FORMALIZED MATHEMATICS
vol. 17, No. 2, Pages 193-199, 2009
DOI: 10.2478/v10037-009-0023-9

Equivalence of Deterministic and
Nondeterministic Epsilon Automata

Michat Trybulec
YAC Software
Warsaw, Poland

Summary. Based on concepts introduced in [14], semiautomata and left-
languages, automata and right-languages, and langauges accepted by automata
are defined. The powerset construction is defined for transition systems, semiau-
tomata and automata. Finally, the equivalence of deterministic and nondetermi-
nistic epsilon automata is shown.

MML identifier: FSM_3, version: 7.11.02 4.125.1059

The terminology and notation used in this paper have been introduced in the
following articles: [1], [8], [2], [11], [6], [18], [7], [9], [17], [16], [15], [4]. [10], [13],
3], [12], [5], and [14].

1. PRELIMINARIES

For simplicity, we adopt the following convention: x, y, X denote sets, F
denotes a non empty set, e denotes an element of E, u, ui, v, v1, v2, w denote
elements of E¥, F' denotes a subset of £, i, k, | denote natural numbers, ¥
denotes a non empty transition-system over F', and S, T' denote subsets of ¥.

One can prove the following propositions:

(1) Ifi>k+1, theni>k.
(2) For all finite sequences a, b such that a ~b=a or b~ a = a holds b = 0.

(3) For all finite sequences p, g such that k € domp and lenp + 1 = leng
holds £+ 1 € domg.

(4) Iflenu =1, then there exists e such that (e) = u and e = u(0).

(© 2009 University of Bialystok
193 ISSN 1426-2630(p), 1898-9934(c)

http://fm.mizar.org/miz/fsm_3.miz
http://ftp.mizar.org/

194 MICHAL TRYBULEC

(5) If k # 0 and lenu < k + 1, then there exist v1, v such that lenv; < k
and lenvy < k and u = vy ~ vs.

(6) For all finite O-sequences p, ¢ such that (x) ~p = (y) "¢ holds x = y and
p=q.

(7) If lenu > 0, then there exist e, u; such that u = (e) ™ uy.

Let us consider E. One can verify that Lex E is non empty.

Next we state three propositions:

8) ()p ¢ Lex E.

9) we€ LexFE iff lenu = 1.

(10) If u # v and u, v € Lex E, then it is not true that there exists w such
that u Tw=vorw ™ u=v.

—~~

2. TRANSITION SYSTEMS OVER LEX F

The following propositions are true:
(11) For every transition-system ¥ over Lex £ holds () ; ¢ rng dom (the trans-
ition of).

(12) For every transition-system ¥ over Lex F such that the transition of ¥
is a function holds ¥ is deterministic.

3. POWERSET CONSTRUCTION FOR TRANSITION SYSTEMS

Let us consider E, F, €. The functor bool¥ yielding a strict transition-
system over Lex E is defined by the conditions (Def. 1).
(Def. 1)(i) The carrier of bool T = 2the carrier of T " 554
(ii) for all S, w, T holds ((S, w), T') € the transition of bool ¥ iff lenw = 1
and T = w-succg(9).
Let us consider F, F', ¥. Note that bool ¥ is non empty and deterministic.

Let us consider F, F' and let ¥ be a finite non empty transition-system over
F. One can check that bool ¥ is finite.

The following two propositions are true:
(13) If z, <€> :Eooli Y, <>E7 then x, <€> =bool T Y, <>E
(14) If lenw =1, then X = w-succg(S) iff S,w ={ ;< X.

EQUIVALENCE OF DETERMINISTIC AND ... 195

4. SEMIAUTOMATA

Let us consider E, F. We consider semiautomata over F' as extensions of
transition-system over F' as systems

(a carrier, a transition, an initial state),
where the carrier is a set, the transition is a relation between the carrier x F' and
the carrier, and the initial state is a subset of the carrier.

