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Poland

Summary. This paper is a continuation of [12]. First some definitions
needed to formulate Cantor’s theorem on complete spaces and show several facts
about them are introduced. Next section contains the proof of Cantor’s theorem
and some properties of complete spaces resulting from this theorem. Moreover,
countable compact spaces and proofs of auxiliary facts about them is defined.
I also show the important condition that every metric space is compact if and
only if it is countably compact. Then I prove that every metric space is compact
if and only if it is a complete and totally bounded space. I also introduce the
definition of the metric space with the well metric. This article is based on [13].
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The articles [29], [3], [11], [10], [18], [26], [1], [7], [16], [22], [24], [23], [9], [8],
[27], [5], [20], [12], [28], [6], [17], [4], [19], [14], [21], [2], [15], and [25] provide the
terminology and notation for this paper.

1. Preliminaries

We follow the rules: i, n, m denote natural numbers, x, X, Y denote sets,
and r denotes a real number.
Let M be a non empty metric structure and let S be a sequence of subsets

of M . We say that S is bounded if and only if:

(Def. 1) For every i holds S(i) is bounded.

Let M be a non empty reflexive metric structure. Observe that there exists
a sequence of subsets of M which is bounded and non-empty.
Let M be a reflexive non empty metric structure and let S be a sequence

of subsets of M . The functor ∅S yielding a sequence of real numbers is defined
by:
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(Def. 2) For every i holds (∅S)(i) = ∅S(i).
We now state several propositions:

(1) Let M be a reflexive non empty metric structure and S be a bounded
sequence of subsets of M . Then ∅S is lower bounded.

(2) Let M be a reflexive non empty metric structure and S be a bounded
sequence of subsets of M . If S is descending, then ∅S is upper bounded
and ∅S is non-increasing.

(3) Let M be a reflexive non empty metric structure and S be a bounded
sequence of subsets of M . If S is ascending, then ∅S is non-decreasing.

(4) Let M be a non empty reflexive metric structure and S be a bounded
sequence of subsets of M . Suppose S is descending and lim∅S = 0. Let
F be a sequence of M . If for every i holds F (i) ∈ S(i), then F is Cauchy.

(5) LetM be a reflexive symmetric triangle non empty metric structure and
p be a point of M . If 0 ≤ r, then ∅Ball(p, r) ≤ 2 · r.
Let M be a metric structure and let U be a subset of M . We say that U is

open if and only if:

(Def. 3) U ∈ the open set family of M .
Let M be a metric structure and let A be a subset of M . We say that A is

closed if and only if:

(Def. 4) Ac is open.

Let M be a metric structure. Note that there exists a subset of M which is
open and empty and there exists a subset of M which is closed and empty.
Let M be a non empty metric structure. One can verify that there exists a

subset of M which is open and non empty and there exists a subset of M which
is closed and non empty.
One can prove the following proposition

(6) Let M be a metric structure, A be a subset of M , and A′ be a subset of
Mtop such that A′ = A. Then
(i) A is open iff A′ is open, and
(ii) A is closed iff A′ is closed.

Let T be a topological structure and let S be a sequence of subsets of T . We
say that S is open if and only if:

(Def. 5) For every i holds S(i) is open.

We say that S is closed if and only if:

(Def. 6) For every i holds S(i) is closed.

Let T be a topological space. Observe that there exists a sequence of subsets
of T which is open and there exists a sequence of subsets of T which is closed.
Let T be a non empty topological space. One can verify that there exists

a sequence of subsets of T which is open and non-empty and there exists a
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sequence of subsets of T which is closed and non-empty.
Let M be a metric structure and let S be a sequence of subsets of M . We

say that S is open if and only if:

(Def. 7) For every i holds S(i) is open.

We say that S is closed if and only if:

(Def. 8) For every i holds S(i) is closed.

