Riemann Integral of Functions from \mathbb{R} into \mathcal{R}^{n}

Keiichi Miyajima
Ibaraki University
Hitachi, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Abstract

Summary. In this article, we define the Riemann Integral of functions from \mathbb{R} into \mathcal{R}^{n}, and prove the linearity of this operator. The presented method is based on [21].

MML identifier: INTEGR15, version: $\underline{7.11 .024 .125 .1059}$

The articles [22], [1], [23], [5], [6], [15], [20], [24], [7], [17], [16], [2], [4], [3], [8], [18], [9], [12], [10], [14], [13], [19], and [11] provide the notation and terminology for this paper.

1. Preliminaries

Let A be a closed-interval subset of \mathbb{R}, let f be a function from A into \mathbb{R}, let S be a non empty Division of A, and let D be an element of S. A finite sequence of elements of \mathbb{R} is said to be a middle volume of f and D if it satisfies the conditions (Def. 1).
(Def. 1)(i) len it $=$ len D, and
(ii) for every natural number i such that $i \in \operatorname{dom} D$ there exists an element r of \mathbb{R} such that $r \in \operatorname{rng}(f \upharpoonright \operatorname{divset}(D, i))$ and $\operatorname{it}(i)=r \cdot \operatorname{vol}(\operatorname{divset}(D, i))$.
Let A be a closed-interval subset of \mathbb{R}, let f be a function from A into \mathbb{R}, let S be a non empty Division of A, let D be an element of S, and let F be a middle volume of f and D. The functor middle_sum (f, F) yielding a real number is defined as follows:
(Def. 2) middle_sum $(f, F)=\sum F$.
We now state four propositions:
(1) Let A be a closed-interval subset of \mathbb{R}, f be a function from A into \mathbb{R}, S be a non empty Division of A, D be an element of S, and F be a middle volume of f and D. If $f \upharpoonright A$ is lower bounded, then lower_sum $(f, D) \leq$ middle_sum (f, F).
(2) Let A be a closed-interval subset of \mathbb{R}, f be a function from A into \mathbb{R}, S be a non empty Division of A, D be an element of S, and F be a middle volume of f and D. If $f \upharpoonright A$ is upper bounded, then middle_sum $(f, F) \leq$ upper_sum (f, D).
(3) Let A be a closed-interval subset of \mathbb{R}, f be a function from A into \mathbb{R}, S be a non empty Division of A, D be an element of S, and e be a real number. Suppose $f \upharpoonright A$ is lower bounded and $0<e$. Then there exists a middle volume F of f and D such that middle_sum $(f, F) \leq \operatorname{lower} _$_sum $(f, D)+e$.
(4) Let A be a closed-interval subset of \mathbb{R}, f be a function from A into \mathbb{R}, S be a non empty Division of A, D be an element of S, and e be a real number. Suppose $f \upharpoonright A$ is upper bounded and $0<e$. Then there exists a middle volume F of f and D such that upper_sum $(f, D)-e \leq \operatorname{middle_ sum~}(f, F)$.
Let A be a closed-interval subset of \mathbb{R}, let f be a function from A into \mathbb{R}, and let T be a DivSequence of A. A function from \mathbb{N} into \mathbb{R}^{*} is said to be a middle volume sequence of f and T if:
(Def. 3) For every element k of \mathbb{N} holds it (k) is a middle volume of f and $T(k)$.
Let A be a closed-interval subset of \mathbb{R}, let f be a function from A into \mathbb{R}, let T be a DivSequence of A, let S be a middle volume sequence of f and T, and let k be an element of \mathbb{N}. Then $S(k)$ is a middle volume of f and $T(k)$.

