FORMALIZED MATHEMATICS
vol. 16, No. 3, Pages 231-245, 2008
DOI: 10.2478/v10037-008-0028-9

Model Checking. Part 11

Kazuhisa Ishida
Shinshu University
Nagano, Japan

Summary. This article provides the definition of linear temporal logic
(LTL) and its properties relevant to model checking based on [9]. Mizar formali-
zation of LTL language and satisfiability is based on [2, 3].

MML identifier: MODELC_2, version: 7.9.01 4.101.1015

The articles [8], [11], [6], [5], [7], [1], [4], [12], and [10] provide the notation and
terminology for this paper.
Let x be a set. The functor CastNat z yielding a natural number is defined
by:
(Def. 1) CastNatz — { x, if x is 2.1 natural number,
0, otherwise.
Let W7 be a set. A sequence of W7 is a function from N into Wj.
For simplicity, we adopt the following rules: k, n denote natural numbers, a
denotes a set, D, S denote non empty sets, and p, ¢ denote finite sequences of
elements of N.

Let us consider n. The functor atom. n yielding a finite sequence of elements
of N is defined as follows:

(Def. 2) atom.n = (6 + n).

Let us consider p. The functor —p yielding a finite sequence of elements of
N is defined by:

(Def. 3) —p=(0) " p.

Let us consider ¢g. The functor p A g yields a finite sequence of elements of N and
is defined by:

(Def. 4) pAg=(1)"p ¢
The functor p V g yielding a finite sequence of elements of N is defined by:

(© 2008 University of Bialystok
231 ISSN 1426-2630(p), 1898-9934(c)

http://ftp.mizar.org/
http://fm.mizar.org/miz/modelc_2.miz

232 KAZUHISA ISHIDA

(Def. 5) pVg=1(2)"p~ ¢
Let us consider p. The functor X p yielding a finite sequence of elements of
N is defined as follows:

(Def. 6) Xp=(3) " p.
Let us consider ¢. The functor p U q yielding a finite sequence of elements of N
is defined by:

(Def. 7) pUq=(4)"p"q.
The functor p R q yields a finite sequence of elements of N and is defined as
follows:

(Def. 8) pRqg=(5)"p ¢
The non empty set WFF 1, is defined by the conditions (Def. 9).

(Def. 9) For every a such that a € WEFFpp, holds a is a finite sequence of elements
of N and for every n holds atom.n € WFF 1, and for every p such that
p € WFEF 1, holds =p € WFF |1, and for all p, ¢ such that p, ¢ € WFF 1,
holds p A ¢ € WFFy 1, and for all p, ¢ such that p, ¢ € WFFyy, holds
pV q € WFFrr1, and for every p such that p € WFFy, holds X p €
WEFF;, and for all p, ¢ such that p, ¢ € WFF 11, holds pU ¢ € WFF 1y,
and for all p, ¢ such that p, ¢ € WFFy 1, holds p R ¢ € WFF1, and for
every D such that for every a such that a € D holds «a is a finite sequence
of elements of N and for every n holds atom.n € D and for every p such
that p € D holds =p € D and for all p, ¢ such that p, ¢ € D holds pAq € D
and for all p, ¢ such that p, ¢ € D holds pVgq € D and for every p such that
p € D holds X p € D and for all p, ¢ such that p, g € D holds pUd g € D

and for all p, ¢ such that p, ¢ € D holds p R ¢ € D holds WFF, C D.
Let I be a finite sequence of elements of N. We say that I; is LTL-formula-

like if and only if:

(Def. 10) I is an element of WFFr,.

Let us observe that there exists a finite sequence of elements of N which is
LTL-formula-like.

An LTL-formula is a LTL-formula-like finite sequence of elements of N.

Next we state the proposition

(1) ais an LTL-formula iff a € WFFypr.

In the sequel F', F1, G, H, Hy, Hs denote LTL-formulae.

Let us consider n. Observe that atom.n is LTL-formula-like.

