
FORMALIZED MATHEMATICS

Vol. 16, No. 3, Pages 231–245, 2008
DOI: 10.2478/v10037-008-0028-9

Model Checking. Part II

Kazuhisa Ishida
Shinshu University
Nagano, Japan

Summary. This article provides the definition of linear temporal logic
(LTL) and its properties relevant to model checking based on [9]. Mizar formali-
zation of LTL language and satisfiability is based on [2, 3].

MML identifier: MODELC 2, version: 7.9.01 4.101.1015

The articles [8], [11], [6], [5], [7], [1], [4], [12], and [10] provide the notation and
terminology for this paper.
Let x be a set. The functor CastNatx yielding a natural number is defined

by:

(Def. 1) CastNatx =

{
x, if x is a natural number,
0, otherwise.

Let W1 be a set. A sequence of W1 is a function from N into W1.
For simplicity, we adopt the following rules: k, n denote natural numbers, a

denotes a set, D, S denote non empty sets, and p, q denote finite sequences of
elements of N.
Let us consider n. The functor atom. n yielding a finite sequence of elements

of N is defined as follows:
(Def. 2) atom. n = 〈6 + n〉.

Let us consider p. The functor ¬p yielding a finite sequence of elements of
N is defined by:
(Def. 3) ¬p = 〈0〉 a p.

Let us consider q. The functor p∧q yields a finite sequence of elements of N and
is defined by:

(Def. 4) p ∧ q = 〈1〉 a p a q.

The functor p ∨ q yielding a finite sequence of elements of N is defined by:

231
c© 2008 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://ftp.mizar.org/
http://fm.mizar.org/miz/modelc_2.miz

232 kazuhisa ishida

(Def. 5) p ∨ q = 〈2〉 a p a q.

Let us consider p. The functor X p yielding a finite sequence of elements of
N is defined as follows:
(Def. 6) X p = 〈3〉 a p.

Let us consider q. The functor p U q yielding a finite sequence of elements of N
is defined by:

(Def. 7) p U q = 〈4〉 a p a q.

The functor p R q yields a finite sequence of elements of N and is defined as
follows:

(Def. 8) pR q = 〈5〉 a p a q.

The non empty set WFFLTL is defined by the conditions (Def. 9).

(Def. 9) For every a such that a ∈WFFLTL holds a is a finite sequence of elements
of N and for every n holds atom. n ∈ WFFLTL and for every p such that
p ∈WFFLTL holds ¬p ∈WFFLTL and for all p, q such that p, q ∈WFFLTL
holds p ∧ q ∈ WFFLTL and for all p, q such that p, q ∈ WFFLTL holds
p ∨ q ∈ WFFLTL and for every p such that p ∈ WFFLTL holds X p ∈
WFFLTL and for all p, q such that p, q ∈WFFLTL holds p U q ∈WFFLTL
and for all p, q such that p, q ∈ WFFLTL holds pR q ∈ WFFLTL and for
every D such that for every a such that a ∈ D holds a is a finite sequence
of elements of N and for every n holds atom. n ∈ D and for every p such
that p ∈ D holds ¬p ∈ D and for all p, q such that p, q ∈ D holds p∧q ∈ D
and for all p, q such that p, q ∈ D holds p∨q ∈ D and for every p such that
p ∈ D holds X p ∈ D and for all p, q such that p, q ∈ D holds p U q ∈ D
and for all p, q such that p, q ∈ D holds pR q ∈ D holds WFFLTL ⊆ D.
Let I1 be a finite sequence of elements of N. We say that I1 is LTL-formula-

like if and only if:

(Def. 10) I1 is an element of WFFLTL.

Let us observe that there exists a finite sequence of elements of N which is
LTL-formula-like.
An LTL-formula is a LTL-formula-like finite sequence of elements of N.
Next we state the proposition

(1) a is an LTL-formula iff a ∈WFFLTL.
In the sequel F , F1, G, H, H1, H2 denote LTL-formulae.
Let us consider n. Observe that atom. n is LTL-formula-like.
Let us consider H. Note that ¬H is LTL-formula-like and X H is LTL-

formula-like. Let us consider G. One can check the following observations:

∗ H ∧G is LTL-formula-like,
∗ H ∨G is LTL-formula-like,
∗ H U G is LTL-formula-like, and

model checking. Part II 233

∗ H RG is LTL-formula-like.
Let us consider H. We say that H is atomic if and only if:

(Def. 11) There exists n such that H = atom. n.