Let A be a closed-interval subset of \mathbb{R}, let f be a function from A into \mathbb{R}, let T be a DivSequence of A, and let S be a middle volume sequence of f and T. The functor middle_sum (f, S) yields a sequence of real numbers and is defined by:
(Def. 4) For every element i of \mathbb{N} holds (middle_sum $(f, S))(i)=\operatorname{middle}$ _sum $(f, S(i))$.
We now state several propositions:
(5) Let A be a closed-interval subset of \mathbb{R}, f be a function from A into \mathbb{R}, T be a DivSequence of A, S be a middle volume sequence of f and T, and i be an element of \mathbb{N}. If $f \upharpoonright A$ is lower bounded, then (lower_sum $(f, T))(i) \leq$ (middle_sum $(f, S))(i)$.
(6) Let A be a closed-interval subset of \mathbb{R}, f be a function from A into \mathbb{R}, T be a DivSequence of A, S be a middle volume sequence of f and T, and i be an element of \mathbb{N}. If $f \upharpoonright A$ is upper bounded, then (middle_sum $(f, S))(i) \leq$ (upper_sum $(f, T))(i)$.
(7) Let A be a closed-interval subset of \mathbb{R}, f be a function from A into \mathbb{R}, T be a DivSequence of A, and e be an element of \mathbb{R}. Suppose $0<e$ and $f \upharpoonright A$ is lower bounded. Then there exists a middle volume sequence S of
f and T such that for every element i of \mathbb{N} holds (middle_sum $(f, S))(i) \leq$ (lower_sum $(f, T))(i)+e$.
(8) Let A be a closed-interval subset of \mathbb{R}, f be a function from A into \mathbb{R}, T be a DivSequence of A, and e be an element of \mathbb{R}. Suppose $0<e$ and $f \upharpoonright A$ is upper bounded. Then there exists a middle volume sequence S of f and T such that for every element i of \mathbb{N} holds (upper_sum $(f, T))(i)-e \leq$ (middle_sum $(f, S))(i)$.
(9) Let A be a closed-interval subset of \mathbb{R}, f be a function from A into \mathbb{R}, T be a DivSequence of A, and S be a middle volume sequence of f and T. Suppose f is bounded and f is integrable on A and δ_{T} is convergent and $\lim \left(\delta_{T}\right)=0$. Then middle_sum (f, S) is convergent and \lim middle_sum $(f, S)=$ integral f.
(10) Let A be a closed-interval subset of \mathbb{R} and f be a function from A into \mathbb{R}. Suppose f is bounded. Then f is integrable on A if and only if there exists a real number I such that for every DivSequence T of A and for every middle volume sequence S of f and T such that δ_{T} is convergent and $\lim \left(\delta_{T}\right)=0$ holds middle_sum (f, S) is convergent and lim middle_sum $(f, S)=I$.
Let n be an element of \mathbb{N}, let A be a closed-interval subset of \mathbb{R}, let f be a function from A into \mathcal{R}^{n}, let S be a non empty Division of A, and let D be an element of S. A finite sequence of elements of \mathcal{R}^{n} is said to be a middle volume of f and D if it satisfies the conditions (Def. 5).
(Def. 5)(i) \quad len it $=\operatorname{len} D$, and
(ii) for every natural number i such that $i \in \operatorname{dom} D$ there exists an element r of \mathcal{R}^{n} such that $r \in \operatorname{rng}(f \upharpoonright \operatorname{divset}(D, i))$ and $\operatorname{it}(i)=\operatorname{vol}(\operatorname{divset}(D, i)) \cdot r$.
Let n be an element of \mathbb{N}, let A be a closed-interval subset of \mathbb{R}, let f be a function from A into \mathcal{R}^{n}, let S be a non empty Division of A, let D be an element of S, and let F be a middle volume of f and D. The functor middle_sum (f, F) yielding an element of \mathcal{R}^{n} is defined by the condition (Def. 6).
(Def. 6) Let i be an element of \mathbb{N}. Suppose $i \in \operatorname{Seg} n$. Then there exists a finite sequence F_{1} of elements of \mathbb{R} such that $F_{1}=\operatorname{proj}(i, n) \cdot F$ and (middle_sum $(f, F))(i)=\sum F_{1}$.
Let n be an element of \mathbb{N}, let A be a closed-interval subset of \mathbb{R}, let f be a function from A into \mathcal{R}^{n}, and let T be a DivSequence of A. A function from \mathbb{N} into $\left(\mathcal{R}^{n}\right)^{*}$ is said to be a middle volume sequence of f and T if:
(Def. 7) For every element k of \mathbb{N} holds it (k) is a middle volume of f and $T(k)$.
Let n be an element of \mathbb{N}, let A be a closed-interval subset of \mathbb{R}, let f be a function from A into \mathcal{R}^{n}, let T be a DivSequence of A, let S be a middle volume sequence of f and T, and let k be an element of \mathbb{N}. Then $S(k)$ is a middle volume of f and $T(k)$.

