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Summary. It is known that commutative BCK-algebras form a variety,
but BCK-algebras do not [4]. Therefore H. Yutani introduced the notion of quasi-
commutative BCK-algebras. In this article we first present the notion and general
theory of quasi-commutative BCI-algebras. Then we discuss the reduction of
the type of quasi-commutative BCK-algebras and some special classes of quasi-
commutative BCI-algebras.
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The articles [7], [2], [3], [1], [5], and [6] provide the terminology and notation for
this paper.
Let X be a BCI-algebra, let x, y be elements of X, and let m, n be elements

of N. The functor Polynom(m,n, x, y) yields an element of X and is defined as
follows:

(Def. 1) Polynom(m,n, x, y) = ((x \ (x \ y))m+1 \ (y \ x))n.
We adopt the following convention: X denotes a BCI-algebra, x, y, z denote

elements of X, and i, j, k, l, m, n denote elements of N.
One can prove the following propositions:

(1) If x ≤ y ≤ z, then x ≤ z.
(2) If x ≤ y ≤ x, then x = y.
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(3) For every BCK-algebra X and for all elements x, y of X holds x \ y ≤ x
and (x \ y)n+1 ≤ (x \ y)n.

(4) For every BCK-algebra X and for every element x of X holds (0X \x)n =
0X .

(5) For every BCK-algebra X and for all elements x, y of X such thatm ≥ n
holds (x \ y)m ≤ (x \ y)n.

(6) Let X be a BCK-algebra and x, y be elements of X. Suppose m > n and
(x \ y)n = (x \ y)m. Let k be an element of N. If k ≥ n, then (x \ y)n =
(x \ y)k.

(7) Polynom(0, 0, x, y) = x \ (x \ y).
(8) Polynom(m,n, x, y) = ((Polynom(0, 0, x, y) \ (x \ y))m \ (y \ x))n.
(9) Polynom(m+ 1, n, x, y) = Polynom(m,n, x, y) \ (x \ y).
(10) Polynom(m,n+ 1, x, y) = Polynom(m,n, x, y) \ (y \ x).
(11) Polynom(n+ 1, n+ 1, y, x) ≤ Polynom(n, n+ 1, x, y).
(12) Polynom(n, n+ 1, x, y) ≤ Polynom(n, n, y, x).
Let X be a BCI-algebra. We say that X is quasi-commutative if and only if:

(Def. 2) There exist elements i, j, m, n of N such that for all elements x, y of X
holds Polynom(i, j, x, y) = Polynom(m,n, y, x).

Let us observe that BCI-EXAMPLE is quasi-commutative.
One can check that there exists a BCI-algebra which is quasi-commutative.
Let i, j, m, n be elements of N. A BCI-algebra is called a BCI-algebra

commutating with i, j and m, n if:

(Def. 3) For all elements x, y of it holds Polynom(i, j, x, y) = Polynom(m,n, y, x).

One can prove the following propositions:

(13) X is a BCI-algebra commutating with i, j and m, n if and only if X is
a BCI-algebra commutating with m, n and i, j.

(14) Let X be a BCI-algebra commutating with i, j and m, n and k be an
element of N. Then X is a BCI-algebra commutating with i+ k, j and m,
n+ k.

(15) Let X be a BCI-algebra commutating with i, j and m, n and k be an
element of N. Then X is a BCI-algebra commutating with i, j + k and
m+ k, n.

One can verify that there exists a BCK-algebra which is quasi-commutative.
Let i, j,m, n be elements of N. One can check that there exists a BCI-algebra

commutating with i, j and m, n which is BCK-5.
Let i, j, m, n be elements of N. A BCK-algebra commutating with i, j and

m, n is BCK-5 BCI-algebra commutating with i, j and m, n.
One can prove the following propositions:



general theory of quasi-commutative . . . 255

(16) X is a BCK-algebra commutating with i, j and m, n if and only if X is
a BCK-algebra commutating with m, n and i, j.