Let M be a non empty metric space. Note that there exists a sequence of
subsets ofM which is non-empty, bounded, and open and there exists a sequence
of subsets of M which is non-empty, bounded, and closed.
The following propositions are true:

(7) Let M be a metric structure, S be a sequence of subsets of M , and S′

be a sequence of subsets of Mtop such that S′ = S. Then
(i) S is open iff S′ is open, and
(ii) S is closed iff S′ is closed.

(8) LetM be a reflexive symmetric triangle non empty metric structure and
S, C1 be subsets of M . Suppose S is bounded. Let S′ be a subset of Mtop.
If S = S′ and C1 = S′, then C1 is bounded and ∅S = ∅C1.

2. Cantor’s Theorem on Complete Spaces

The following propositions are true:

(9) Let M be a non empty metric space and C be a sequence of M . Then
there exists a non-empty closed sequence S of subsets of M such that
(i) S is descending,
(ii) if C is Cauchy, then S is bounded and lim∅S = 0, and
(iii) for every i there exists a subset U of Mtop such that U = {C(j); j
ranges over elements of N: j ≥ i} and S(i) = U.

(10) Let M be a non empty metric space. Then M is complete if and only
if for every non-empty bounded closed sequence S of subsets of M such
that S is descending and lim∅S = 0 holds

⋂
S is non empty.

(11) Let T be a non empty topological space and S be a non-empty sequence
of subsets of T . Suppose S is descending. Let F be a family of subsets of
T . If F = rngS, then F is centered.

(12) Let M be a non empty metric structure, S be a sequence of subsets of
M , and F be a family of subsets of Mtop such that F = rngS. Then
(i) if S is open, then F is open, and
(ii) if S is closed, then F is closed.

(13) Let T be a non empty topological space, F be a family of subsets of T ,
and S be a sequence of subsets of T . Suppose rngS ⊆ F. Then there exists
a sequence R of subsets of T such that
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(i) R is descending,
(ii) if F is centered, then R is non-empty,
(iii) if F is open, then R is open,
(iv) if F is closed, then R is closed, and
(v) for every i holds R(i) =

⋂
{S(j); j ranges over elements of N: j ≤ i}.

(14) Let M be a non empty metric space. Then M is complete if and only if
for every family F of subsets of Mtop such that F is closed and centered
and for every real number r such that r > 0 there exists a subset A of M
such that A ∈ F and A is bounded and ∅A < r holds

⋂
F is non empty.

(15) Let M be a non empty metric space, A be a non empty subset of M ,
B be a subset of M , and B′ be a subset of M�A. If B = B′, then B′ is
bounded iff B is bounded.

(16) Let M be a non empty metric space, A be a non empty subset of M ,
B be a subset of M , and B′ be a subset of M�A. If B = B′ and B is
bounded, then ∅B′ ≤ ∅B.

(17) For every non empty metric space M and for every non empty subset A
of M holds every sequence of M�A is a sequence of M .

(18) Let M be a non empty metric space, A be a non empty subset of M , S
be a sequence of M�A, and S′ be a sequence of M . If S = S′, then S′ is
Cauchy iff S is Cauchy.

(19) LetM be a non empty metric space. SupposeM is complete. Let A be a
non empty subset of M and A′ be a subset of Mtop. If A = A′, then M�A
is complete iff A′ is closed.

3. Countable Compact Spaces

Let T be a topological structure. We say that T is countably-compact if and
only if the condition (Def. 9) is satisfied.

(Def. 9) Let F be a family of subsets of T . Suppose F is a cover of T , open, and
countable. Then there exists a family G of subsets of T such that G ⊆ F
and G is a cover of T and finite.

We now state a number of propositions:

(20) For every topological structure T such that T is compact holds T is
countably-compact.

(21) Let T be a non empty topological space. Then T is countably-compact
if and only if for every family F of subsets of T such that F is centered,
closed, and countable holds

⋂
F 6= ∅.