Let us consider H. Note that —=H is LTL-formula-like and x H is LTL-
formula-like. Let us consider G. One can check the following observations:

* H A G is LTL-formula-like,
* H VG is LTL-formula-like,
* HU G is LTL-formula-like, and

MODEL CHECKING. PART II

* H R G is LTL-formula-like.
Let us consider H. We say that H is atomic if and only if:
(Def. 11) There exists n such that H = atom. n.
We say that H is negative if and only if:
(Def. 12) There exists H; such that H = —Hj.
We say that H is conjunctive if and only if:
(Def. 13) There exist F, G such that H = F' A G.
We say that H is disjunctive if and only if:
(Def. 14) There exist F', G such that H = F'V G.
We say that H has next operator if and only if:
(Def. 15) There exists Hy such that H = X Hj.
We say that H has until operator if and only if:
(Def. 16) There exist F', G such that H = FU G.
We say that H has release operator if and only if:
(Def. 17) There exist F', G such that H = F R G.
Next we state two propositions:

(2) H is either atomic, or negative, or conjunctive, or disjunctive, or has
next operator, or until operator, or release operator.

(3) 1<lenH.
Let us consider H. Let us assume that H is either negative or has next
operator. The functor Arg(H) yields an LTL-formula and is defined by:
(Def. 18)(1) —Arg(H) = H if H is negative,
(i) X Arg(H) = H, otherwise.
Let us consider H. Let us assume that H is either conjunctive or disjunctive
or has until operator or release operator. The functor LeftArg(H) yielding an
LTL-formula is defined as follows:

(Def. 19)(i) There exists H; such that LeftArg(H) A Hy = H if H is conjunctive,
(ii) there exists Hy such that LeftArg(H)V H; = H if H is disjunctive,
(iii) there exists H; such that LeftArg(H)U H; = H if H has until operator,
(iv) there exists H; such that LeftArg(H) R Hy = H, otherwise.

The functor RightArg(H) yields an LTL-formula and is defined by:

(Def. 20)(i) There exists H; such that Hy ARightArg(H) = H if H is conjunctive,
(ii) there exists Hy such that H; V RightArg(H) = H if H is disjunctive,
(iii) there exists H; such that Hy U RightArg(H) = H if H has until ope-
rator,
(iv) there exists H; such that H; R RightArg(H) = H, otherwise.
The following propositions are true:

(4) If H is negative, then H = = Arg(H).

233

234 KAZUHISA ISHIDA

(5) If H has next operator, then H = X Arg(H).
(6) If H is conjunctive, then H = LeftArg(H) A RightArg(H).
(7) If H is disjunctive, then H = LeftArg(H) V RightArg(H).
(8) If H has until operator, then H = LeftArg(H) U RightArg(H).
(9) If H has release operator, then H = LeftArg(H) R RightArg(H).
(10) If H is either negative or has next operator, then len H = 1+len Arg(H)

and len Arg(H) < len H.

(11) Suppose H is either conjunctive or disjunctive or has until operator or
release operator. Then len H = 1+len LeftArg(H) +len RightArg(H) and
len LeftArg(H) < len H and len RightArg(H) < len H.

Let us consider H, F. We say that H is an immediate constituent of F' if
and only if:

(Def. 21) F = —H or F = X H or there exists H; such that ' = H A H; or
F=HiANHorF=HVHiorF=HiVHorF=HUH,or F=H UH
or F=HRHyor F=H RH.

We now state a number of propositions:
(12) For all F, G holds (—=F)(1) =0 and (FAG)(1) =1and (FVG)(1) =2

and (X F)(1) =3 and (FUG)(1) =4 and (FRG)(1) = 5.

H is an immediate constituent of —F iff H = F.
H is an immediate constituent of X F' iff H = F.
H is an immediate constituent of FAG iff H =F or H =G.
H is an immediate constituent of VG ifft H = F or H = G.
H is an immediate constituent of FU G iff H = F or H = G.
H is an immediate constituent of FRG iff H=F or H = G.
If F'is atomic, then H is not an immediate constituent of F'.
If F is negative, then H is an immediate constituent of F' iff H = Arg(F).
If F' has next operator, then H is an immediate constituent of F' iff
H = Arg(F).
(22) If F is conjunctive, then H is an immediate constituent of F iff H =
LeftArg(F) or H = RightArg(F).
(23) If F is disjunctive, then H is an immediate constituent of F' iff H =
LeftArg(F') or H = RightArg(F).
(24) If F has until operator, then H is an immediate constituent of F' iff
H = LeftArg(F') or H = RightArg(F).
(25) If F has release operator, then H is an immediate constituent of F' iff
H = LeftArg(F') or H = RightArg(F).