Let n be an element of \mathbb{N}, let A be a closed-interval subset of \mathbb{R}, let f be a
function from A into \mathcal{R}^{n}, let T be a DivSequence of A, and let S be a middle volume sequence of f and T. The functor middle_sum (f, S) yields a sequence of $\left\langle\mathcal{E}^{n},\|\cdot\|\right\rangle$ and is defined as follows:
(Def. 8) For every element i of \mathbb{N} holds (middle_sum $(f, S))(i)=$ middle_sum $(f, S(i))$.
Let n be an element of \mathbb{N}, let Z be a non empty set, and let f, g be partial functions from Z to \mathcal{R}^{n}. The functor $f+g$ yielding a partial function from Z to \mathcal{R}^{n} is defined by:
(Def. 9) $\operatorname{dom}(f+g)=\operatorname{dom} f \cap \operatorname{dom} g$ and for every element c of Z such that $c \in \operatorname{dom}(f+g)$ holds $(f+g)_{c}=f_{c}+g_{c}$.
The functor $f-g$ yielding a partial function from Z to \mathcal{R}^{n} is defined as follows:
(Def. 10) $\operatorname{dom}(f-g)=\operatorname{dom} f \cap \operatorname{dom} g$ and for every element c of Z such that $c \in \operatorname{dom}(f-g)$ holds $(f-g)_{c}=f_{c}-g_{c}$.
Let n be an element of \mathbb{N}, let r be a real number, let Z be a non empty set, and let f be a partial function from Z to \mathcal{R}^{n}. The functor $r f$ yielding a partial function from Z to \mathcal{R}^{n} is defined as follows:
(Def. 11) $\operatorname{dom}(r f)=\operatorname{dom} f$ and for every element c of Z such that $c \in \operatorname{dom}(r f)$ holds $(r f)_{c}=r \cdot f_{c}$.

2. Definition of Riemann Integral of Functions from \mathbb{R} into \mathcal{R}^{n}

Let n be an element of \mathbb{N}, let A be a closed-interval subset of \mathbb{R}, and let f be a function from A into \mathcal{R}^{n}. We say that f is bounded if and only if:
(Def. 12) For every element i of \mathbb{N} such that $i \in \operatorname{Seg} n \operatorname{holds} \operatorname{proj}(i, n) \cdot f$ is bounded.
Let n be an element of \mathbb{N}, let A be a closed-interval subset of \mathbb{R}, and let f be a function from A into \mathcal{R}^{n}. We say that f is integrable if and only if:
(Def. 13) For every element i of \mathbb{N} such that $i \in \operatorname{Seg} n \operatorname{holds} \operatorname{proj}(i, n) \cdot f$ is integrable on A.
Let n be an element of \mathbb{N}, let A be a closed-interval subset of \mathbb{R}, and let f be a function from A into \mathcal{R}^{n}. The functor integral f yielding an element of \mathcal{R}^{n} is defined by:
(Def. 14) dom integral $f=\operatorname{Seg} n$ and for every element i of \mathbb{N} such that $i \in \operatorname{Seg} n$ holds (integral $f)(i)=$ integral $\operatorname{proj}(i, n) \cdot f$.
One can prove the following two propositions:
(11) Let n be an element of \mathbb{N}, A be a closed-interval subset of \mathbb{R}, f be a function from A into \mathcal{R}^{n}, T be a DivSequence of A, and S be a middle volume sequence of f and T. Suppose f is bounded and integrable and δ_{T} is convergent and $\lim \left(\delta_{T}\right)=0$. Then middle_sum (f, S) is convergent and \lim middle_sum $(f, S)=\operatorname{integral} f$.
(12) Let n be an element of \mathbb{N}, A be a closed-interval subset of \mathbb{R}, and f be a function from A into \mathcal{R}^{n}. Suppose f is bounded. Then f is integrable if and only if there exists an element I of \mathcal{R}^{n} such that for every DivSequence T of A and for every middle volume sequence S of f and T such that δ_{T} is convergent and $\lim \left(\delta_{T}\right)=0$ holds middle_sum (f, S) is convergent and \lim middle_sum $(f, S)=I$.
Let n be an element of \mathbb{N} and let f be a partial function from \mathbb{R} to \mathcal{R}^{n}. We say that f is bounded if and only if:
(Def. 15) For every element i of \mathbb{N} such that $i \in \operatorname{Seg} n \operatorname{holds} \operatorname{proj}(i, n) \cdot f$ is bounded.
Let n be an element of \mathbb{N}, let A be a closed-interval subset of \mathbb{R}, and let f be a partial function from \mathbb{R} to \mathcal{R}^{n}. We say that f is integrable on A if and only if:
(Def. 16) For every element i of \mathbb{N} such that $i \in \operatorname{Seg} n \operatorname{holds} \operatorname{proj}(i, n) \cdot f$ is integrable on A.
Let n be an element of \mathbb{N}, let A be a closed-interval subset of \mathbb{R}, and let f be a partial function from \mathbb{R} to \mathcal{R}^{n}. The functor $\int_{A} f(x) d x$ yields an element of \mathcal{R}^{n} and is defined by:
(Def. 17) $\operatorname{dom} \int_{A} f(x) d x=\operatorname{Seg} n$ and for every element i of \mathbb{N} such that $i \in \operatorname{Seg} n$ $\operatorname{holds}\left(\int_{A} f(x) d x\right)(i)=\int_{A}(\operatorname{proj}(i, n) \cdot f)(x) d x$.
The following two propositions are true:
(13) Let n be an element of \mathbb{N}, A be a closed-interval subset of \mathbb{R}, f be a partial function from \mathbb{R} to \mathcal{R}^{n}, and g be a function from A into \mathcal{R}^{n}. Suppose $f \upharpoonright A=g$. Then f is integrable on A if and only if g is integrable.
(14) Let n be an element of \mathbb{N}, A be a closed-interval subset of \mathbb{R}, f be a partial function from \mathbb{R} to \mathcal{R}^{n}, and g be a function from A into \mathcal{R}^{n}. If $f \upharpoonright A=g$, then $\int_{A} f(x) d x=$ integral g.
Let a, b be real numbers, let n be an element of \mathbb{N}, and let f be a partial function from \mathbb{R} to \mathcal{R}^{n}. The functor $\int_{a}^{b} f(x) d x$ yielding an element of \mathcal{R}^{n} is defined as follows:
(Def. 18) $\operatorname{dom} \int_{a}^{b} f(x) d x=\operatorname{Seg} n$ and for every element i of \mathbb{N} such that $i \in \operatorname{Seg} n$ holds $\left(\int_{a}^{b} f(x) d x\right)(i)=\int_{a}^{b}(\operatorname{proj}(i, n) \cdot f)(x) d x$.