We say that H is negative if and only if:

(Def. 12) There exists H1 such that H = ¬H1.
We say that H is conjunctive if and only if:

(Def. 13) There exist F , G such that H = F ∧G.
We say that H is disjunctive if and only if:

(Def. 14) There exist F , G such that H = F ∨G.
We say that H has next operator if and only if:

(Def. 15) There exists H1 such that H = X H1.
We say that H has until operator if and only if:

(Def. 16) There exist F , G such that H = F U G.
We say that H has release operator if and only if:

(Def. 17) There exist F , G such that H = F RG.
Next we state two propositions:

(2) H is either atomic, or negative, or conjunctive, or disjunctive, or has
next operator, or until operator, or release operator.

(3) 1 ≤ lenH.
Let us consider H. Let us assume that H is either negative or has next

operator. The functor Arg(H) yields an LTL-formula and is defined by:

(Def. 18)(i) ¬Arg(H) = H if H is negative,
(ii) X Arg(H) = H, otherwise.
Let us consider H. Let us assume that H is either conjunctive or disjunctive

or has until operator or release operator. The functor LeftArg(H) yielding an
LTL-formula is defined as follows:

(Def. 19)(i) There exists H1 such that LeftArg(H)∧H1 = H if H is conjunctive,
(ii) there exists H1 such that LeftArg(H) ∨H1 = H if H is disjunctive,
(iii) there exists H1 such that LeftArg(H)UH1 = H if H has until operator,
(iv) there exists H1 such that LeftArg(H)RH1 = H, otherwise.
The functor RightArg(H) yields an LTL-formula and is defined by:

(Def. 20)(i) There exists H1 such that H1∧RightArg(H) = H if H is conjunctive,
(ii) there exists H1 such that H1 ∨ RightArg(H) = H if H is disjunctive,
(iii) there exists H1 such that H1 U RightArg(H) = H if H has until ope-
rator,

(iv) there exists H1 such that H1 R RightArg(H) = H, otherwise.
The following propositions are true:

(4) If H is negative, then H = ¬Arg(H).

234 kazuhisa ishida

(5) If H has next operator, then H = X Arg(H).
(6) If H is conjunctive, then H = LeftArg(H) ∧ RightArg(H).
(7) If H is disjunctive, then H = LeftArg(H) ∨ RightArg(H).
(8) If H has until operator, then H = LeftArg(H) U RightArg(H).
(9) If H has release operator, then H = LeftArg(H)R RightArg(H).
(10) If H is either negative or has next operator, then lenH = 1+lenArg(H)
and lenArg(H) < lenH.

(11) Suppose H is either conjunctive or disjunctive or has until operator or
release operator. Then lenH = 1+lenLeftArg(H)+ lenRightArg(H) and
lenLeftArg(H) < lenH and lenRightArg(H) < lenH.

Let us consider H, F . We say that H is an immediate constituent of F if
and only if:

(Def. 21) F = ¬H or F = X H or there exists H1 such that F = H ∧ H1 or
F = H1∧H or F = H ∨H1 or F = H1∨H or F = H UH1 or F = H1UH
or F = H RH1 or F = H1 RH.
We now state a number of propositions:

(12) For all F , G holds (¬F)(1) = 0 and (F ∧G)(1) = 1 and (F ∨G)(1) = 2
and (X F)(1) = 3 and (F U G)(1) = 4 and (F RG)(1) = 5.

(13) H is an immediate constituent of ¬F iff H = F.
(14) H is an immediate constituent of X F iff H = F.
(15) H is an immediate constituent of F ∧G iff H = F or H = G.
(16) H is an immediate constituent of F ∨G iff H = F or H = G.
(17) H is an immediate constituent of F U G iff H = F or H = G.
(18) H is an immediate constituent of F RG iff H = F or H = G.
(19) If F is atomic, then H is not an immediate constituent of F .

(20) If F is negative, thenH is an immediate constituent of F iffH = Arg(F).

(21) If F has next operator, then H is an immediate constituent of F iff
H = Arg(F).

(22) If F is conjunctive, then H is an immediate constituent of F iff H =
LeftArg(F) or H = RightArg(F).