(26) Suppose H is an immediate constituent of F. Then F is either negative,

or conjunctive, or disjunctive, or has next operator, or until operator, or

S e
S O = W

e N e N N e N e N e N T
N = =
S © oo

N e e e e e S S N

[\]
—_

MODEL CHECKING. PART II 235

release operator.

In the sequel L denotes a finite sequence.
Let us consider H, F'. We say that H is a subformula of F' if and only if the
condition (Def. 22) is satisfied.
(Def. 22) There exist n, L such that
(i) 1<mn,
(i) lenL =n,
(iii) L(1)=H,
) L(n)=F, and
) for every k such that 1 < k < n there exist Hy, F} such that L(k) = Hy
and L(k + 1) = Fy and H; is an immediate constituent of Fj.

(iv

(v

We now state the proposition
(27) H is a subformula of H.
Let us consider H, F. We say that H is a proper subformula of F' if and
only if:
(Def. 23) H is a subformula of F' and H # F.
One can prove the following propositions:
(28) If H is an immediate constituent of F', then len H < len F.

(29) If H is an immediate constituent of F', then H is a proper subformula
of F.

(30) If G is either negative or has next operator, then Arg(G) is a subformula
of G.

(31) Suppose G is either conjunctive or disjunctive or has wuntil operator or
release operator. Then LeftArg(G) is a subformula of G' and RightArg(G)
is a subformula of G.

(32) If H is a proper subformula of F', then len H < len F.

(33) If H is a proper subformula of F', then there exists G which is an imme-
diate constituent of F'.
(34) If F is a proper subformula of G and G is a proper subformula of H,
then F'is a proper subformula of H.
(35) If F is a subformula of G and G is a subformula of H, then F is a
subformula of H.
(36) If G is a subformula of H and H is a subformula of G, then G = H.
(37) 1If G is either negative or has nezt operator and F' is a proper subformula
of G, then F' is a subformula of Arg(G).
(38) Suppose that
(i) @G is either conjunctive or disjunctive or has until operator or release
operator, and
(ii) F is a proper subformula of G.

236 KAZUHISA ISHIDA

Then F is a subformula of LeftArg(G) or a subformula of RightArg(G).
(39) If F is a proper subformula of =H, then F'is a subformula of H.
(40) If F is a proper subformula of X H, then F' is a subformula of H.

(41) If F is a proper subformula of G A H, then F is a subformula of G or a
subformula of H.

(42) If F is a proper subformula of G vV H, then F is a subformula of G or a
subformula of H.

(43) If F is a proper subformula of GU H, then F is a subformula of G or a
subformula of H.

(44) If F is a proper subformula of G R H, then F' is a subformula of G or a
subformula of H.

Let us consider H. The functor Subformulae H yields a set and is defined
by:
(Def. 24) a € Subformulae H iff there exists F' such that F' = a and F' is a subfor-
mula of H.

One can prove the following proposition
(45) G € Subformulae H iff G is a subformula of H.

Let us consider H. Observe that Subformulae H is non empty.
Next we state two propositions:

(46) If F' is a subformula of H, then Subformulae F' C Subformulae H.
(47) If a is a subset of Subformulae H, then a is a subset of WFFp,.

In this article we present several logical schemes. The scheme LTLInd con-
cerns a unary predicate P, and states that:
For every H holds P[H]
provided the following conditions are satisfied:
e For every H such that H is atomic holds P[H],
e For every H such that H is either negative or has next operator
and P[Arg(H)] holds P[H], and
o Let given H. Suppose H is either conjunctive or disjunctive or
has wntil operator or release operator and P[LeftArg(H)] and
P[RightArg(H)]. Then P[H].
The scheme LTLComplnd concerns a unary predicate P, and states that:
For every H holds P[H]
provided the following condition is met:
e For every H such that for every F' such that F' is a proper sub-
formula of H holds P[F] holds P[H].
Let x be a set. The functor Castyrr, x yielding an LTL-formula is defined by:

z, if x € WFFr1,,

(Def. 25) Castyry x = { atom. 0, otherwise.

