Kolmogorov's Zero-One Law

Agnes Doll
Ludwig Maximilian University of Munich
Germany

Abstract

Summary. This article presents the proof of Kolmogorov's zero-one law in probability theory. The independence of a family of σ-fields is defined and basic theorems on it are given.

MML identifier: KOLMOGO1, version: $\underline{7.11 .014 .117 .1046}$

The articles [8], [19], [2], [10], [12], [18], [20], [1], [15], [5], [21], [11], [3], [9], [7], [6], [17], [4], [16], [14], and [13] provide the terminology and notation for this paper.

For simplicity, we adopt the following convention: Ω, I are non empty sets, \mathcal{F} is a σ-field of subsets of Ω, P is a probability on \mathcal{F}, D, E, F are families of subsets of Ω, A, B, s are non empty subsets of \mathcal{F}, b is an element of B, a is an element of \mathcal{F}, p, q, u, v are events of \mathcal{F}, n is an element of \mathbb{N}, and i is a set.

Next we state three propositions:
(1) For every function f and for every set X such that $X \subseteq \operatorname{dom} f$ holds if $X \neq \emptyset$, then $\operatorname{rng}(f \mid X) \neq \emptyset$.
(2) For every real number r such that $r \cdot r=r$ holds $r=0$ or $r=1$.
(3) For every family X of subsets of Ω such that $X=\emptyset$ holds $\sigma(X)=\{\emptyset, \Omega\}$.

Let Ω be a non empty set, let \mathcal{F} be a σ-field of subsets of Ω, let B be a subset of \mathcal{F}, and let P be a probability on \mathcal{F}. The functor $\operatorname{Indep}(B, P)$ yielding a subset of \mathcal{F} is defined as follows:
(Def. 1) For every element a of \mathcal{F} holds $a \in \operatorname{Indep}(B, P)$ iff for every element b of B holds $P(a \cap b)=P(a) \cdot P(b)$.
Next we state several propositions:
(4) Let f be a sequence of subsets of \mathcal{F}. Suppose for all n, b holds $P(f(n) \cap$ $b)=P(f(n)) \cdot P(b)$ and f is disjoint valued. Then $P(b \cap \bigcup f)=P(b)$. $P(\bigcup f)$.
(5) $\operatorname{Indep}(B, P)$ is a Dynkin system of Ω.
(6) For every family A of subsets of Ω such that A is intersection stable and $A \subseteq \operatorname{Indep}(B, P)$ holds $\sigma(A) \subseteq \operatorname{Indep}(B, P)$.
(7) Let A, B be non empty subsets of \mathcal{F}. Then $A \subseteq \operatorname{Indep}(B, P)$ if and only if for all p, q such that $p \in A$ and $q \in B$ holds p and q are independent w.r.t. P.
(8) For all non empty subsets A, B of \mathcal{F} such that $A \subseteq \operatorname{Indep}(B, P)$ holds $B \subseteq \operatorname{Indep}(A, P)$.
(9) Let A be a family of subsets of Ω. Suppose A is a non empty subset of \mathcal{F} and intersection stable. Let B be a non empty subset of \mathcal{F}. Suppose B is intersection stable. If $A \subseteq \operatorname{Indep}(B, P)$, then for all D, s such that $D=B$ and $\sigma(D)=s$ holds $\sigma(A) \subseteq \operatorname{Indep}(s, P)$.
(10) Let given E, F. Suppose that
(i) E is a non empty subset of \mathcal{F} and intersection stable, and
(ii) $\quad F$ is a non empty subset of \mathcal{F} and intersection stable.

Suppose that for all p, q such that $p \in E$ and $q \in F$ holds p and q are independent w.r.t. P. Let given u, v. If $u \in \sigma(E)$ and $v \in \sigma(F)$, then u and v are independent w.r.t. P.
Let I be a set, let Ω be a non empty set, and let \mathcal{F} be a σ-field of subsets of Ω. A function from I into $2^{\mathcal{F}}$ is said to be a many sorted σ-field over I and \mathcal{F} if:
(Def. 2) For every i such that $i \in I$ holds $\operatorname{it}(i)$ is a σ-field of subsets of Ω.
Let Ω be a non empty set, let \mathcal{F} be a σ-field of subsets of Ω, let P be a probability on \mathcal{F}, let I be a set, and let A be a function from I into \mathcal{F}. We say that A is independent w.r.t. P if and only if:
(Def. 3) For every one-to-one finite sequence e of elements of I such that $e \neq \emptyset$ holds $\Pi(P \cdot A \cdot e)=P(\bigcap \operatorname{rng}(A \cdot e))$.
Let Ω be a non empty set, let \mathcal{F} be a σ-field of subsets of Ω, let I be a set, let J be a subset of I, and let F be a many sorted σ-field over I and \mathcal{F}. A function from J into \mathcal{F} is said to be a σ-section over J and F if:
(Def. 4) For every i such that $i \in J$ holds $\operatorname{it}(i) \in F(i)$.
Let Ω be a non empty set, let \mathcal{F} be a σ-field of subsets of Ω, let P be a probability on \mathcal{F}, let I be a set, and let F be a many sorted σ-field over I and \mathcal{F}. We say that F is independent w.r.t. P if and only if:
(Def. 5) For every finite subset E of I holds every σ-section over E and F is independent w.r.t. P.
Let I be a set, let Ω be a non empty set, let \mathcal{F} be a σ-field of subsets of Ω, let F be a many sorted σ-field over I and \mathcal{F}, and let J be a subset of I. Then $F \upharpoonright J$ is a function from J into $2^{\mathcal{F}}$.