(17) Let X be a BCK-algebra commutating with i, j and m, n and k be an
element of N. Then X is a BCK-algebra commutating with i + k, j and
m, n+ k.

(18) Let X be a BCK-algebra commutating with i, j and m, n and k be an
element of N. Then X is a BCK-algebra commutating with i, j + k and
m+ k, n.

(19) For every BCK-algebra X commutating with i, j and m, n and for all
elements x, y of X holds (x \ y)i+1 = (x \ y)n+1.

(20) For every BCK-algebra X commutating with i, j and m, n and for all
elements x, y of X holds (x \ y)j+1 = (x \ y)m+1.

(21) Every BCK-algebra commutating with i, j and m, n is a BCK-algebra
commutating with i, j and j, n.

(22) Every BCK-algebra commutating with i, j and m, n is a BCK-algebra
commutating with n, j and m, n.

Let us consider i, j, m, n. The functor min(i, j,m, n) yielding an extended
real number is defined as follows:

(Def. 4) min(i, j,m, n) = min(min(i, j),min(m,n)).

The functor max(i, j,m, n) yielding an extended real number is defined by:

(Def. 5) max(i, j,m, n) = max(max(i, j),max(m,n)).

Next we state a number of propositions:

(23) min(i, j,m, n) = i or min(i, j,m, n) = j or min(i, j,m, n) = m or
min(i, j,m, n) = n.

(24) max(i, j,m, n) = i or max(i, j,m, n) = j or max(i, j,m, n) = m or
max(i, j,m, n) = n.

(25) If i = min(i, j,m, n), then i ≤ j and i ≤ m and i ≤ n.
(26) max(i, j,m, n) ≥ i and max(i, j,m, n) ≥ j and max(i, j,m, n) ≥ m and
max(i, j,m, n) ≥ n.

(27) Let X be a BCK-algebra commutating with i, j and m, n. Suppose
i = min(i, j,m, n). If i = j, then X is a BCK-algebra commutating with
i, i and i, i.

(28) Let X be a BCK-algebra commutating with i, j and m, n. Suppose
i = min(i, j,m, n). Suppose i < j and i < n. Then X is a BCK-algebra
commutating with i, i+ 1 and i, i+ 1.

(29) Let X be a BCK-algebra commutating with i, j and m, n. Suppose
i = min(i, j,m, n). Suppose i < j and i = n and i = m. Then X is a
BCK-algebra commutating with i, i and i, i.
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(30) Let X be a BCK-algebra commutating with i, j and m, n. Suppose
i = min(i, j,m, n). Suppose i < j and i = n and i < m < j. Then X is a
BCK-algebra commutating with i, m+ 1 and m, i.

(31) Let X be a BCK-algebra commutating with i, j and m, n. Suppose
i = min(i, j,m, n). Suppose i < j and i = n and j ≤ m. Then X is a
BCK-algebra commutating with i, j and j, i.

(32) Let X be a BCK-algebra commutating with i, j and m, n. Suppose l ≥ j
and k ≥ n. Then X is a BCK-algebra commutating with k, l and l, k.

(33) Let X be a BCK-algebra commutating with i, j and m, n. Suppose
k ≥ max(i, j,m, n). Then X is a BCK-algebra commutating with k, k and
k, k.

(34) Let X be a BCK-algebra commutating with i, j and m, n. Suppose
i ≤ m and j ≤ n. Then X is a BCK-algebra commutating with i, j and i,
j.

(35) Let X be a BCK-algebra commutating with i, j and m, n. Suppose
i ≤ m and i < n. Then X is a BCK-algebra commutating with i, j and i,
i+ 1.

(36) If X is a BCI-algebra commutating with i, j and j + k, i+ k, then X is
a BCK-algebra.

(37) X is a BCI-algebra commutating with 0, 0 and 0, 0 if and only if X is a
BCK-algebra commutating with 0, 0 and 0, 0.