MODEL CHECKING. PART II 237

We introduce LTL-model structures which are systems

(assignations, basic assignations, a conjunction, a disjunction, a negation,
a next-operation, an until-operation, a release-operation),
where the assignations constitute a non empty set, the basic assignations con-
stitute a non empty subset of the assignations, the conjunction is a binary ope-
ration on the assignations, the disjunction is a binary operation on the assigna-
tions, the negation is a unary operation on the assignations, the next-operation
is a unary operation on the assignations, the until-operation is a binary opera-
tion on the assignations, and the release-operation is a binary operation on the
assignations.

Let V be an LTL-model structure. An assignation of V is an element of the
assignations of V.

The subset atomicypr, of WEF 1y, is defined by:

(Def. 26) atomicpyr, = {x;x ranges over LTL-formulae: z is atomic}.

Let V be an LTL-model structure, let Ky be a function from atomicyrpry,
into the basic assignations of V', and let f be a function from WFFyy, into
the assignations of V. We say that f is an evaluation for K if and only if the
condition (Def. 27) is satisfied.

(Def. 27) Let H be an LTL-formula. Then
(i) if H is atomic, then f(H) = K;(H),
(ii) if H is negative, then f(H) = (the negation of V')(f(Arg(H))),
(iii) if H is conjunctive, then f(H) = (the conjunction of V) (f(LeftArg(H)),

f(RightArg(H))),

(iv) if H is disjunctive, then f(H) = (the disjunction of V')(f(LeftArg(H)),
f(RightArg(H))),

(v) if H has next operator, then f(H) = (the next-operation of
V)(f(Arg(H))),

(vi) if H has wuntil operator, then f(H) = (the until-operation of
V) (f(LeftArg(H)), f(RightArg(H))), and

(vii) if H has release operator, then f(H) = (the release-operation of

V)(f(LeftArg(H)), f(RightArg(H))).

Let V be an LTL-model structure, let K7 be a function from atomicyyy,
into the basic assignations of V, let f be a function from WFFypr, into the
assignations of V, and let n be a natural number. We say that f is a n-pre-
evaluation for K if and only if the condition (Def. 28) is satisfied.

(Def. 28) Let H be an LTL-formula such that len H < n. Then
(i) if H is atomic, then f(H) = K;(H),
(ii) if H is negative, then f(H) = (the negation of V')(f(Arg(H))),
(iii) if H is conjunctive, then f(H) = (the conjunction of V')(f(LeftArg(H)),
f(RightArg(H))),

238 KAZUHISA ISHIDA

(iv) if H is disjunctive, then f(H) = (the disjunction of V')(f(LeftArg(H)),

f(RightArg(H))),

(v) if H has next operator, then f(H) = (the next-operation of
V)(f(Arg(H))),

(vi) if H has wuntil operator, then f(H) = (the until-operation of
V) (f(LeftArg(H)), f(RightArg(H))), and

(vii) if H has release operator, then f(H) = (the release-operation of

V)(f (LeftArg(H)), f(RightArg(H))).

Let V be an LTL-model structure, let K7 be a function from atomicyry,
into the basic assignations of V, let f, h be functions from WFFyry, into the
assignations of V', let n be a natural number, and let H be an LTL-formula.
The functor GraftEval(V, K1, f, h,n, H) yields a set and is defined by:

(Def. 29) GraftEval(V, K1, f,h,n, H)
f(H), if len H >n+1,
Ki(H), if len H =n+1 and H is atomic,
(the negation of V))(h(Arg(H))), if len H =n + 1 and H is negative,
(the conjunction of V')(h(LeftArg(H)), h(RightArg(H))),
if len H=n+1 and H is conjunctive,
(the disjunction of V') (h(LeftArg(H)), h(RightArg(H))),
if len H =n+1 and H is disjunctive,
= ¢ (the next-operation of V)(h(Arg(H))),
if len H =n+ 1 and H has next operator,
(the until-operation of V')(h(LeftArg(H)), h(RightArg(H))),
if len H =n+ 1 and H has until operator,
(the release-operation of V)(h(LeftArg(H)), h(RightArg(H))),
if len H =n+ 1 and H has release operator,
h(H), if len H <n +1,
(), otherwise.

We adopt the following convention: V' denotes an LTL-model structure, K3
denotes a function from atomicry, into the basic assignations of V', and f, fi,
fo denote functions from WFFr, into the assignations of V.

