
FORMALIZED MATHEMATICS

Vol. 17, No. 2, Pages 193–199, 2009
DOI: 10.2478/v10037-009-0023-9

Equivalence of Deterministic and
Nondeterministic Epsilon Automata

Michał Trybulec
YAC Software
Warsaw, Poland

Summary. Based on concepts introduced in [14], semiautomata and left-
languages, automata and right-languages, and langauges accepted by automata
are defined. The powerset construction is defined for transition systems, semiau-
tomata and automata. Finally, the equivalence of deterministic and nondetermi-
nistic epsilon automata is shown.

MML identifier: FSM 3, version: 7.11.02 4.125.1059

The terminology and notation used in this paper have been introduced in the
following articles: [1], [8], [2], [11], [6], [18], [7], [9], [17], [16], [15], [4], [10], [13],
[3], [12], [5], and [14].

1. Preliminaries

For simplicity, we adopt the following convention: x, y, X denote sets, E
denotes a non empty set, e denotes an element of E, u, u1, v, v1, v2, w denote
elements of Eω, F denotes a subset of Eω, i, k, l denote natural numbers, T
denotes a non empty transition-system over F , and S, T denote subsets of T.
One can prove the following propositions:

(1) If i ≥ k + l, then i ≥ k.
(2) For all finite sequences a, b such that a a b = a or b a a = a holds b = ∅.
(3) For all finite sequences p, q such that k ∈ dom p and len p + 1 = len q
holds k + 1 ∈ dom q.

(4) If lenu = 1, then there exists e such that 〈e〉 = u and e = u(0).

193
c© 2009 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://fm.mizar.org/miz/fsm_3.miz
http://ftp.mizar.org/


194 michał trybulec

(5) If k 6= 0 and lenu ≤ k + 1, then there exist v1, v2 such that len v1 ≤ k
and len v2 ≤ k and u = v1 a v2.

(6) For all finite 0-sequences p, q such that 〈x〉a p = 〈y〉a q holds x = y and
p = q.

(7) If lenu > 0, then there exist e, u1 such that u = 〈e〉 a u1.

Let us consider E. One can verify that LexE is non empty.
Next we state three propositions:

(8) 〈〉E /∈ LexE.
(9) u ∈ LexE iff lenu = 1.
(10) If u 6= v and u, v ∈ LexE, then it is not true that there exists w such
that u a w = v or w a u = v.

2. Transition Systems over LexE

The following propositions are true:

(11) For every transition-system T over LexE holds 〈〉E /∈ rng dom (the trans-
ition of T).

(12) For every transition-system T over LexE such that the transition of T
is a function holds T is deterministic.

3. Powerset Construction for Transition Systems

Let us consider E, F , T. The functor boolT yielding a strict transition-
system over LexE is defined by the conditions (Def. 1).

(Def. 1)(i) The carrier of boolT = 2the carrier of T, and
(ii) for all S, w, T holds 〈〈〈〈S, w〉〉, T 〉〉 ∈ the transition of boolT iff lenw = 1
and T = w-succT(S).

Let us consider E, F , T. Note that boolT is non empty and deterministic.
Let us consider E, F and let T be a finite non empty transition-system over

F . One can check that boolT is finite.
The following two propositions are true:

(13) If x, 〈e〉 ⇒∗boolT y, 〈〉E , then x, 〈e〉 ⇒boolT y, 〈〉E .
(14) If lenw = 1, then X = w-succT(S) iff S,w ⇒∗boolT X.



equivalence of deterministic and . . . 195

4. Semiautomata

Let us consider E, F . We consider semiautomata over F as extensions of
transition-system over F as systems
〈 a carrier, a transition, an initial state 〉,

where the carrier is a set, the transition is a relation between the carrier×F and
the carrier, and the initial state is a subset of the carrier.
Let us consider E, F and let S be a semiautomaton over F . We say that S

is deterministic if and only if:

(Def. 2) The transition-system of S is deterministic and Card (the initial state
of S) = 1.

