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Summary. We present the concept and basic properties of the Menger-
Urysohn small inductive dimension of topological spaces according to the books
[7]. Namely, the paper includes the formalization of main theorems from Sections
1.1 and 1.2.
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The terminology and notation used here are introduced in the following articles:
[17], [8], [15], [5], [16], [6], [18], [14], [1], [2], [3], [13], [11], [9], [12], [19], [20], [10],
and [4].

1. Preliminaries

For simplicity, we adopt the following rules: T , T1, T2 denote topological
spaces, A, B denote subsets of T , F denotes a subset of T �A, G, G1, G2 denote
families of subsets of T , U , W denote open subsets of T �A, p denotes a point of
T �A, n denotes a natural number, and I denotes an integer.

One can prove the following propositions:

(1) Fr(B ∩A) ⊆ FrB ∩A.
(2) T is a T4 space if and only if for all closed subsets A, B of T such that A

misses B there exist open subsets U ,W of T such that A ⊆ U and B ⊆W
and U misses W .

Let us consider T . The sequence of ind of T yields a sequence of subsets of
2the carrier of T and is defined by the conditions (Def. 1).

207
c© 2009 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://fm.mizar.org/miz/topdim_1.miz
http://ftp.mizar.org/


208 karol pąk

(Def. 1)(i) (The sequence of ind of T )(0) = {∅T }, and
(ii) A ∈ (the sequence of ind of T )(n + 1) iff A ∈ (the sequence of ind of
T )(n) or for all p, U such that p ∈ U there exists W such that p ∈W and
W ⊆ U and FrW ∈ (the sequence of ind of T )(n).

Let us consider T . Note that the sequence of ind of T is ascending.
We now state the proposition

(3) For every F such that F = B holds F ∈ (the sequence of ind of T �A)(n)
iff B ∈ (the sequence of ind of T )(n).

Let us consider T , A. We say that A has finite small inductive dimension if
and only if:

(Def. 2) There exists n such that A ∈ (the sequence of ind of T )(n).

Let us consider T , A. We introduce A is finite-ind as a synonym of A has
finite small inductive dimension.

Let us consider T , G. We say that G has finite small inductive dimension if
and only if:

(Def. 3) There exists n such that G ⊆ (the sequence of ind of T )(n).

Let us consider T , G. We introduce G is finite-ind as a synonym of G has
finite small inductive dimension.

The following proposition is true

(4) If A ∈ G and G is finite-ind, then A is finite-ind.

Let us consider T . One can check the following observations:

∗ every subset of T which is finite is also finite-ind,

∗ there exists a subset of T which is finite-ind,

∗ every family of subsets of T which is empty is also finite-ind, and

∗ there exists a family of subsets of T which is non empty and finite-ind.

Let T be a non empty topological space. One can check that there exists a
subset of T which is non empty and finite-ind.

Let us consider T . We say that T has finite small inductive dimension if and
only if:

(Def. 4) ΩT has finite small inductive dimension.

Let us consider T . We introduce T is finite-ind as a synonym of T has finite
small inductive dimension.

One can verify that every topological space which is empty is also finite-ind.
Let X be a set. Note that {X}top is finite-ind.
One can check that there exists a topological space which is non empty and

finite-ind.
In the sequel A1 is a finite-ind subset of T and T3 is a finite-ind topological

space.
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2. Small Inductive Dimension

Let us consider T and let us consider A. Let us assume that A is finite-ind.
The functor indA yields an integer and is defined as follows:

(Def. 5) A ∈ (the sequence of ind of T )(indA+ 1) and A /∈ (the sequence of ind
of T )(indA).

We now state two propositions:

(5) −1 ≤ indA1.

(6) indA1 = −1 iff A1 is empty.

Let T be a non empty topological space and let A be a non empty finite-ind
subset of T . Observe that indA is natural.

The following three propositions are true:

(7) indA1 ≤ n− 1 iff A1 ∈ (the sequence of ind of T )(n).

(8) For every finite subset A of T holds indA < A.

(9) indA1 ≤ n if and only if for every point p of T �A1 and for every open
subset U of T �A1 such that p ∈ U there exists an open subset W of T �A1
such that p ∈W and W ⊆ U and FrW is finite-ind and ind FrW ≤ n− 1.

Let us consider T and let us consider G. Let us assume that G is finite-ind.
The functor indG yielding an integer is defined by the conditions (Def. 6).

(Def. 6)(i) G ⊆ (the sequence of ind of T )(indG+ 1),
(ii) −1 ≤ indG, and
(iii) for every integer i such that −1 ≤ i and G ⊆ (the sequence of ind of
T )(i+ 1) holds indG ≤ i.

The following propositions are true:

(10) indG = −1 and G is finite-ind iff G ⊆ {∅T }.
(11) G is finite-ind and indG ≤ I iff −1 ≤ I and for every A such that A ∈ G

holds A is finite-ind and indA ≤ I.
(12) IfG1 is finite-ind andG2 ⊆ G1, thenG2 is finite-ind and indG2 ≤ indG1.

Let us consider T and let G1, G2 be finite-ind families of subsets of T .
Observe that G1 ∪G2 is finite-ind.

The following proposition is true

(13) If G is finite-ind and G1 is finite-ind and indG ≤ I and indG1 ≤ I, then
ind(G ∪G1) ≤ I.

Let us consider T . The functor indT yields an integer and is defined as
follows:

(Def. 7) indT = ind(ΩT ).

Let T be a non empty finite-ind topological space. One can verify that indT
is natural.