Let us consider E, F' and let & be a semiautomaton over F'. We say that &
is deterministic if and only if:

(Def. 2) The transition-system of & is deterministic and Card (the initial state
of &) = 1.

Let us consider E, F'. One can check that there exists a semiautomaton over
F which is strict, non empty, finite, and deterministic.

In the sequel G is a non empty semiautomaton over F'.

Let us consider E, F'; &. Observe that the transition-system of & is non
empty.

Let us consider F, F'; 6. The functor bool & yields a strict semiautomaton
over Lex E and is defined by the conditions (Def. 3).

(Def. 3)(i) The transition-system of bool & = bool (the transition-system of &),
and
(ii) the initial state of bool & = {() ;-succg(the initial state of &)}.

Let us consider E, F'; &. Observe that bool & is non empty and deterministic.
The following proposition is true

(15) The carrier of bool & = 2the carrier of &,

Let us consider E, F' and let G be a finite non empty semiautomaton over
F. Observe that bool G is finite.

5. LEFT-LANGUAGES

Let us consider E, F'; G and let @) be a subset of &. The functor left-Lang @
yields a subset of E“ and is defined as follows:
(Def. 4) left-Lang @ = {w : Q meets w-succg(the initial state of &)}.
Next we state the proposition

(16) For every subset @ of & holds w € left-Lang @ iff Q meets w-succg(the
initial state of G).

196 MICHAL TRYBULEC

6. AUTOMATA

Let us consider F, F. We consider automata over F' as extensions of semiau-
tomaton over F' as systems
(a carrier, a transition, an initial state, final states),
where the carrier is a set, the transition is a relation between the carrierx I
and the carrier, the initial state is a subset of the carrier, and the final states
constitute a subset of the carrier.
Let us consider F, F' and let 2 be a automaton over F'. We say that 2 is
deterministic if and only if:
(Def. 5) The semiautomaton of A is deterministic.
Let us consider E, F. Observe that there exists a automaton over F' which
is strict, non empty, finite, and deterministic.
In the sequel 2 denotes a non empty automaton over F' and p, g denote
elements of 2.
Let us consider E, F, 2. One can check that the transition-system of 2l is
non empty and the semiautomaton of 2 is non empty.
Let us consider F, F', 2. The functor bool% yields a strict automaton over
Lex E and is defined by the conditions (Def. 6).
(Def. 6)(1) The semiautomaton of bool? = bool (the semiautomaton of 2), and

(i1) the final states of bool2 = {Q; Q ranges over elements of bool2 : @
meets the final states of 2}.

Let us consider E, F', 2. One can check that bool%l is non empty and
deterministic.
The following proposition is true

(17) The carrier of bool 2 = 2the carrier of 2

Let us consider F, F' and let 21 be a finite non empty automaton over F.
Note that bool% is finite.

7. RIGHT-LANGUAGES

Let us consider F, F', 2 and let () be a subset of 2. The functor right-Lang @
yields a subset of E“ and is defined as follows:
(Def. 7) right-Lang @ = {w : w-succy(Q) meets the final states of A}.
The following proposition is true

(18) For every subset @ of 2 holds w € right-Lang @ iff w-succg(Q) meets
the final states of 2.

EQUIVALENCE OF DETERMINISTIC AND ... 197
8. LANGUAGES ACCEPTED BY AUTOMATA

Let us consider E, F', 2. The language generated by 2 yielding a subset of
E¥ is defined by the condition (Def. 8).
(Def. 8) The language generated by 2 = {u : \/,, , (p € the initial state of 2 A ¢ €
the final states of A A p,u=3%q)}.
The following propositions are true:
(19) w € the language generated by 2l if and only if there exist p, ¢ such that
p € the initial state of 2l and ¢ € the final states of % and p,w =4 q.
(20) w € the language generated by 2 if and only if w-succg(the initial state
of A) meets the final states of 2.
(21) The language generated by 2 = left-Lang (the final states of 2).
(22) The language generated by 2 = right-Lang (the initial state of).