(23) If F is disjunctive, then H is an immediate constituent of F iff H =
LeftArg(F) or H = RightArg(F).

(24) If F has until operator, then H is an immediate constituent of F iff
H = LeftArg(F) or H = RightArg(F).

(25) If F has release operator, then H is an immediate constituent of F iff
H = LeftArg(F) or H = RightArg(F).

(26) Suppose H is an immediate constituent of F . Then F is either negative,
or conjunctive, or disjunctive, or has next operator, or until operator, or

model checking. Part II 235

release operator.

In the sequel L denotes a finite sequence.
Let us consider H, F . We say that H is a subformula of F if and only if the

condition (Def. 22) is satisfied.

(Def. 22) There exist n, L such that
(i) 1 ≤ n,
(ii) lenL = n,
(iii) L(1) = H,
(iv) L(n) = F, and
(v) for every k such that 1 ≤ k < n there exist H1, F1 such that L(k) = H1
and L(k + 1) = F1 and H1 is an immediate constituent of F1.

We now state the proposition

(27) H is a subformula of H.

Let us consider H, F . We say that H is a proper subformula of F if and
only if:

(Def. 23) H is a subformula of F and H 6= F.
One can prove the following propositions:

(28) If H is an immediate constituent of F , then lenH < lenF.

(29) If H is an immediate constituent of F , then H is a proper subformula
of F .

(30) If G is either negative or has next operator, then Arg(G) is a subformula
of G.

(31) Suppose G is either conjunctive or disjunctive or has until operator or
release operator. Then LeftArg(G) is a subformula of G and RightArg(G)
is a subformula of G.

(32) If H is a proper subformula of F , then lenH < lenF.

(33) If H is a proper subformula of F , then there exists G which is an imme-
diate constituent of F .

(34) If F is a proper subformula of G and G is a proper subformula of H,
then F is a proper subformula of H.

(35) If F is a subformula of G and G is a subformula of H, then F is a
subformula of H.

(36) If G is a subformula of H and H is a subformula of G, then G = H.

(37) If G is either negative or has next operator and F is a proper subformula
of G, then F is a subformula of Arg(G).

(38) Suppose that
(i) G is either conjunctive or disjunctive or has until operator or release
operator, and

(ii) F is a proper subformula of G.

236 kazuhisa ishida

Then F is a subformula of LeftArg(G) or a subformula of RightArg(G).

(39) If F is a proper subformula of ¬H, then F is a subformula of H.
(40) If F is a proper subformula of X H, then F is a subformula of H.
(41) If F is a proper subformula of G ∧H, then F is a subformula of G or a
subformula of H.

(42) If F is a proper subformula of G ∨H, then F is a subformula of G or a
subformula of H.

(43) If F is a proper subformula of G U H, then F is a subformula of G or a
subformula of H.

(44) If F is a proper subformula of GRH, then F is a subformula of G or a
subformula of H.

Let us consider H. The functor SubformulaeH yields a set and is defined
by:

(Def. 24) a ∈ SubformulaeH iff there exists F such that F = a and F is a subfor-
mula of H.

One can prove the following proposition

(45) G ∈ SubformulaeH iff G is a subformula of H.
Let us consider H. Observe that SubformulaeH is non empty.
Next we state two propositions:

(46) If F is a subformula of H, then SubformulaeF ⊆ SubformulaeH.
(47) If a is a subset of SubformulaeH, then a is a subset of WFFLTL.

In this article we present several logical schemes. The scheme LTLInd con-
cerns a unary predicate P, and states that:

For every H holds P[H]
provided the following conditions are satisfied:
• For every H such that H is atomic holds P[H],
• For every H such that H is either negative or has next operator
and P[Arg(H)] holds P[H], and

• Let given H. Suppose H is either conjunctive or disjunctive or
has until operator or release operator and P[LeftArg(H)] and
P[RightArg(H)]. Then P[H].

The scheme LTLCompInd concerns a unary predicate P, and states that:
For every H holds P[H]

provided the following condition is met:
• For every H such that for every F such that F is a proper sub-
formula of H holds P[F] holds P[H].