Let V be an LTL-model structure, let K7 be a function from atomicyyy,
into the basic assignations of V', and let n be a natural number. The functor
EvalSet(V, K1,n) yields a non empty set and is defined by:

(Def. 30) EvalSet(V, K1,n) = {h;h ranges over functions from WFFry, into the
assignations of V: h is a n-pre-evaluation for K }.

Let V be an LTL-model structure, let vp be an element of the assignations
of V', and let x be a set. The functor CastEval(V, x, vg) yielding a function from
WEFF7L, into the assignations of V is defined by:

z, if x € (the assignations of V)WFFrre,

(Def. 31) - CastEval(V,z,v0) = { WEFEF 1, — v, otherwise.

MODEL CHECKING. PART II

Let V be an LTL-model structure and let K be a function from atomicyy,
into the basic assignations of V. The functor EvalFamily(V, K1) yielding a non
empty set is defined by the condition (Def. 32).

(Def. 32) Let p be a set. Then p € EvalFamily(V, K;) if and only if the following

conditions are satisfied:
(1) pe 9(the assignations of V)WFFLTL7 and

(ii) there exists a natural number n such that p = EvalSet(V, K1, n).
We now state two propositions:
(48) There exists f which is an evaluation for Kj.
(49) If f; is an evaluation for K7 and f; is an evaluation for K7, then f; = fo.

Let V be an LTL-model structure, let Ky be a function from atomicypy,
into the basic assignations of V', and let H be an LTL-formula. The functor
Evaluate(H, K1) yields an assignation of V' and is defined by:

(Def. 33) There exists a function f from WFFypy, into the assignations of V' such
that f is an evaluation for K; and Evaluate(H, K1) = f(H).

Let V be an LTL-model structure and let f be an assignation of V. The
functor —f yielding an assignation of V is defined by:

(Def. 34) —f = (the negation of V')(f).

Let V be an LTL-model structure and let f, g be assignations of V. The
functor f A g yields an assignation of V' and is defined by:

(Def. 35) f A g = (the conjunction of V)(f, g).
The functor f V g yields an assignation of V' and is defined as follows:
(Def. 36) fV g = (the disjunction of V)(f, g).

Let V be an LTL-model structure and let f be an assignation of V. The
functor X f yielding an assignation of V' is defined by:

(Def. 37) X f = (the next-operation of V')(f).

Let V be an LTL-model structure and let f, g be assignations of V. The
functor f U g yielding an assignation of V is defined by:

(Def. 38) fU g = (the until-operation of V)(f, g).
The functor f R g yields an assignation of V' and is defined as follows:

(Def. 39) f R g = (the release-operation of V')(f, g).

One can prove the following propositions:
50) Evaluate(—H, K1) = - Evaluate(H, K7).
51) Evaluate(H; A Ha, K1) = Evaluate(H;, K1) A Evaluate(Ha, K7).
52) Evaluate(H; V Hy, K1) = Evaluate(H;, K7) V Evaluate(Hos, K1).
53) Evaluate(x H, K;) = X Evaluate(H, K1).
54) Evaluate(H; U Hy, K1) = Evaluate(Hy, K1) U Evaluate(Ha, K1).
(

(
(
(
(
(
(55) Evaluate(H; R Ho, K1) = Evaluate(H1, K1) R Evaluate(Ha, K7).

~— — — ~—— ~— —

240 KAZUHISA ISHIDA

Let S be a non empty set. The infinite sequences of S yielding a non empty
set is defined by:

(Def. 40) The infinite sequences of S = SN.

Let S be a non empty set and let ¢ be a sequence of S. The functor CastSeqt
yields an element of the infinite sequences of .S and is defined by:

(Def. 41) CastSeqt = t.
Let S be a non empty set and let ¢ be a set. Let us assume that ¢ is an element

of the infinite sequences of S. The functor CastSeq(t,.S) yielding a sequence of
S is defined by:

(Def. 42) CastSeq(t, S) = t.

Let S be a non empty set, let ¢ be a sequence of S, and let k£ be a natural
number. The functor Shift(¢, k) yielding a sequence of S is defined as follows:

(Def. 43) For every natural number n holds (Shift(¢, k))(n) = t(n + k).