(22) Let T be a non empty topological space. Then T is countably-compact
if and only if for every non-empty closed sequence S of subsets of T such
that S is descending holds

⋂
S 6= ∅.
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(23) Let T be a non empty topological space, F be a family of subsets of T ,
and S be a sequence of subsets of T . Suppose rngS ⊆ F and S is non-
empty. Then there exists a non-empty closed sequence R of subsets of T
such that
(i) R is descending,
(ii) if F is locally finite and S is one-to-one, then

⋂
R = ∅, and

(iii) for every i there exists a family S1 of subsets of T such that R(i) =
⋃
S1

and S1 = {S(j); j ranges over elements of N: j ≥ i}.
(24) For every function F such that domF is infinite and rngF is finite there
exists x such that x ∈ rngF and F−1({x}) is infinite.

(25) Let X be a non empty set and F be a sequence of subsets of X. Suppose
F is descending. Let S be a function from N into X. If for every n holds
S(n) ∈ F (n), then if rngS is finite, then

⋂
F is non empty.

(26) Let T be a non empty topological space. Then T is countably-compact if
and only if for every family F of subsets of T such that F is locally finite
and has non empty elements holds F is finite.

(27) Let T be a non empty topological space. Then T is countably-compact
if and only if for every family F of subsets of T such that F is locally
finite and for every subset A of T such that A ∈ F holds A = 1 holds F
is finite.

(28) Let T be a T1 non empty topological space. Then T is countably-compact
if and only if for every subset A of T such that A is infinite holds DerA
is non empty.

(29) Let T be a T1 non empty topological space. Then T is countably-compact
if and only if for every subset A of T such that A is infinite and countable
holds DerA is non empty.

The scheme Th39 deals with a non empty set A and a binary predicate P,
and states that:

There exists a subset A of A such that
(i) for all elements x, y of A such that x, y ∈ A and x 6= y
holds P[x, y], and
(ii) for every element x of A there exists an element y of A
such that y ∈ A and not P[x, y]

provided the following conditions are satisfied:
• For all elements x, y of A holds P[x, y] iff P[y, x], and
• For every element x of A holds not P[x, x].
We now state several propositions:

(30) Let M be a reflexive symmetric non empty metric structure and r be a
real number. Suppose r > 0. Then there exists a subset A of M such that
(i) for all points p, q of M such that p 6= q and p, q ∈ A holds ρ(p, q) ≥ r,
and
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(ii) for every point p of M there exists a point q of M such that q ∈ A and
p ∈ Ball(q, r).

(31) Let M be a reflexive symmetric triangle non empty metric structure.
Then M is totally bounded if and only if for every real number r and for
every subset A of M such that r > 0 and for all points p, q of M such
that p 6= q and p, q ∈ A holds ρ(p, q) ≥ r holds A is finite.

(32) Let M be a reflexive symmetric triangle non empty metric structure. If
Mtop is countably-compact, then M is totally bounded.

(33) For every non empty metric space M such that M is totally bounded
holds Mtop is second-countable.

(34) Let T be a non empty topological space. Suppose T is second-countable.
Let F be a family of subsets of T . Suppose F is a cover of T and open.
Then there exists a family G of subsets of T such that G ⊆ F and G is a
cover of T and countable.

4. The Main Theorem

The following three propositions are true:

(35) For every non empty metric space M holds Mtop is compact iff Mtop is
countably-compact.

(36) Let X be a set and F be a family of subsets of X. Suppose F is finite.
Let A be a subset of X. Suppose A is infinite and A ⊆

⋃
F. Then there

exists a subset Y of X such that Y ∈ F and Y ∩A is infinite.
(37) For every non empty metric space M holds Mtop is compact iff M is
totally bounded and complete.