Let x be a set. The functor CastLTL x yielding an LTL-formula is defined by:

(Def. 25) CastLTL x =

{
x, if x ∈WFFLTL,
atom. 0, otherwise.

model checking. Part II 237

We introduce LTL-model structures which are systems
〈 assignations, basic assignations, a conjunction, a disjunction, a negation,

a next-operation, an until-operation, a release-operation 〉,
where the assignations constitute a non empty set, the basic assignations con-
stitute a non empty subset of the assignations, the conjunction is a binary ope-
ration on the assignations, the disjunction is a binary operation on the assigna-
tions, the negation is a unary operation on the assignations, the next-operation
is a unary operation on the assignations, the until-operation is a binary opera-
tion on the assignations, and the release-operation is a binary operation on the
assignations.
Let V be an LTL-model structure. An assignation of V is an element of the

assignations of V .
The subset atomicLTL of WFFLTL is defined by:

(Def. 26) atomicLTL = {x;x ranges over LTL-formulae: x is atomic}.
Let V be an LTL-model structure, let K1 be a function from atomicLTL

into the basic assignations of V , and let f be a function from WFFLTL into
the assignations of V . We say that f is an evaluation for K1 if and only if the
condition (Def. 27) is satisfied.

(Def. 27) Let H be an LTL-formula. Then
(i) if H is atomic, then f(H) = K1(H),
(ii) if H is negative, then f(H) = (the negation of V)(f(Arg(H))),
(iii) ifH is conjunctive, then f(H) = (the conjunction of V)(f(LeftArg(H)),
f(RightArg(H))),

(iv) if H is disjunctive, then f(H) = (the disjunction of V)(f(LeftArg(H)),
f(RightArg(H))),

(v) if H has next operator, then f(H) = (the next-operation of
V)(f(Arg(H))),

(vi) if H has until operator, then f(H) = (the until-operation of
V)(f(LeftArg(H)), f(RightArg(H))), and

(vii) if H has release operator, then f(H) = (the release-operation of
V)(f(LeftArg(H)), f(RightArg(H))).

Let V be an LTL-model structure, let K1 be a function from atomicLTL
into the basic assignations of V , let f be a function from WFFLTL into the
assignations of V , and let n be a natural number. We say that f is a n-pre-
evaluation for K1 if and only if the condition (Def. 28) is satisfied.

(Def. 28) Let H be an LTL-formula such that lenH ≤ n. Then
(i) if H is atomic, then f(H) = K1(H),
(ii) if H is negative, then f(H) = (the negation of V)(f(Arg(H))),
(iii) ifH is conjunctive, then f(H) = (the conjunction of V)(f(LeftArg(H)),
f(RightArg(H))),

238 kazuhisa ishida

(iv) if H is disjunctive, then f(H) = (the disjunction of V)(f(LeftArg(H)),
f(RightArg(H))),

(v) if H has next operator, then f(H) = (the next-operation of
V)(f(Arg(H))),

(vi) if H has until operator, then f(H) = (the until-operation of
V)(f(LeftArg(H)), f(RightArg(H))), and

(vii) if H has release operator, then f(H) = (the release-operation of
V)(f(LeftArg(H)), f(RightArg(H))).

Let V be an LTL-model structure, let K1 be a function from atomicLTL
into the basic assignations of V , let f , h be functions from WFFLTL into the
assignations of V , let n be a natural number, and let H be an LTL-formula.
The functor GraftEval(V,K1, f, h, n,H) yields a set and is defined by:

(Def. 29) GraftEval(V,K1, f, h, n,H)

=



f(H), if lenH > n+ 1,
K1(H), if lenH = n+ 1 and H is atomic,
(the negation of V)(h(Arg(H))), if lenH = n+ 1 and H is negative,
(the conjunction of V)(h(LeftArg(H)), h(RightArg(H))),
if lenH = n+ 1 and H is conjunctive,

(the disjunction of V)(h(LeftArg(H)), h(RightArg(H))),
if lenH = n+ 1 and H is disjunctive,

(the next-operation of V)(h(Arg(H))),
if lenH = n+ 1 and H has next operator,

(the until-operation of V)(h(LeftArg(H)), h(RightArg(H))),
if lenH = n+ 1 and H has until operator,

(the release-operation of V)(h(LeftArg(H)), h(RightArg(H))),
if lenH = n+ 1 and H has release operator,

h(H), if lenH < n+ 1,
∅, otherwise.