Let us consider E, F . One can check that there exists a semiautomaton over
F which is strict, non empty, finite, and deterministic.
In the sequel S is a non empty semiautomaton over F .
Let us consider E, F , S. Observe that the transition-system of S is non

empty.
Let us consider E, F , S. The functor boolS yields a strict semiautomaton

over LexE and is defined by the conditions (Def. 3).

(Def. 3)(i) The transition-system of boolS = bool (the transition-system of S),
and

(ii) the initial state of boolS = {〈〉E-succS(the initial state of S)}.
Let us consider E, F ,S. Observe that boolS is non empty and deterministic.
The following proposition is true

(15) The carrier of boolS = 2the carrier of S.

Let us consider E, F and let S be a finite non empty semiautomaton over
F . Observe that boolS is finite.

5. Left-languages

Let us consider E, F , S and let Q be a subset of S. The functor left-LangQ
yields a subset of Eω and is defined as follows:

(Def. 4) left-LangQ = {w : Q meets w-succS(the initial state of S)}.
Next we state the proposition

(16) For every subset Q of S holds w ∈ left-LangQ iff Q meets w-succS(the
initial state of S).



196 michał trybulec

6. Automata

Let us consider E, F . We consider automata over F as extensions of semiau-
tomaton over F as systems
〈 a carrier, a transition, an initial state, final states 〉,

where the carrier is a set, the transition is a relation between the carrier×F
and the carrier, the initial state is a subset of the carrier, and the final states
constitute a subset of the carrier.
Let us consider E, F and let A be a automaton over F . We say that A is

deterministic if and only if:

(Def. 5) The semiautomaton of A is deterministic.

Let us consider E, F . Observe that there exists a automaton over F which
is strict, non empty, finite, and deterministic.
In the sequel A denotes a non empty automaton over F and p, q denote

elements of A.
Let us consider E, F , A. One can check that the transition-system of A is

non empty and the semiautomaton of A is non empty.
Let us consider E, F , A. The functor boolA yields a strict automaton over

LexE and is defined by the conditions (Def. 6).

(Def. 6)(i) The semiautomaton of boolA = bool (the semiautomaton of A), and
(ii) the final states of boolA = {Q;Q ranges over elements of boolA : Q
meets the final states of A}.
Let us consider E, F , A. One can check that boolA is non empty and

deterministic.
The following proposition is true

(17) The carrier of boolA = 2the carrier of A.

Let us consider E, F and let A be a finite non empty automaton over F .
Note that boolA is finite.

7. Right-languages

Let us consider E, F , A and let Q be a subset of A. The functor right-LangQ
yields a subset of Eω and is defined as follows:

(Def. 7) right-LangQ = {w : w-succA(Q) meets the final states of A}.
The following proposition is true

(18) For every subset Q of A holds w ∈ right-LangQ iff w-succA(Q) meets
the final states of A.



equivalence of deterministic and . . . 197

8. Languages Accepted by Automata

Let us consider E, F , A. The language generated by A yielding a subset of
Eω is defined by the condition (Def. 8).

(Def. 8) The language generated by A = {u :
∨
p,q (p ∈ the initial state of A ∧ q ∈

the final states of A ∧ p, u⇒∗A q)}.
The following propositions are true:

(19) w ∈ the language generated by A if and only if there exist p, q such that
p ∈ the initial state of A and q ∈ the final states of A and p, w ⇒∗A q.

(20) w ∈ the language generated by A if and only if w-succA(the initial state
of A) meets the final states of A.

(21) The language generated by A = left-Lang (the final states of A).

(22) The language generated by A = right-Lang (the initial state of A).