Let S be a non empty set, let ¢ be a set, and let k£ be a natural number. The
functor Shift(¢, k, S) yielding an element of the infinite sequences of S is defined
as follows:

(Def. 44) Shift(¢, k, S) = CastSeq Shift(CastSeq(t, S), k).
Let S be a non empty set, let t be an element of the infinite sequences of

S, and let k be a natural number. The functor Shift(¢, k) yielding an element of
the infinite sequences of S is defined as follows:

(Def. 45) Shift(¢, k) = Shift(¢, k, S).
Let S be a non empty set and let f be a set. The functor Notg(f,.S) yields an

element of ModelSP (the infinite sequences of S) and is defined by the condition
(Def. 46).

(Def. 46) Let t be a set. Suppose t € the infinite sequences of S. Then
— Castboolean(Fid(f, the infinite sequences of 5))(t) = true if and only
if (Fid(Noto(f, S), the infinite sequences of S))(t) = true.

Let S be a non empty set. The functor Not S yielding a unary operation on
ModelSP (the infinite sequences of S) is defined by:

(Def. 47) For every set f such that f € ModelSP (the infinite sequences of S) holds
(Not 8)() = Noto(f,).

Let S be a non empty set, let f be a function from the infinite sequences of
S into Boolean, and let t be a set. The functor Next-univ(¢, f) yields an element
of Boolean and is defined as follows:
true, if t is an element of the infinite sequences
(Def. 48) Next-univ(t, f) = of S and f(Shift(¢,1,5)) = true,
false, otherwise.
Let S be a non empty set and let f be a set. The functor Nexto(f,.S) yielding
an element of ModelSP (the infinite sequences of) is defined by the condition

MODEL CHECKING. PART II 241

(Def. 49).

(Def. 49) Let ¢t be a set. Suppose t € the infinite sequences of S. Then
Next-univ(¢, Fid(f, the infinite sequences of S)) = true if and only if
(Fid(Nexto(f,.S), the infinite sequences of 5))(t) = true.

Let S be a non empty set. The functor Next S yields a unary operation on
ModelSP (the infinite sequences of S) and is defined as follows:

(Def. 50) For every set f such that f € ModelSP (the infinite sequences of S) holds
(Next S)(f) = Nexto(f, S).

Let S be a non empty set and let f, g be sets. The functor Andy(f,g,S)
yields an element of ModelSP (the infinite sequences of S) and is defined by the
condition (Def. 51).

(Def. 51) Let ¢t be a set. Suppose t € the infinite sequences of S. Then
Castboolean(Fid(f, the infinite sequences of S))(¢) ACastboolean(Fid(g, the
infinite sequences of 5))(t) = true if and only if (Fid(Ando(f, g, S), the in-
finite sequences of 5))(t) = true.

Let S be a non empty set. The functor And .S yielding a binary operation
on ModelSP (the infinite sequences of S) is defined by the condition (Def. 52).

(Def. 52) Let f, g be sets. Suppose f € ModelSP (the infinite sequences of S)
and g € ModelSP (the infinite sequences of S). Then (AndS)(f, g) =
Andy(f,g,9).

Let S be a non empty set, let f, g be functions from the infinite sequences
of S into Boolean, and let ¢ be a set. The functor Until-univ(¢, f, g,S) yields an
element of Boolean and is defined as follows:

true, if ¢ is an element of the infinite sequences

of S and there exists a natural number m
such that for every natural number j
such that j < m holds f(Shift(¢, j,5)) =
true and g(Shift(t,m,S)) = true,

false, otherwise.

Let S be a non empty set and let f, g be sets. The functor Untily(f,g,.S)
yields an element of ModelSP (the infinite sequences of S) and is defined by the

condition (Def. 54).

(Def. 54) Let t be a set. Suppose t € the infinite sequences of S. Then
Until-univ(¢, Fid(f, the infinite sequences of 5), Fid(g, the infinite sequen-
ces of §), S) = true if and only if (Fid(Untilg(f, g, S), the infinite sequences
of S))(t) = true.

Let S be a non empty set. The functor Until S yielding a binary operation
on ModelSP (the infinite sequences of S) is defined by the condition (Def. 55).