We adopt the following convention: V denotes an LTL-model structure, K1
denotes a function from atomicLTL into the basic assignations of V , and f , f1,
f2 denote functions from WFFLTL into the assignations of V .
Let V be an LTL-model structure, let K1 be a function from atomicLTL

into the basic assignations of V , and let n be a natural number. The functor
EvalSet(V,K1, n) yields a non empty set and is defined by:

(Def. 30) EvalSet(V,K1, n) = {h;h ranges over functions from WFFLTL into the
assignations of V : h is a n-pre-evaluation for K1}.
Let V be an LTL-model structure, let v0 be an element of the assignations

of V , and let x be a set. The functor CastEval(V, x, v0) yielding a function from
WFFLTL into the assignations of V is defined by:

(Def. 31) CastEval(V, x, v0) =

{
x, if x ∈ (the assignations of V)WFFLTL ,
WFFLTL 7−→ v0, otherwise.

model checking. Part II 239

Let V be an LTL-model structure and let K1 be a function from atomicLTL
into the basic assignations of V . The functor EvalFamily(V,K1) yielding a non
empty set is defined by the condition (Def. 32).

(Def. 32) Let p be a set. Then p ∈ EvalFamily(V,K1) if and only if the following
conditions are satisfied:
(i) p ∈ 2(the assignations of V)WFFLTL , and
(ii) there exists a natural number n such that p = EvalSet(V,K1, n).

We now state two propositions:

(48) There exists f which is an evaluation for K1.

(49) If f1 is an evaluation for K1 and f2 is an evaluation for K1, then f1 = f2.

Let V be an LTL-model structure, let K1 be a function from atomicLTL
into the basic assignations of V , and let H be an LTL-formula. The functor
Evaluate(H,K1) yields an assignation of V and is defined by:

(Def. 33) There exists a function f from WFFLTL into the assignations of V such
that f is an evaluation for K1 and Evaluate(H,K1) = f(H).

Let V be an LTL-model structure and let f be an assignation of V . The
functor ¬f yielding an assignation of V is defined by:

(Def. 34) ¬f = (the negation of V)(f).
Let V be an LTL-model structure and let f , g be assignations of V . The

functor f ∧ g yields an assignation of V and is defined by:
(Def. 35) f ∧ g = (the conjunction of V)(f, g).
The functor f ∨ g yields an assignation of V and is defined as follows:

(Def. 36) f ∨ g = (the disjunction of V)(f, g).
Let V be an LTL-model structure and let f be an assignation of V . The

functor X f yielding an assignation of V is defined by:
(Def. 37) X f = (the next-operation of V)(f).

Let V be an LTL-model structure and let f , g be assignations of V . The
functor f U g yielding an assignation of V is defined by:

(Def. 38) f U g = (the until-operation of V)(f, g).
The functor f R g yields an assignation of V and is defined as follows:

(Def. 39) f R g = (the release-operation of V)(f, g).
One can prove the following propositions:

(50) Evaluate(¬H,K1) = ¬Evaluate(H,K1).
(51) Evaluate(H1 ∧H2,K1) = Evaluate(H1,K1) ∧ Evaluate(H2,K1).
(52) Evaluate(H1 ∨H2,K1) = Evaluate(H1,K1) ∨ Evaluate(H2,K1).
(53) Evaluate(X H,K1) = X Evaluate(H,K1).
(54) Evaluate(H1 U H2,K1) = Evaluate(H1,K1) U Evaluate(H2,K1).
(55) Evaluate(H1 RH2,K1) = Evaluate(H1,K1)R Evaluate(H2,K1).

240 kazuhisa ishida

Let S be a non empty set. The infinite sequences of S yielding a non empty
set is defined by:

(Def. 40) The infinite sequences of S = SN.

Let S be a non empty set and let t be a sequence of S. The functor CastSeq t
yields an element of the infinite sequences of S and is defined by:

(Def. 41) CastSeq t = t.

Let S be a non empty set and let t be a set. Let us assume that t is an element
of the infinite sequences of S. The functor CastSeq(t, S) yielding a sequence of
S is defined by:

(Def. 42) CastSeq(t, S) = t.

Let S be a non empty set, let t be a sequence of S, and let k be a natural
number. The functor Shift(t, k) yielding a sequence of S is defined as follows:

(Def. 43) For every natural number n holds (Shift(t, k))(n) = t(n+ k).