5. Well Spaces

Let T be a set, let S be a function from N into T , and let i be a natural
number. Then S(i) is an element of T .
The following proposition is true

(38) Let M be a metric structure, a be a point of M , and given x. Then
x ∈ X × ((the carrier of M) \ {a}) ∪ {〈〈X, a〉〉} if and only if there exists a
set y and there exists a point b of M such that x = 〈〈y, b〉〉 but y ∈ X and
b 6= a or y = X and b = a.
Let M be a metric structure, let a be a point of M , and let X be a set. The

functor well-dist(a,X) yields a function from (X × ((the carrier of M) \ {a}) ∪
{〈〈X, a〉〉}) × (X × ((the carrier of M) \ {a}) ∪ {〈〈X, a〉〉}) into R and is defined
by the condition (Def. 10).



complete spaces 41

(Def. 10) Let x, y be elements of X × ((the carrier of M) \ {a}) ∪ {〈〈X, a〉〉}, x1,
y1 be sets, and x2, y2 be points of M such that x = 〈〈x1, x2〉〉 and y = 〈〈y1,
y2〉〉. Then
(i) if x1 = y1, then (well-dist(a,X))(x, y) = ρ(x2, y2), and
(ii) if x1 6= y1, then (well-dist(a,X))(x, y) = ρ(x2, a) + ρ(a, y2).
We now state the proposition

(39) Let M be a metric structure, a be a point of M , and X be a non empty
set. Then
(i) if well-dist(a,X) is reflexive, then M is reflexive,
(ii) if well-dist(a,X) is symmetric, then M is symmetric,
(iii) if well-dist(a,X) is triangle and reflexive, then M is triangle, and
(iv) if well-dist(a,X) is discernible and reflexive, then M is discernible.

Let M be a metric structure, let a be a point of M , and let X be a set.
The functor WellSpace(a,X) yields a strict metric structure and is defined as
follows:

(Def. 11) WellSpace(a,X) = 〈X × ((the carrier of M) \ {a}) ∪ {〈〈X,
a〉〉},well-dist(a,X)〉.
Let M be a metric structure, let a be a point of M , and let X be a set. One

can check that WellSpace(a,X) is non empty.
Let M be a reflexive metric structure, let a be a point of M , and let X be

a set. Note that WellSpace(a,X) is reflexive.
Let M be a symmetric metric structure, let a be a point of M , and let X be

a set. Observe that WellSpace(a,X) is symmetric.
Let M be a symmetric triangle reflexive metric structure, let a be a point of

M , and let X be a set. One can verify that WellSpace(a,X) is triangle.
Let M be a metric space, let a be a point of M , and let X be a set. Observe

that WellSpace(a,X) is discernible.
We now state several propositions:

(40) Let M be a triangle reflexive non empty metric structure, a be a point
of M , and X be a non empty set. If WellSpace(a,X) is complete, then M
is complete.

(41) Let M be a symmetric triangle reflexive non empty metric structure, a
be a point of M , and S be a sequence of WellSpace(a,X). Suppose S is
Cauchy. Then
(i) for every point X1 of WellSpace(a,X) such that X1 = 〈〈X, a〉〉 and for
every r such that r > 0 there exists n such that for every m such that
m ≥ n holds ρ(S(m), X1) < r, or

(ii) there exist n, Y such that for every m such that m ≥ n there exists a
point p of M such that S(m) = 〈〈Y, p〉〉.

(42) LetM be a symmetric triangle reflexive non empty metric structure and
a be a point of M . If M is complete, then WellSpace(a,X) is complete.
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(43) Let M be a symmetric triangle reflexive non empty metric structure.
Suppose M is complete. Let a be a point of M . Given a point b of M such
that ρ(a, b) 6= 0. Let X be an infinite set. Then
(i) WellSpace(a,X) is complete, and
(ii) there exists a non-empty bounded sequence S of subsets of
WellSpace(a,X) such that S is closed and descending and

⋂
S is emp-

ty.

(44) There exists a non empty metric space M such that
(i) M is complete, and
(ii) there exists a non-empty bounded sequence S of subsets of M such
that S is closed and descending and

⋂
S is empty.
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