9. Equivalence of Deterministic and Nondeterministic Epsilon
Automata

In the sequel T denotes a non empty transition-system over LexE ∪ {〈〉E}.
One can prove the following three propositions:

(23) For every reduction sequence R w.r.t.⇒T such that R(1)2 = 〈e〉a u and
R(lenR)2 = 〈〉E holds R(2)2 = 〈e〉 a u or R(2)2 = u.

(24) For every reduction sequence R w.r.t. ⇒T such that R(1)2 = u and
R(lenR)2 = 〈〉E holds lenR > lenu.

(25) For every reduction sequence R w.r.t. ⇒T such that R(1)2 = u a v and
R(lenR)2 = 〈〉E there exists l such that l ∈ domR and R(l)2 = v.
Let us consider E, u, v. The functor chop(u, v) yielding an element of Eω is

defined by:

(Def. 9)(i) For every w such that w a v = u holds chop(u, v) = w if there exists
w such that w a v = u,

(ii) chop(u, v) = u, otherwise.

The following propositions are true:

(26) Let p be a reduction sequence w.r.t. ⇒T. Suppose p(1) = 〈〈x, uaw〉〉 and
p(len p) = 〈〈y, v a w〉〉. Then there exists a reduction sequence q w.r.t. ⇒T

such that q(1) = 〈〈x, u〉〉 and q(len q) = 〈〈y, v〉〉.
(27) If ⇒T reduces 〈〈x, u a w〉〉 to 〈〈y, v a w〉〉, then ⇒T reduces 〈〈x, u〉〉 to 〈〈y,
v〉〉.

(28) If x, u a w ⇒∗T y, v a w, then x, u⇒∗T y, v.
(29) For all elements p, q of T such that p, ua v ⇒∗T q there exists an element
r of T such that p, u⇒∗T r and r, v ⇒∗T q.



198 michał trybulec

(30) w a v-succT(X) = v-succT(w-succT(X)).

(31) boolT is a non empty transition-system over LexE ∪ {〈〉E}.
(32) w-succboolT({v-succT(X)}) = {v a w-succT(X)}.
In the sequel S denotes a non empty semiautomaton over LexE ∪ {〈〉E}.
One can prove the following proposition

(33) w-succboolS({〈〉E-succS(X)}) = {w-succS(X)}.
In the sequel A denotes a non empty automaton over LexE ∪ {〈〉E} and P

denotes a subset of A.
Next we state several propositions:

(34) If x ∈ the final states of A and x ∈ P, then P ∈ the final states of boolA.
(35) If X ∈ the final states of boolA, then X meets the final states of A.
(36) The initial state of boolA = {〈〉E-succA(the initial state of A)}.
(37) w-succboolA({〈〉E-succA(X)}) = {w-succA(X)}.
(38) w-succboolA(the initial state of boolA) = {w-succA(the initial state of

A)}.
(39) The language generated by A = the language generated by boolA.

(40) Let A be a non empty automaton over LexE∪{〈〉E}. Then there exists a
non empty deterministic automaton A1 over LexE such that the language
generated by A = the language generated by A1.

(41) Let F be a non empty finite automaton over LexE ∪ {〈〉E}. Then there
exists a non empty deterministic finite automaton A2 over LexE such that
the language generated by F = the language generated by A2.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[4] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469–478, 1996.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[10] Karol Pąk. The Catalan numbers. Part II. Formalized Mathematics, 14(4):153–159, 2006,
doi:10.2478/v10037-006-0019-7.

[11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115–122, 1990.

[12] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97–105, 1990.

[13] Michał Trybulec. Formal languages – concatenation and closure. Formalized Mathematics,
15(1):11–15, 2007, doi:10.2478/v10037-007-0002-y.



equivalence of deterministic and . . . 199

[14] Michał Trybulec. Labelled state transition systems. Formalized Mathematics, 17(2):163–
171, 2009, doi: 10.2478/v10037-009-0019-5.

[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[16] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequ-
ences. Formalized Mathematics, 9(4):825–829, 2001.

[17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

Received May 25, 2009