Let S be a non empty set, let t be a set, and let k be a natural number. The
functor Shift(t, k, S) yielding an element of the infinite sequences of S is defined
as follows:

(Def. 44) Shift(t, k, S) = CastSeq Shift(CastSeq(t, S), k).

Let S be a non empty set, let t be an element of the infinite sequences of
S, and let k be a natural number. The functor Shift(t, k) yielding an element of
the infinite sequences of S is defined as follows:

(Def. 45) Shift(t, k) = Shift(t, k, S).

Let S be a non empty set and let f be a set. The functor Not0(f, S) yields an
element of ModelSP (the infinite sequences of S) and is defined by the condition
(Def. 46).

(Def. 46) Let t be a set. Suppose t ∈ the infinite sequences of S. Then
¬Castboolean(Fid(f, the infinite sequences of S))(t) = true if and only
if (Fid(Not0(f, S), the infinite sequences of S))(t) = true.

Let S be a non empty set. The functor NotS yielding a unary operation on
ModelSP (the infinite sequences of S) is defined by:

(Def. 47) For every set f such that f ∈ ModelSP (the infinite sequences of S) holds
(NotS)(f) = Not0(f, S).

Let S be a non empty set, let f be a function from the infinite sequences of
S into Boolean, and let t be a set. The functor Next-univ(t, f) yields an element
of Boolean and is defined as follows:

(Def. 48) Next-univ(t, f) =


true, if t is an element of the infinite sequences
of S and f(Shift(t, 1, S)) = true,

false, otherwise.
Let S be a non empty set and let f be a set. The functor Next0(f, S) yielding

an element of ModelSP (the infinite sequences of S) is defined by the condition

model checking. Part II 241

(Def. 49).

(Def. 49) Let t be a set. Suppose t ∈ the infinite sequences of S. Then
Next-univ(t,Fid(f, the infinite sequences of S)) = true if and only if
(Fid(Next0(f, S), the infinite sequences of S))(t) = true.

Let S be a non empty set. The functor NextS yields a unary operation on
ModelSP (the infinite sequences of S) and is defined as follows:

(Def. 50) For every set f such that f ∈ ModelSP (the infinite sequences of S) holds
(NextS)(f) = Next0(f, S).

Let S be a non empty set and let f , g be sets. The functor And0(f, g, S)
yields an element of ModelSP (the infinite sequences of S) and is defined by the
condition (Def. 51).

(Def. 51) Let t be a set. Suppose t ∈ the infinite sequences of S. Then
Castboolean(Fid(f, the infinite sequences of S))(t)∧Castboolean(Fid(g, the
infinite sequences of S))(t) = true if and only if (Fid(And0(f, g, S), the in-
finite sequences of S))(t) = true.

Let S be a non empty set. The functor AndS yielding a binary operation
on ModelSP (the infinite sequences of S) is defined by the condition (Def. 52).

(Def. 52) Let f , g be sets. Suppose f ∈ ModelSP (the infinite sequences of S)
and g ∈ ModelSP (the infinite sequences of S). Then (AndS)(f, g) =
And0(f, g, S).

Let S be a non empty set, let f , g be functions from the infinite sequences
of S into Boolean, and let t be a set. The functor Until-univ(t, f, g, S) yields an
element of Boolean and is defined as follows:

(Def. 53) Until-univ(t, f, g, S) =



true, if t is an element of the infinite sequences
of S and there exists a natural number m
such that for every natural number j
such that j < m holds f(Shift(t, j, S)) =
true and g(Shift(t,m, S)) = true,
false, otherwise.

Let S be a non empty set and let f , g be sets. The functor Until0(f, g, S)
yields an element of ModelSP (the infinite sequences of S) and is defined by the
condition (Def. 54).

(Def. 54) Let t be a set. Suppose t ∈ the infinite sequences of S. Then
Until-univ(t,Fid(f, the infinite sequences of S),Fid(g, the infinite sequen-
ces of S), S) = true if and only if (Fid(Until0(f, g, S), the infinite sequences
of S))(t) = true.

Let S be a non empty set. The functor UntilS yielding a binary operation
on ModelSP (the infinite sequences of S) is defined by the condition (Def. 55).

(Def. 55) Let f , g be sets. Suppose f ∈ ModelSP (the infinite sequences of S)
and g ∈ ModelSP (the infinite sequences of S). Then (UntilS)(f, g) =

242 kazuhisa ishida

Until0(f, g, S).

