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Summary. The authors have presented some articles about Lebesgue type
integration theory. In our previous articles [12, 13, 26], we assumed that some
σ-additive measure existed and that a function was measurable on that measure.
However the existence of such a measure is not trivial. In general, because the
construction of a finite additive measure is comparatively easy, to induce a σ-
additive measure a finite additive measure is used. This is known as an E. Hopf’s
extension theorem of measure [15].
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The articles [11], [23], [1], [24], [22], [8], [25], [10], [9], [2], [20], [26], [6], [5], [7],
[13], [4], [12], [3], [16], [19], [18], [27], [21], [17], and [14] provide the notation
and terminology for this paper.

1. The Outer Measure Induced by the Finite Additive Measure

For simplicity, we follow the rules: X denotes a set, F denotes a field of
subsets of X, M denotes a measure on F , A, B denote subsets of X, S1 denotes
a sequence of subsets of X, s1, s2, s3 denote sequences of extended reals, and
n, k denote natural numbers.
We now state three propositions:

(1) Ser s1 = (
∑κ
α=0(s1)(α))κ∈N.

(2)1 If s1 is non-negative, then s1 is summable and
∑
s1 =

∑
s1.

1The translation of Mizar functor SUM introduced in [4] was changed from
∑
to
∑
.
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(3) Suppose s2 is non-negative and s3 is non-negative and for every natural
number n holds s1(n) = s2(n)+s3(n). Then s1 is non-negative and

∑
s1 =∑

s2 +
∑
s3 and

∑
s1 =

∑
s2 +

∑
s3.

Let us consider X, F . One can check that there exists a function from N
into F which is disjoint valued.
Let us consider X, F . A finite sequence of elements of 2X is said to be a

finite sequence of elements of F if:

(Def. 1) For every natural number k such that k ∈ dom it holds it(k) ∈ F.
Let us consider X, F . Observe that there exists a finite sequence of elements

of F which is disjoint valued.
Let us consider X, F . A disjoint valued finite set sequence of F is a disjoint

valued finite sequence of elements of F .
Let us consider X, F . A sequence of separated subsets of F is a disjoint

valued function from N into F .
Let us consider X, F . A sequence of subsets of X is said to be a set sequence

of F if:

(Def. 2) For every natural number n holds it(n) ∈ F.
Let us consider X, A, F . A set sequence of F is said to be a covering of A

in F if:

(Def. 3) A ⊆
⋃
rng it.

In the sequel F1 denotes a set sequence of F and C1 denotes a covering of
A in F .
Let us consider X, F , F1, n. Then F1(n) is an element of F .
Let us consider X, F , S1. A function from N into (2X)N is said to be a

covering of S1 in F if:

(Def. 4) For every element n of N holds it(n) is a covering of S1(n) in F .
In the sequel C2 is a covering of S1 in F .
Let us consider X, F , M , F1. The functor vol(M,F1) yielding a sequence of

extended reals is defined as follows:

(Def. 5) For every n holds (vol(M,F1))(n) =M(F1(n)).

One can prove the following proposition

(4) vol(M,F1) is non-negative.

Let us consider X, F , S1, C2 and let n be an element of N. Then C2(n) is a
covering of S1(n) in F .
Let us consider X, F , S1, M , C2. The functor Volume(M,C2) yielding a

sequence of extended reals is defined as follows:

(Def. 6) For every element n of N holds (Volume(M,C2))(n) =
∑
vol(M,C2(n)).

The following proposition is true

(5) 0 ≤ (Volume(M,C2))(n).
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Let us consider X, F , M , A. The functor Svc(M,A) yielding a subset of R
is defined as follows:

(Def. 7) For every extended real number x holds x ∈ Svc(M,A) iff there exists a
covering C1 of A in F such that x =

∑
vol(M,C1).

Let us consider X, A, F , M . Observe that Svc(M,A) is non empty.
Let us consider X, F , M . The Caratheodory measure determined by M is

a function from 2X into R and is defined by:
(Def. 8) For every subset A of X holds (the Caratheodory measure determined

by M)(A) = inf Svc(M,A).

The function InvPairFunc from N into N× N is defined by:
(Def. 9) InvPairFunc = PairFunc−1.

Let us consider X, F , S1, C2. The functor OnC2 yielding a covering of⋃
rngS1 in F is defined by:

(Def. 10) For every natural number n holds (OnC2)(n) =
C2(pr1(InvPairFunc)(n))(pr2(InvPairFunc)(n)).

The following propositions are true:

(6) Let k be an element of N. Then there exists a natural number
m such that for every sequence S1 of subsets of X and for eve-
ry covering C2 of S1 in F holds (

∑κ
α=0(vol(M,OnC2))(α))κ∈N(k) ≤

(
∑κ
α=0(Volume(M,C2))(α))κ∈N(m).

(7) inf Svc(M,
⋃
rngS1) ≤

∑
Volume(M,C2).

(8) If A ∈ F, then A, ∅X followed by ∅X is a covering of A in F .
(9) Let X be a set, F be a field of subsets of X, M be a measure on F ,
and A be a set. If A ∈ F, then (the Caratheodory measure determined by
M)(A) ≤M(A).