Let I be a set, let J be a subset of I, let Ω be a non empty set, let \mathcal{F} be a σ-field of subsets of Ω, and let F be a function from J into $2^{\mathcal{F}}$. Then $\bigcup F$ is a family of subsets of Ω.

Let I be a set, let Ω be a non empty set, let \mathcal{F} be a σ-field of subsets of Ω, let F be a many sorted σ-field over I and \mathcal{F}, and let J be a subset of I. The functor $\operatorname{sig} \operatorname{Un}(F, J)$ yields a σ-field of subsets of Ω and is defined as follows:
(Def. 6) $\quad \operatorname{sigUn}(F, J)=\sigma(\bigcup(F \upharpoonright J))$.
Let I be a set, let Ω be a non empty set, let \mathcal{F} be a σ-field of subsets of Ω, and let F be a many sorted σ-field over I and \mathcal{F}. The functor futSigmaFields (F, I) yielding a family of subsets of 2^{Ω} is defined as follows:
(Def. 7) For every family S of subsets of Ω holds $S \in \operatorname{futSigmaFields}(F, I)$ iff there exists a finite subset E of I such that $S=\operatorname{sigUn}(F, I \backslash E)$.
Let I be a set, let Ω be a non empty set, let \mathcal{F} be a σ-field of subsets of Ω, and let F be a many sorted σ-field over I and \mathcal{F}. Note that futSigmaFields (F, I) is non empty.

Let I be a set, let Ω be a non empty set, let \mathcal{F} be a σ-field of subsets of Ω, and let F be a many sorted σ-field over I and \mathcal{F}. The functor tailSigmaField (F, I) yielding a family of subsets of Ω is defined as follows:
(Def. 8) tailSigmaField $(F, I)=\bigcap$ futSigmaFields (F, I).
Let I be a set, let Ω be a non empty set, let \mathcal{F} be a σ-field of subsets of Ω, and let F be a many sorted σ-field over I and \mathcal{F}. Note that tailSigmaField (F, I) is non empty.

Let Ω be a non empty set, let \mathcal{F} be a σ-field of subsets of Ω, let I be a non empty set, let J be a non empty subset of I, and let F be a many sorted σ-field over I and \mathcal{F}. The functor MeetSections (J, F) yields a family of subsets of Ω and is defined by the condition (Def. 9).
(Def. 9) Let x be a subset of Ω. Then $x \in \operatorname{MeetSections~}(J, F)$ if and only if there exists a non empty finite subset E of I and there exists a σ-section f over E and F such that $E \subseteq J$ and $x=\bigcap \operatorname{rng} f$.
One can prove the following propositions:
(11) For every many sorted σ-field F over I and \mathcal{F} and for every non empty subset J of I holds $\sigma($ MeetSections $(J, F))=\operatorname{sigUn}(F, J)$.
(12) Let F be a many sorted σ-field over I and \mathcal{F} and J, K be non empty subsets of I. Suppose F is independent w.r.t. P and J misses K. Let a, c be subsets of Ω. If $a \in \operatorname{MeetSections}(J, F)$ and $c \in \operatorname{MeetSections}(K, F)$, then $P(a \cap c)=P(a) \cdot P(c)$.
(13) Let F be a many sorted σ-field over I and \mathcal{F} and J be a non empty subset of I. Then MeetSections (J, F) is a non empty subset of \mathcal{F}.
Let us consider I, Ω, \mathcal{F}, let F be a many sorted σ-field over I and \mathcal{F}, and let J be a non empty subset of I. Observe that $\operatorname{MeetSections}(J, F)$ is intersection
stable.
The following proposition is true
(14) Let F be a many sorted σ-field over I and \mathcal{F} and J, K be non empty subsets of I. Suppose F is independent w.r.t. P and J misses K. Let given u, v. If $u \in \operatorname{sigUn}(F, J)$ and $v \in \operatorname{sigUn}(F, K)$, then $P(u \cap v)=P(u) \cdot P(v)$.
Let I be a set, let Ω be a non empty set, let \mathcal{F} be a σ-field of subsets of Ω, and let F be a many sorted σ-field over I and \mathcal{F}. The functor finSigmaFields (F, I) yielding a family of subsets of Ω is defined as follows:
(Def. 10) For every subset S of Ω holds $S \in$ finSigmaFields (F, I) iff there exists a finite subset E of I such that $S \in \operatorname{sigUn}(F, E)$.
One can prove the following propositions:
(15) For every many sorted σ-field F over I and \mathcal{F} holds tailSigmaField (F, I) is a σ-field of subsets of Ω.
(16) Let F be a many sorted σ-field over I and \mathcal{F}. If F is independent w.r.t. P and $a \in$ tailSigmaField (F, I), then $P(a)=0$ or $P(a)=1$.

Acknowledgments

The author wishes to express her sincere appreciation to Prof. F. Merkl for his kind support and encouragement during the course of this work.

References

[1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[9] Czesław Bylinski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[12] Franz Merkl. Dynkin's lemma in measure theory. Formalized Mathematics, 9(3):591-595, 2001.
[13] Andrzej Nędzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.
[14] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[16] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233-236, 1996.
[17] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[18] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received November 4, 2008