(38) X is a commutative BCK-algebra iff X is a BCI-algebra commutating
with 0, 0 and 0, 0.

Let X be a BCI-algebra. We introduce p-Semisimple-partX as a synonym
of AtomSetX.
In the sequel B, P are non empty subsets of X.
One can prove the following propositions:

(39) For every BCI-algebra X such that B = BCK-partX and P =
p-Semisimple-partX holds B ∩ P = {0X}.

(40) For every BCI-algebra X such that P = p-Semisimple-partX holds X
is a BCK-algebra iff P = {0X}.

(41) For every BCI-algebra X such that B = BCK-partX holds X is a p-
semisimple BCI-algebra iff B = {0X}.

(42) If X is a p-semisimple BCI-algebra, then X is a BCI-algebra commuta-
ting with 0, 1 and 0, 0.

(43) Suppose X is a p-semisimple BCI-algebra. Then X is a BCI-algebra
commutating with n+ j, n and m, m+ j + 1.

(44) Suppose X is an associative BCI-algebra. Then X is a BCI-algebra com-
mutating with 0, 1 and 0, 0 and a BCI-algebra commutating with 1, 0 and
0, 0.
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(45) Suppose X is a weakly-positive-implicative BCI-algebra. Then X is a
BCI-algebra commutating with 0, 1 and 1, 1.

(46) If X is a positive-implicative BCI-algebra, then X is a BCI-algebra com-
mutating with 0, 1 and 1, 1.

(47) IfX is an implicative BCI-algebra, thenX is a BCI-algebra commutating
with 0, 1 and 0, 0.

(48) IfX is an alternative BCI-algebra, thenX is a BCI-algebra commutating
with 0, 1 and 0, 0.

(49) X is a BCK-positive-implicative BCK-algebra if and only if X is a BCK-
algebra commutating with 0, 1 and 0, 1.

(50) X is a BCK-implicative BCK-algebra iff X is a BCK-algebra commuta-
ting with 1, 0 and 0, 0.

One can check that every BCK-algebra which is BCK-implicative is also
commutative and every BCK-algebra which is BCK-implicative is also BCK-
positive-implicative.
The following propositions are true:

(51) X is a BCK-algebra commutating with 1, 0 and 0, 0 if and only if X
is a BCK-algebra commutating with 0, 0 and 0, 0 and a BCK-algebra
commutating with 0, 1 and 0, 1.

(52) Let X be a quasi-commutative BCK-algebra. Then X is a BCK-algebra
commutating with 0, 1 and 0, 1 if and only if for all elements x, y of X
holds x \ y = x \ y \ y.

(53) Let X be a quasi-commutative BCK-algebra. Then X is a BCK-algebra
commutating with n, n+ 1 and n, n+ 1 if and only if for all elements x,
y of X holds (x \ y)n+1 = (x \ y)n+2.

(54) If X is a BCI-algebra commutating with 0, 1 and 0, 0, then X is a
BCI-commutative BCI-algebra.

(55) If X is a BCI-algebra commutating with n, 0 and m, m, then X is a
BCI-commutative BCI-algebra.

(56) Let X be a BCK-algebra commutating with i, j andm, n. Suppose j = 0
and m > 0. Then X is a BCK-algebra commutating with 0, 0 and 0, 0.

(57) Let X be a BCK-algebra commutating with i, j and m, n. Suppose
m = 0 and j > 0. Then X is a BCK-algebra commutating with 0, 1 and
0, 1.

(58) LetX be a BCK-algebra commutating with i, j andm, n. Suppose n = 0
and i 6= 0. Then X is a BCK-algebra commutating with 0, 0 and 0, 0.

(59) Let X be a BCK-algebra commutating with i, j and m, n. Suppose i = 0
and n 6= 0. Then X is a BCK-algebra commutating with 0, 1 and 0, 1.
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