9. EQUIVALENCE OF DETERMINISTIC AND NONDETERMINISTIC EPSILON
AUTOMATA

In the sequel T denotes a non empty transition-system over Lex E'U {() z }.
One can prove the following three propositions:

(23) For every reduction sequence R w.r.t. = such that R(1)2 = (e) ~u and
R(len R)2 = () holds R(2)2 = (e) " u or R(2)2 = u.

(24) For every reduction sequence R w.r.t. =< such that R(1)2 = u and
R(len R)2 = () holds len R > lenu.

(25) For every reduction sequence R w.r.t. = such that R(1)2 =« ~ v and
R(len R) = () there exists [such that [€ dom R and R(l)2 = v.

Let us consider E, u, v. The functor chop(u,v) yielding an element of E“ is
defined by:
(Def. 9)(i) For every w such that w ~ v = u holds chop(u,v) = w if there exists
w such that w ™ v = u,
(ii) chop(u,v) = u, otherwise.
The following propositions are true:

(26) Let p be a reduction sequence w.r.t. =<. Suppose p(1) = (x, v~ w) and
p(lenp) = (y, v ~ w). Then there exists a reduction sequence g w.r.t. =g
such that ¢(1) = (z, u) and g(lenq) = (y, v).

(27) If =« reduces (x, u ~ w) to (y, v~ w), then =< reduces (z, u) to (y,
v).

(28) Ifz,u”w=%y,v" w, then z,u =% y,v.

(29) For all elements p, ¢ of T such that p,u v =% ¢ there exists an element
r of T such that p,u =% r and r,v =% q.

198 MICHAL TRYBULEC

(30) w " v-succx(X) = v-succg(w-sucex(X)).

(31) bool T is a non empty transition-system over Lex £ U {() 5 }.

(32) w-succpool ({v-succx(X)}) = {v ™ w-sucex(X)}.
In the sequel & denotes a non empty semiautomaton over Lex E'U {() 5}
One can prove the following proposition

(33) w-succhool s({() p-succe(X)}) = {w-succs(X)}.
In the sequel A denotes a non empty automaton over Lex £ U {() ;} and P

denotes a subset of 2.
Next we state several propositions:

34) If x € the final states of 2 and « € P, then P € the final states of bool 2.
35) If X € the final states of bool 2, then X meets the final states of 2.
36) The initial state of bool 2 = {() ;-succe((the initial state of A)}.

37
38

wW-SUCChool A ({ () p-sucey(X)}) = {w-sucey(X)}.
W-SUCCHool o1 (the initial state of bool?A) = {w-succgy(the initial state of

(39) The language generated by 2 = the language generated by bool 2.

(
(
(
(
(

~— — — ~— ~—

(40) Let 2 be a non empty automaton over Lex EU{() ; }. Then there exists a
non empty deterministic automaton 2; over Lex E such that the language
generated by 21 = the language generated by 2.

(41) Let § be a non empty finite automaton over Lex E'U {() ;}. Then there
exists a non empty deterministic finite automaton 2(s over Lex F such that
the language generated by § = the language generated by 2As.

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[4] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469-478, 1996.

[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[6] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—

65, 1990.
[7] Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.
[8] Czestaw Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,
1990.
[9] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[10] Karol Pak. The Catalan numbers. Part II. Formalized Mathematics, 14(4):153-159, 2006,

doi:10.2478 /v10037-006-0019-7.

[11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115-122, 1990.

[12] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97-105, 1990.

[13] Michatl Trybulec. Formal languages — concatenation and closure. Formalized Mathematics,
15(1):11-15, 2007, doi:10.2478/v10037-007-0002-y.

EQUIVALENCE OF DETERMINISTIC AND ...

Michal Trybulec. Labelled state transition systems. Formalized Mathematics, 17(2):163—
171, 2009, doi: 10.2478/v10037-009-0019-5.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequ-
ences. Formalized Mathematics, 9(4):825-829, 2001.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186,
1990.

Received May 25, 2009

199