(Def. 55) Let f, g be sets. Suppose f € ModelSP (the infinite sequences of S)
and g € ModelSP (the infinite sequences of S). Then (Until S)(f, g) =

(Def. 53) Until-univ(t, f,g,S) =

242 KAZUHISA ISHIDA

Untﬂ(](faQ) S)

Let S be a non empty set. The functor Vg yields a binary operation on
ModelSP (the infinite sequences of S) and is defined by the condition (Def. 56).

(Def. 56) Let f, g be sets. Suppose f € ModelSP (the infinite sequences of
S) and g € ModelSP (the infinite sequences of S). Then Vg(f, g) =
(Not S)((And S)((Not S)(f), (Not 5)(g)))-
The functor Release S yields a binary operation on ModelSP (the infinite sequ-
ences of S) and is defined by the condition (Def. 57).

(Def. 57) Let f, g be sets. Suppose f € ModelSP (the infinite sequences of S)
and g € ModelSP (the infinite sequences of S). Then (Release S)(f, g) =
(Not S)((Until S)((Not S)(f), (Not S)(g))).
Let S be a non empty set and let By be a non empty subset of ModelSP (the
infinite sequences of S). The functor Model (S, B1) yields an LTL-model
structure and is defined as follows:

(Def. 58) Modely (S, B1) = (ModelSP (the infinite sequences of S), By, And S,
Vs, Not S, Next S, Until S, Release S).

In the sequel By denotes a non empty subset of ModelSP (the infinite sequ-
ences of S), t denotes an element of the infinite sequences of S, and f, g denote
assignations of Modelyry, (S, By).

Let S be a non empty set, let By be a non empty subset of ModelSP (the
infinite sequences of S), let ¢t be an element of the infinite sequences of S, and
let f be an assignation of Modelyry, (S, B1). The predicate t |= f is defined by:

(Def. 59) (Fid(f, the infinite sequences of S))(t) = true.

Let S be a non empty set, let B; be a non empty subset of ModelSP (the
infinite sequences of S), let ¢ be an element of the infinite sequences of S, and
let f be an assignation of Modelprr, (.S, B1). We introduce t = f as an antonym
oft = f.

The following propositions are true:
56) fVg=-(=fA—g)and fRg=—(=fU=g).

(

(57) tE-fifft £ f.

(58) tEfAgifftE fandt=g.

(59) t = x fiff Shift(¢,1) = f.

(60) t = fU g if and only if there exists a natural number m such that

for every natural number j such that j < m holds Shift(¢,7) = f and
Shift(t,m) = g.

(61) t=fvgifft=fortk=g.

(62) t = f R g if and only if for every natural number m such that for
every natural number j such that j < m holds Shift(¢,j) = —f holds
Shift(t,m) = g.

MODEL CHECKING. PART II 243

The non empty set AtomicFamily is defined as follows:
(Def. 60) AtomicFamily = 23tomicrrr,

Let a, t be sets. The functor AtomicFunc(a,t) yielding an element of Boolean
is defined as follows:
true, if ¢ € the infinite sequences of AtomicFamily
(Def. 61) AtomicFunc(a,t) = and a € (CastSeq(t, AtomicFamily))(0),
false, otherwise.
Let a be a set. The functor AtomicAsgn a yields an element of ModelSP (the
infinite sequences of AtomicFamily) and is defined by:

(Def. 62) For every set ¢ such that ¢ € the infinite sequences of AtomicFamily
holds (Fid(AtomicAsgn a,the infinite sequences of AtomicFamily))(t) =
AtomicFunc(a,t).

The non empty subset AtomicBasicAsgn of ModelSP (the infinite sequences
of AtomicFamily) is defined by:

(Def. 63) AtomicBasicAsgn = {x € ModelSP (the infinite sequences of
AtomicFamily): \/, ..t ¢ = AtomicAsgna}.

The function AtomicKai from atomicyy, into the basic assignations
of Modely,(AtomicFamily, AtomicBasicAsgn) is defined as follows:

(Def. 64) For every set a such that a € atomicppy holds (AtomicKai)(a) =
AtomicAsgn a.

