of T and is defined by the conditions (Def. 1).
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(Def. 1)(i)  (The sequence of ind of T')(0) = {07}, and
(i) A € (the sequence of ind of T')(n + 1) iff A € (the sequence of ind of
T)(n) or for all p, U such that p € U there exists W such that p € W and
W C U and Fr W € (the sequence of ind of T')(n).
Let us consider T'. Note that the sequence of ind of T is ascending.
We now state the proposition
(3) For every F such that F' = B holds F' € (the sequence of ind of T'[A)(n)
iff B € (the sequence of ind of T')(n).
Let us consider T, A. We say that A has finite small inductive dimension if
and only if:
(Def. 2) There exists n such that A € (the sequence of ind of T")(n).
Let us consider T', A. We introduce A is finite-ind as a synonym of A has
finite small inductive dimension.
Let us consider T'; G. We say that G has finite small inductive dimension if
and only if:
(Def. 3) There exists n such that G C (the sequence of ind of T)(n).
Let us consider T, G. We introduce G is finite-ind as a synonym of G has
finite small inductive dimension.
The following proposition is true
(4) If A€ G and G is finite-ind, then A is finite-ind.
Let us consider T'. One can check the following observations:
x every subset of T" which is finite is also finite-ind,
* there exists a subset of T" which is finite-ind,
x every family of subsets of T" which is empty is also finite-ind, and
* there exists a family of subsets of T" which is non empty and finite-ind.
Let T be a non empty topological space. One can check that there exists a
subset of T" which is non empty and finite-ind.
Let us consider T. We say that T has finite small inductive dimension if and
only if:
(Def. 4) Qg has finite small inductive dimension.
Let us consider T'. We introduce T is finite-ind as a synonym of 7" has finite
small inductive dimension.
One can verify that every topological space which is empty is also finite-ind.
Let X be a set. Note that {X }¢op is finite-ind.
One can check that there exists a topological space which is non empty and
finite-ind.
In the sequel A; is a finite-ind subset of T and T3 is a finite-ind topological
space.
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2. SMALL INDUCTIVE DIMENSION

Let us consider T" and let us consider A. Let us assume that A is finite-ind.
The functor ind A yields an integer and is defined as follows:
(Def. 5) A € (the sequence of ind of T')(ind A + 1) and A ¢ (the sequence of ind
of T')(ind A).
We now state two propositions:
(5) -1 S ind Al.
(6) ind A; = —1iff A; is empty.
Let T be a non empty topological space and let A be a non empty finite-ind
subset of T'. Observe that ind A is natural.
The following three propositions are true:
(7) ind A; <n—1iff A; € (the sequence of ind of T')(n).
(8) For every finite subset A of T holds ind A < A,
(9) ind A; < n if and only if for every point p of T'[A; and for every open
subset U of T'[A; such that p € U there exists an open subset W of T'[A;
such that p € W and W C U and Fr W is finite-ind and ind Fr W < n — 1.
Let us consider T" and let us consider G. Let us assume that G is finite-ind.
The functor ind G yielding an integer is defined by the conditions (Def. 6).
(Def. 6)(i) G C (the sequence of ind of T')(ind G + 1),
(ii) —1<indG, and
(iii)  for every integer ¢ such that —1 < i and G C (the sequence of ind of
T)(i+ 1) holds ind G < i.
The following propositions are true:
(10) indG = —1 and G is finite-ind iff G C {07}.
(11) G is finite-ind and ind G < I iff —1 < I and for every A such that A € G
holds A is finite-ind and ind A < I.
(12) If Gy is finite-ind and Gy C G1, then Gy is finite-ind and ind G2 < ind G;.
Let us consider T and let G1, G2 be finite-ind families of subsets of T'.
Observe that G1 U Gy is finite-ind.
The following proposition is true
(13) If G is finite-ind and G} is finite-ind and ind G < I and ind G; < I, then
ind(G U Gl) <.
Let us consider T'. The functor ind T yields an integer and is defined as
follows:
(Def. 7)  indT = ind(S27).
Let T be a non empty finite-ind topological space. One can verify that ind T’
is natural.
The following three propositions are true:
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(14) For every non empty set X holds ind({X }top) = 0.

(15) Given n such that let p be a point of T and U be an open subset of
T. Suppose p € U. Then there exists an open subset W of T such that
pe W and W C U and FrW is finite-ind and ind Fr W <n — 1. Then T
is finite-ind.

(16) ind 73 < n if and only if for every point p of T3 and for every open subset
U of T3 such that p € U there exists an open subset W of T3 such that
p€e W and W CU and FrW is finite-ind and ind Fr W <n — 1.