Let S be a non empty set. The functor ∨S yields a binary operation on
ModelSP (the infinite sequences of S) and is defined by the condition (Def. 56).

(Def. 56) Let f , g be sets. Suppose f ∈ ModelSP (the infinite sequences of
S) and g ∈ ModelSP (the infinite sequences of S). Then ∨S(f, g) =
(NotS)((AndS)((NotS)(f), (NotS)(g))).

The functor ReleaseS yields a binary operation on ModelSP (the infinite sequ-
ences of S) and is defined by the condition (Def. 57).

(Def. 57) Let f , g be sets. Suppose f ∈ ModelSP (the infinite sequences of S)
and g ∈ ModelSP (the infinite sequences of S). Then (ReleaseS)(f, g) =
(NotS)((UntilS)((NotS)(f), (NotS)(g))).

Let S be a non empty set and let B1 be a non empty subset of ModelSP (the
infinite sequences of S). The functor ModelLTL(S,B1) yields an LTL-model
structure and is defined as follows:

(Def. 58) ModelLTL(S,B1) = 〈ModelSP (the infinite sequences of S), B1,AndS,
∨S ,NotS,NextS,UntilS,ReleaseS〉.
In the sequel B1 denotes a non empty subset of ModelSP (the infinite sequ-

ences of S), t denotes an element of the infinite sequences of S, and f , g denote
assignations of ModelLTL(S,B1).
Let S be a non empty set, let B1 be a non empty subset of ModelSP (the

infinite sequences of S), let t be an element of the infinite sequences of S, and
let f be an assignation of ModelLTL(S,B1). The predicate t |= f is defined by:

(Def. 59) (Fid(f, the infinite sequences of S))(t) = true.

Let S be a non empty set, let B1 be a non empty subset of ModelSP (the
infinite sequences of S), let t be an element of the infinite sequences of S, and
let f be an assignation of ModelLTL(S,B1). We introduce t 6|= f as an antonym
of t |= f.
The following propositions are true:

(56) f ∨ g = ¬(¬f ∧ ¬g) and f R g = ¬(¬f U ¬g).
(57) t |= ¬f iff t 6|= f.
(58) t |= f ∧ g iff t |= f and t |= g.
(59) t |= X f iff Shift(t, 1) |= f.
(60) t |= f U g if and only if there exists a natural number m such that
for every natural number j such that j < m holds Shift(t, j) |= f and
Shift(t,m) |= g.

(61) t |= f ∨ g iff t |= f or t |= g.
(62) t |= f R g if and only if for every natural number m such that for
every natural number j such that j < m holds Shift(t, j) |= ¬f holds
Shift(t,m) |= g.

model checking. Part II 243

The non empty set AtomicFamily is defined as follows:

(Def. 60) AtomicFamily = 2atomicLTL .

Let a, t be sets. The functor AtomicFunc(a, t) yielding an element of Boolean
is defined as follows:

(Def. 61) AtomicFunc(a, t) =


true, if t ∈ the infinite sequences of AtomicFamily
and a ∈ (CastSeq(t,AtomicFamily))(0),

false, otherwise.
Let a be a set. The functor AtomicAsgn a yields an element of ModelSP (the

infinite sequences of AtomicFamily) and is defined by:

(Def. 62) For every set t such that t ∈ the infinite sequences of AtomicFamily
holds (Fid(AtomicAsgn a, the infinite sequences of AtomicFamily))(t) =
AtomicFunc(a, t).

The non empty subset AtomicBasicAsgn of ModelSP (the infinite sequences
of AtomicFamily) is defined by:

(Def. 63) AtomicBasicAsgn = {x ∈ ModelSP (the infinite sequences of
AtomicFamily):

∨
a : set x = AtomicAsgn a}.

The function AtomicKai from atomicLTL into the basic assignations
of ModelLTL(AtomicFamily,AtomicBasicAsgn) is defined as follows:

(Def. 64) For every set a such that a ∈ atomicLTL holds (AtomicKai)(a) =
AtomicAsgn a.