Let r be an element of the infinite sequences of AtomicFamily and let H be
an LTL-formula. The predicate r = H is defined by:

(Def. 65) r = Evaluate(H, AtomicKai).
Let r be an element of the infinite sequences of AtomicFamily and let H be
an LTL-formula. We introduce r = H as an antonym of r = H.
Let r be an element of the infinite sequences of AtomicFamily and let W be
a subset of WFFypr,. The predicate r = W is defined by:
(Def. 66) For every LTL-formula H such that H € W holds r = H.
Let r be an element of the infinite sequences of AtomicFamily and let W be
a subset of WFF 1. We introduce r [W as an antonym of r = W.
Let W be a subset of WFFypr,. The functor ¥ W yielding a subset of
WFFiy, is defined as follows:
(Def. 67) X W = {x;z ranges over LTL-formulae: V.17 formula (¥ € W A = =
Xu)}.
In the sequel r denotes an element of the infinite sequences of AtomicFamily.
We now state a number of propositions:
(63) If H is atomic, then r = H iff H € (CastSeq(r, AtomicFamily))(0).
(64) rE=-Hiff r = H.
(65) r = Hi ANHyiff r = Hy and r = H».

244 KAZUHISA ISHIDA

(66) r = HyV Hyiff r = Hy or r = Ha.

(67) r = x H iff Shift(r, 1) = H.

(68) r = HiU Hy if and only if there exists a natural number m such that
for every natural number j such that j < m holds Shift(r,j) = H; and
Shift(r, m) E Hs.

(69) r = Hi R H» if and only if for every natural number m such that for
every natural number j such that j < m holds Shift(r,j) = —H; holds
Shift(r, m) = Ha.

() r ’:_|(H1\/H2) iff r ':—|H1/\—|H2.

() r ’:_‘(Hl/\HQ) iff r ':—|H1\/—|H2.

() r ': H1 RHQ iff r): —\(—\Hlu—'HQ).

(73) r#E-Hiff r = H.

(74) rEx-Hiff r=-XH.

() T |:H1UHQ iff r 'ZHQ\/Hl/\X(le/[HQ).

(76) T l: Hi R Hy iff r): Hi NHyV Hy /\X(HlRHQ).

In the sequel W is a subset of WFF11,.

One can prove the following propositions:

(77) r = x W iff Shift(r, 1) = W.

(78)(1) If H is atomic, then H is not negative and H is not conjunctive and
H is not disjunctive and H does not have next operator and H does not
have until operator and H does not have release operator,

(ii) if H is negative, then H is not atomic and H is not conjunctive and
H is not disjunctive and H does not have next operator and H does not
have until operator and H does not have release operator,

(iii) if H is conjunctive, then H is not atomic and H is not negative and
H is not disjunctive and H does not have next operator and H does not
have until operator and H does not have release operator,

(iv) if H is disjunctive, then H is not atomic and H is not negative and
H is not conjunctive and H does not have next operator and H does not
have until operator and H does not have release operator,

(v) if H has next operator, then H is not atomic and H is not negative
and H is not conjunctive and H is not disjunctive and H does not have
until operator and H does not have release operator,

(vi) if H has until operator, then H is not atomic and H is not negative
and H is not conjunctive and H is not disjunctive and H does not have
next operator and H does not have release operator, and

(vii) if H has release operator, then H is not atomic and H is not negative
and H is not conjunctive and H is not disjunctive and H does not have
next operator and H does not have until operator.

(79) For every element ¢ of the infinite sequences of S holds Shift(¢,0) = t.

MODEL CHECKING. PART II 245

(80) For every element s; of the infinite sequences of S holds
Shift(Shift(s1, k), n) = Shift(s1,n + k).
(81) For every sequence s; of S holds CastSeq(CastSeq sy, S) = s1.

(82) For every element s; of the infinite sequences of S holds
CastSeq CastSeq(s1, S) = s1.
(83) If H, -H € W, then r = W.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[2] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics,
1(1):131-145, 1990.

[3] Grzegorz Bancerek. Models and satisfiability. Formalized Mathematics, 1(1):191-199,

1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czestaw Byliniski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.
Czestaw Byliniski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.
Czestaw Byliniski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,

]

I
1990.

| E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

| Kazuhisa Ishida. Model checking. Part I. Formalized Mathematics, 14(4):171-186, 2006.

| Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

] Edmund Woronowicz. Many—argument relations. Formalized Mathematics, 1(4):733-737,
1990.

Received April 21, 2008