3. MONOTONICITY OF THE SMALL INDUCTIVE DIMENSION

Let us consider T5. Observe that every subset of T3 is finite-ind.
Let us consider T, A;. Note that T'[A; is finite-ind.
One can prove the following propositions:

(17) ind(T'TA;) = ind A;.

(18) If TA is finite-ind, then A is finite-ind.

(19) If A C Ay, then A is finite-ind and ind A < ind A4;.

(20) For every subset A of T3 holds ind A < ind T5.

(21) If F = B and B is finite-ind, then F' is finite-ind and ind F' = ind B.
(22) If F = B and F is finite-ind, then B is finite-ind and ind F' = ind B.
(23)

Let T be a non empty topological space. Suppose T is a T3 space. Then
T is finite-ind and indT" < n if and only if for every closed subset A of T'
and for every point p of T such that p ¢ A there exists a subset L of T
such that L separates {p}, A and L is finite-ind and ind L < n — 1.

(24) If Ty and T are homeomorphic, then T} is finite-ind iff 75 is finite-ind.
(25) If T} and T are homeomorphic and 77 is finite-ind, then ind 77 = ind T5.

(26) Let As be a subset of T} and As be a subset of T,. Suppose Ay and As
are homeomorphic. Then A, is finite-ind if and only if As is finite-ind.

(27) Let Ay be a subset of 77 and A3 be a subset of Th. If Ay and As are
homeomorphic and A, is finite-ind, then ind As = ind Ags.

(28) If Ty x T is finite-ind, then T x T} is finite-ind and ind(77 xT5) = ind (7% x
Tl).

(29) For every family Gg of subsets of T'[A such that G3 is finite-ind and
G'3 = G holds G is finite-ind and ind G = ind G3.

(30) For every family Gs of subsets of T'[A such that G is finite-ind and
G3 = G holds G3 is finite-ind and ind G = ind G3.
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4. BASIC PROPERTIES 0-DIMENSIONAL T'OPOLOGICAL SPACES

Next we state several propositions:

(31) T is finite-ind and ind7" < n if and only if there exists a basis By of
T such that for every A such that A € Bj holds Fr A is finite-ind and
indFr4A <n-—1.

(32) Let given T'. Suppose that

(i) T isa T space, and

(ii)  for all closed subsets A, B of T' such that A misses B there exist closed
subsets A’, B’ of T such that A’ misses B’ and A’ UB' = Qp and A C A’
and BC B'.
Then T is finite-ind and ind T" < 0.

(33) Let X be a set and f be a sequence of subsets of X. Then there exists
a sequence g of subsets of X such that

(i) Urngf=Umgg,

(ii)  for all natural numbers i, j such that i # j holds g(i) misses g(j), and
(ili) for every n there exists a finite family fi of subsets of X such that
f1 = {f(4);i ranges over elements of N: i < n} and g(n) = f(n) \ U fi.
(34) Let given T. Suppose T is finite-ind and ind 7" < 0 and T is Lindelof.
Let A, B be closed subsets of T'. Suppose A misses B. Then there exist
closed subsets A’, B’ of T such that A’ misses B’ and A’ U B’ = Q¢ and

ACA and BC B'.

(35) Let given T'. Suppose T is a T} space and Lindel6f. Then T is finite-ind
and indT" < 0 if and only if for all closed subsets A, B of T such that A
misses B holds ()7 separates A, B.

(36) Let given T'. Suppose that

(i) T is a Ty space, a T; space, and Lindelof, and

(ii)  there exists a family F' of subsets of T" such that F' is closed, a cover of
T, countable, and finite-ind and ind F' < 0.
Then T is finite-ind and ind T" < 0.

In the sequel T} is a metrizable topological space.
We now state four propositions:

(37) Let A, B be closed subsets of Ty. Suppose A misses B. Let Ny be a finite-
ind subset of Ty. Suppose ind N1 < 0 and T4[ N7 is second-countable. Then
there exists a subset L of Ty such that L separates A, B and L misses Nj.

(38) Let Ny be a subset of Ty. Suppose T4[N; is second-countable. Then Ny
is finite-ind and ind N; < 0 if and only if for every point p of T and for

every open subset U of Ty such that p € U there exists an open subset W
of Ty such that p € W and W C U and N; misses Fr W.
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(39) Let Ny be a subset of Ty. Suppose TN is second-countable. Then N;

is finite-ind and ind N7 < 0 if and only if there exists a basis B of Ty such
that for every subset A of Ty such that A € B holds Ny misses Fr A.

(40) Let Ny, A be subsets of Ty. Suppose T N; is second-countable and N;

is finite-ind and A is finite-ind and ind N7 < 0. Then A U Nj is finite-ind
and ind(AU Np) <ind A + 1.
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