(10) The Caratheodory measure determined by M is non-negative.

(11) (The Caratheodory measure determined by M)(∅) = 0.
(12) If A ⊆ B, then (the Caratheodory measure determined byM)(A) ≤ (the
Caratheodory measure determined by M)(B).

(13) (The Caratheodory measure determined by M)(
⋃
rngS1) ≤

∑
((the Ca-

ratheodory measure determined by M) · S1).
(14) The Caratheodory measure determined byM is a Caratheodor’s measure
on X.

Let X be a set, let F be a field of subsets of X, and let M be a measure
on F . Then the Caratheodory measure determined by M is a Caratheodor’s
measure on X.
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2. Hopf Extension Theorem

Let X be a set, let F be a field of subsets of X, and let M be a measure on
F . We say that M is completely-additive if and only if:

(Def. 11) For every sequence F1 of separated subsets of F such that
⋃
rngF1 ∈ F

holds
∑
(M · F1) =M(

⋃
rngF1).

The following propositions are true:

(15) The partial unions of F1 are a set sequence of F .

(16) The partial diff-unions of F1 are a set sequence of F .

(17) Suppose A ∈ F. Then there exists a sequence F1 of separated subsets of
F such that A =

⋃
rngF1 and for every natural number n holds F1(n) ⊆

C1(n).

(18) SupposeM is completely-additive. LetA be a set. IfA ∈ F, thenM(A) =
(the Caratheodory measure determined by M)(A).

In the sequel C is a Caratheodor’s measure on X.
We now state three propositions:

(19) If for every subset B of X holds C(B ∩ A) + C(B ∩ (X \ A)) ≤ C(B),
then A ∈ σ-Field(C).

(20) F ⊆ σ-Field(the Caratheodory measure determined by M).
(21) Let X be a set, F be a field of subsets of X, F1 be a set sequence of F ,
andM be a function from F into R. ThenM ·F1 is a sequence of extended
reals.

Let X be a set, let F be a field of subsets of X, let F1 be a set sequence of
F , and let g be a function from F into R. Then g ·F1 is a sequence of extended
reals.
One can prove the following proposition

(22) Let X be a set, S be a σ-field of subsets of X, S2 be a sequence of subsets
of S, and M be a function from S into R. Then M · S2 is a sequence of
extended reals.

Let X be a set, let S be a σ-field of subsets of X, let S2 be a sequence of
subsets of S, and let g be a function from S into R. Then g ·S2 is a sequence of
extended reals.
Next we state several propositions:

(23) Let F , G be functions from N into R and n be a natural number. Suppose
that for every natural number m such that m ≤ n holds F (m) ≤ G(m).
Then (SerF )(n) ≤ (SerG)(n).

(24) For all X, C and for every sequence s1 of separated subsets of σ-Field(C)
holds

⋃
rng s1 ∈ σ-Field(C) and C(

⋃
rng s1) =

∑
(C · s1).

(25) For all X, C and for every sequence s1 of subsets of σ-Field(C) holds⋃
s1 ∈ σ-Field(C).
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(26) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-
measure on S, and S2 be a sequence of subsets of S. If S2 is non-decreasing,
then lim(M · S2) =M(limS2).

(27) If F1 is non-decreasing, then M · F1 is non-decreasing.
(28) If F1 is descending, then M · F1 is non-increasing.
(29) Let X be a set, S be a σ-field of subsets of X, M be a σ-measure on S,
and S2 be a sequence of subsets of S. If S2 is non-decreasing, then M · S2
is non-decreasing.

(30) Let X be a set, S be a σ-field of subsets of X, M be a σ-measure on S,
and S2 be a sequence of subsets of S. If S2 is descending, then M · S2 is
non-increasing.

(31) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-
measure on S, and S2 be a sequence of subsets of S. If S2 is descending
and M(S2(0)) < +∞, then lim(M · S2) =M(limS2).
Let X be a set, let F be a field of subsets of X, let S be a σ-field of subsets

of X, let m be a measure on F , and let M be a σ-measure on S. We say that
M is an extension of m if and only if:

(Def. 12) For every set A such that A ∈ F holds M(A) = m(A).
The following four propositions are true:

(32) Let X be a non empty set, F be a field of subsets of X, and m be a
measure on F . If there exists a σ-measure on σ(F ) which is an extension
of m, then m is completely-additive.

(33) Let X be a non empty set, F be a field of subsets of X, and m be
a measure on F . Suppose m is completely-additive. Then there exists
a σ-measure M on σ(F ) such that M is an extension of m and M =
σ-Meas(the Caratheodory measure determined by m)�σ(F ).

(34) If for every n holds M(F1(n)) < +∞, then M((the partial unions of
F1)(k)) < +∞.

(35) Let X be a non empty set, F be a field of subsets of X, and m be a
measure on F . Suppose that
(i) m is completely-additive, and
(ii) there exists a set sequence A1 of F such that for every natural number
n holds m(A1(n)) < +∞ and X =

⋃
rngA1.

Let M be a σ-measure on σ(F ). Suppose M is an extension of m. Then
M = σ-Meas(the Caratheodory measure determined by m)�σ(F ).
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