3. Linearity of Integration Operator

We now state several propositions:
(15) Let n be an element of \mathbb{N}, f_{1}, f_{2} be partial functions from \mathbb{R} to \mathcal{R}^{n}, and i be an element of \mathbb{N}. If $i \in \operatorname{Seg} n$, then $\operatorname{proj}(i, n) \cdot\left(f_{1}+f_{2}\right)=\operatorname{proj}(i, n)$. $f_{1}+\operatorname{proj}(i, n) \cdot f_{2}$ and $\operatorname{proj}(i, n) \cdot\left(f_{1}-f_{2}\right)=\operatorname{proj}(i, n) \cdot f_{1}-\operatorname{proj}(i, n) \cdot f_{2}$.
(16) Let n be an element of \mathbb{N}, r be a real number, f be a partial function from \mathbb{R} to \mathcal{R}^{n}, and i be an element of \mathbb{N}. If $i \in \operatorname{Seg} n$, then $\operatorname{proj}(i, n) \cdot(r f)=$ $r(\operatorname{proj}(i, n) \cdot f)$.
(17) Let n be an element of \mathbb{N}, A be a closed-interval subset of \mathbb{R}, and f_{1}, f_{2} be partial functions from \mathbb{R} to \mathcal{R}^{n}. Suppose f_{1} is integrable on A and f_{2} is integrable on A and $A \subseteq \operatorname{dom} f_{1}$ and $A \subseteq \operatorname{dom} f_{2}$ and $f_{1}\lceil A$ is bounded and $f_{2} \upharpoonright A$ is bounded. Then $f_{1}+f_{2}$ is integrable on A and $f_{1}-f_{2}$ is integrable on A and $\int_{A}\left(f_{1}+f_{2}\right)(x) d x=\int_{A} f_{1}(x) d x+\int_{A} f_{2}(x) d x$ and $\int_{A}\left(f_{1}-f_{2}\right)(x) d x=\int_{A} f_{1}(x) d x-\int_{A} f_{2}(x) d x$.
(18) Let n be an element of \mathbb{N}, r be a real number, A be a closed-interval subset of \mathbb{R}, and f be a partial function from \mathbb{R} to \mathcal{R}^{n}. Suppose $A \subseteq \operatorname{dom} f$ and f is integrable on A and $f \upharpoonright A$ is bounded. Then $r f$ is integrable on A and $\int_{A}(r f)(x) d x=r \cdot \int_{A} f(x) d x$.
(19) Let n be an element of \mathbb{N}, f be a partial function from \mathbb{R} to \mathcal{R}^{n}, A be a closed-interval subset of \mathbb{R}, and a, b be real numbers. If $A=[a, b]$, then $\int_{A} f(x) d x=\int_{a}^{b} f(x) d x$.
(20) Let n be an element of \mathbb{N}, f be a partial function from \mathbb{R} to \mathcal{R}^{n}, A be a closed-interval subset of \mathbb{R}, and a, b be real numbers. If $A=[b, a]$, then $-\int_{A} f(x) d x=\int_{a}^{b} f(x) d x$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[8] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[10] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.
[11] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005.
[12] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces \mathcal{R}^{n}. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.
[13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from \mathbb{R} to \mathbb{R} and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.
[14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral. Formalized Mathematics, 9(1):191-196, 2001.
[15] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[16] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[17] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[19] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[20] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[21] Murray R. Spiegel. Theory and Problems of Vector Analysis. McGraw-Hill, 1974.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