Let r be an element of the infinite sequences of AtomicFamily and let H be
an LTL-formula. The predicate r |= H is defined by:

(Def. 65) r |= Evaluate(H,AtomicKai).
Let r be an element of the infinite sequences of AtomicFamily and let H be

an LTL-formula. We introduce r 6|= H as an antonym of r |= H.
Let r be an element of the infinite sequences of AtomicFamily and let W be

a subset of WFFLTL. The predicate r |=W is defined by:
(Def. 66) For every LTL-formula H such that H ∈W holds r |= H.

Let r be an element of the infinite sequences of AtomicFamily and let W be
a subset of WFFLTL. We introduce r 6|=W as an antonym of r |=W.
Let W be a subset of WFFLTL. The functor X W yielding a subset of

WFFLTL is defined as follows:

(Def. 67) X W = {x;x ranges over LTL-formulae:
∨
u : LTL-formula (u ∈ W ∧ x =

X u)}.
In the sequel r denotes an element of the infinite sequences of AtomicFamily.
We now state a number of propositions:

(63) If H is atomic, then r |= H iff H ∈ (CastSeq(r,AtomicFamily))(0).
(64) r |= ¬H iff r 6|= H.
(65) r |= H1 ∧H2 iff r |= H1 and r |= H2.

244 kazuhisa ishida

(66) r |= H1 ∨H2 iff r |= H1 or r |= H2.
(67) r |= X H iff Shift(r, 1) |= H.
(68) r |= H1 U H2 if and only if there exists a natural number m such that
for every natural number j such that j < m holds Shift(r, j) |= H1 and
Shift(r,m) |= H2.

(69) r |= H1 R H2 if and only if for every natural number m such that for
every natural number j such that j < m holds Shift(r, j) |= ¬H1 holds
Shift(r,m) |= H2.

(70) r |= ¬(H1 ∨H2) iff r |= ¬H1 ∧ ¬H2.
(71) r |= ¬(H1 ∧H2) iff r |= ¬H1 ∨ ¬H2.
(72) r |= H1 RH2 iff r |= ¬(¬H1 U ¬H2).
(73) r 6|= ¬H iff r |= H.
(74) r |= X ¬H iff r |= ¬X H.
(75) r |= H1 U H2 iff r |= H2 ∨H1 ∧ X (H1 U H2).
(76) r |= H1 RH2 iff r |= H1 ∧H2 ∨H2 ∧ X (H1 RH2).
In the sequel W is a subset of WFFLTL.
One can prove the following propositions:

(77) r |= X W iff Shift(r, 1) |=W.
(78)(i) If H is atomic, then H is not negative and H is not conjunctive and
H is not disjunctive and H does not have next operator and H does not
have until operator and H does not have release operator,

(ii) if H is negative, then H is not atomic and H is not conjunctive and
H is not disjunctive and H does not have next operator and H does not
have until operator and H does not have release operator,

(iii) if H is conjunctive, then H is not atomic and H is not negative and
H is not disjunctive and H does not have next operator and H does not
have until operator and H does not have release operator,

(iv) if H is disjunctive, then H is not atomic and H is not negative and
H is not conjunctive and H does not have next operator and H does not
have until operator and H does not have release operator,

(v) if H has next operator, then H is not atomic and H is not negative
and H is not conjunctive and H is not disjunctive and H does not have
until operator and H does not have release operator,

(vi) if H has until operator, then H is not atomic and H is not negative
and H is not conjunctive and H is not disjunctive and H does not have
next operator and H does not have release operator, and

(vii) if H has release operator, then H is not atomic and H is not negative
and H is not conjunctive and H is not disjunctive and H does not have
next operator and H does not have until operator.

(79) For every element t of the infinite sequences of S holds Shift(t, 0) = t.

model checking. Part II 245

(80) For every element s1 of the infinite sequences of S holds
Shift(Shift(s1, k), n) = Shift(s1, n+ k).

(81) For every sequence s1 of S holds CastSeq(CastSeq s1, S) = s1.

(82) For every element s1 of the infinite sequences of S holds
CastSeqCastSeq(s1, S) = s1.

(83) If H, ¬H ∈W, then r 6|=W.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics,
1(1):131–145, 1990.

[3] Grzegorz Bancerek. Models and satisfiability. Formalized Mathematics, 1(1):191–199,
1990.

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[9] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
[10] Kazuhisa Ishida. Model checking. Part I. Formalized Mathematics, 14(4):171–186, 2006.
[11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[12] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737,
1990.

Received April 21, 2008