The following three propositions are true:
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(14) For every non empty set X holds ind({X}top) = 0.

(15) Given n such that let p be a point of T and U be an open subset of
T . Suppose p ∈ U. Then there exists an open subset W of T such that
p ∈ W and W ⊆ U and FrW is finite-ind and ind FrW ≤ n− 1. Then T
is finite-ind.

(16) indT3 ≤ n if and only if for every point p of T3 and for every open subset
U of T3 such that p ∈ U there exists an open subset W of T3 such that
p ∈W and W ⊆ U and FrW is finite-ind and ind FrW ≤ n− 1.

3. Monotonicity of the Small Inductive Dimension

Let us consider T3. Observe that every subset of T3 is finite-ind.
Let us consider T , A1. Note that T �A1 is finite-ind.
One can prove the following propositions:

(17) ind(T �A1) = indA1.

(18) If T �A is finite-ind, then A is finite-ind.

(19) If A ⊆ A1, then A is finite-ind and indA ≤ indA1.

(20) For every subset A of T3 holds indA ≤ indT3.

(21) If F = B and B is finite-ind, then F is finite-ind and indF = indB.

(22) If F = B and F is finite-ind, then B is finite-ind and indF = indB.

(23) Let T be a non empty topological space. Suppose T is a T3 space. Then
T is finite-ind and indT ≤ n if and only if for every closed subset A of T
and for every point p of T such that p /∈ A there exists a subset L of T
such that L separates {p}, A and L is finite-ind and indL ≤ n− 1.

(24) If T1 and T2 are homeomorphic, then T1 is finite-ind iff T2 is finite-ind.

(25) If T1 and T2 are homeomorphic and T1 is finite-ind, then indT1 = indT2.

(26) Let A2 be a subset of T1 and A3 be a subset of T2. Suppose A2 and A3
are homeomorphic. Then A2 is finite-ind if and only if A3 is finite-ind.

(27) Let A2 be a subset of T1 and A3 be a subset of T2. If A2 and A3 are
homeomorphic and A2 is finite-ind, then indA2 = indA3.

(28) If T1×T2 is finite-ind, then T2×T1 is finite-ind and ind(T1×T2) = ind(T2×
T1).

(29) For every family G3 of subsets of T �A such that G3 is finite-ind and
G3 = G holds G is finite-ind and indG = indG3.

(30) For every family G3 of subsets of T �A such that G is finite-ind and
G3 = G holds G3 is finite-ind and indG = indG3.
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4. Basic Properties 0-dimensional Topological Spaces

Next we state several propositions:

(31) T is finite-ind and indT ≤ n if and only if there exists a basis B1 of
T such that for every A such that A ∈ B1 holds FrA is finite-ind and
ind FrA ≤ n− 1.

(32) Let given T . Suppose that
(i) T is a T1 space, and
(ii) for all closed subsets A, B of T such that A misses B there exist closed

subsets A′, B′ of T such that A′ misses B′ and A′ ∪B′ = ΩT and A ⊆ A′
and B ⊆ B′.
Then T is finite-ind and indT ≤ 0.

(33) Let X be a set and f be a sequence of subsets of X. Then there exists
a sequence g of subsets of X such that

(i)
⋃

rng f =
⋃

rng g,
(ii) for all natural numbers i, j such that i 6= j holds g(i) misses g(j), and
(iii) for every n there exists a finite family f1 of subsets of X such that
f1 = {f(i); i ranges over elements of N: i < n} and g(n) = f(n) \

⋃
f1.

(34) Let given T . Suppose T is finite-ind and indT ≤ 0 and T is Lindelöf.
Let A, B be closed subsets of T . Suppose A misses B. Then there exist
closed subsets A′, B′ of T such that A′ misses B′ and A′ ∪ B′ = ΩT and
A ⊆ A′ and B ⊆ B′.

(35) Let given T . Suppose T is a T1 space and Lindelöf. Then T is finite-ind
and indT ≤ 0 if and only if for all closed subsets A, B of T such that A
misses B holds ∅T separates A, B.

(36) Let given T . Suppose that
(i) T is a T4 space, a T1 space, and Lindelöf, and

(ii) there exists a family F of subsets of T such that F is closed, a cover of
T , countable, and finite-ind and indF ≤ 0.
Then T is finite-ind and indT ≤ 0.

In the sequel T4 is a metrizable topological space.
We now state four propositions:

(37) Let A, B be closed subsets of T4. Suppose A misses B. Let N1 be a finite-
ind subset of T4. Suppose indN1 ≤ 0 and T4�N1 is second-countable. Then
there exists a subset L of T4 such that L separates A, B and L misses N1.

(38) Let N1 be a subset of T4. Suppose T4�N1 is second-countable. Then N1
is finite-ind and indN1 ≤ 0 if and only if for every point p of T4 and for
every open subset U of T4 such that p ∈ U there exists an open subset W
of T4 such that p ∈W and W ⊆ U and N1 misses FrW.
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(39) Let N1 be a subset of T4. Suppose T4�N1 is second-countable. Then N1
is finite-ind and indN1 ≤ 0 if and only if there exists a basis B of T4 such
that for every subset A of T4 such that A ∈ B holds N1 misses FrA.

(40) Let N1, A be subsets of T4. Suppose T4�N1 is second-countable and N1
is finite-ind and A is finite-ind and indN1 ≤ 0. Then A ∪N1 is finite-ind
and ind(A ∪N1) ≤ indA+ 1.
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