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Summary. For each set X, the power set of X forms a vector space over
the field Z2 (the two-element field {0, 1} with addition and multiplication done
modulo 2): vector addition is disjoint union, and scalar multiplication is defined
by the two equations (1 · x := x, 0 · x := ∅ for subsets x of X). See [10], Exercise
2.K, for more information.
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The articles [8], [19], [20], [13], [21], [5], [14], [7], [6], [4], [1], [9], [2], [3], [16], [18],
[11], [17], [15], and [12] provide the notation and terminology for this paper.

1. Preliminaries: Induction on Sequences of Elements of a
1-sorted Structure

Let S be a 1-sorted structure. The functor εS yielding a finite sequence of
elements of S is defined as follows:

(Def. 1) εS = ε(ΩS).

In the sequel S denotes a 1-sorted structure, i denotes an element of N, p
denotes a finite sequence, and X denotes a set.
We now state two propositions:

(1) For every finite sequence p of elements of S such that i ∈ dom p holds
p(i) ∈ S.

(2) If for every natural number i such that i ∈ dom p holds p(i) ∈ S, then p
is a finite sequence of elements of S.
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The scheme IndSeqS deals with a 1-sorted structure A and a unary predicate
P, and states that:

For every finite sequence p of elements of A holds P[p]
provided the parameters have the following properties:
• P[εA], and
• For every finite sequence p of elements of A and for every element
x of A such that P[p] holds P[p a 〈x〉].

2. The Two-element Field Z2

The field Z2 is defined by:

(Def. 2) Z2 = ZR2 .
One can prove the following propositions:

(3) ΩZ2 = {0, 1}.
(4) For every element a of Z2 holds a = 0 or a = 1.

(5) 0Z2 = 0.

(6) 1Z2 = 1.

(7) 1Z2 + 1Z2 = 0Z2 .

(8) For every element x of Z2 holds x = 0Z2 iff x 6= 1Z2 .

3. Set-theoretical Preliminaries

Let X, x be sets. The functor X@x yields an element of Z2 and is defined
as follows:

(Def. 3) X@x =

{
1Z2 , if x ∈ X,
0Z2 , otherwise.

Next we state several propositions:

(9) For all sets X, x holds X@x = 1Z2 iff x ∈ X.
(10) For all sets X, x holds X@x = 0Z2 iff x /∈ X.
(11) For all sets X, x holds X@x 6= 0Z2 iff X@x = 1Z2 .
(12) For all sets X, x, y holds X@x = X@y iff x ∈ X is equivalent to y ∈ X.
(13) For all sets X, Y , x holds X@x = Y @x iff x ∈ X is equivalent to x ∈ Y.
(14) For every set x holds ∅@x = 0Z2 .
(15) For every set X and for all subsets u, v of X and for every element x of
X holds (u−. v)@x = u@x+ v@x.

(16) For all sets X, Y holds X = Y iff for every set x holds X@x = Y @x.
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4. The Boolean Vector Space of Subsets of a Set

Let X be a set, let a be an element of Z2, and let c be a subset of X. The
functor a · c yields a subset of X and is defined as follows:
(Def. 4)(i) a · c = c if a = 1Z2 ,

(ii) a · c = ∅X if a = 0Z2 .
Let X be a set. The functor ΣX yields a binary operation on 2X and is

defined by:

(Def. 5) For all subsets c, d of X holds ΣX(c, d) = c−. d.
We now state four propositions:

(17) For every element a of Z2 and for all subsets c, d of X holds a · (c−. d) =
(a · c)−. (a · d).

(18) For all elements a, b of Z2 and for every subset c of X holds (a+ b) · c =
(a · c)−. (b · c).

(19) For every subset c of X holds 1Z2 · c = c.
(20) For all elements a, b of Z2 and for every subset c of X holds a · (b · c) =
a · b · c.
Let X be a set. The functor ·X yielding a function from (the carrier of Z2)×

2X into 2X is defined by:

(Def. 6) For every element a of Z2 and for every subset c ofX holds ·X(a, c) = a·c.
Let X be a set. The functor BX yielding a non empty vector space structure

over Z2 is defined as follows:

(Def. 7) BX = 〈2X ,ΣX , ∅X , ·X〉.
The following propositions are true:

(21) BX is Abelian.

(22) BX is add-associative.

(23) BX is right zeroed.

(24) BX is right complementable.

(25) For every element a of Z2 and for all elements x, y of BX holds a·(x+y) =
a · x+ a · y.

(26) For all elements a, b of Z2 and for every element x of BX holds (a+b)·x =
a · x+ b · x.

(27) For all elements a, b of Z2 and for every element x of BX holds (a·b)·x =
a · (b · x).

(28) For every element x of BX holds 1Z2 · x = x.
(29) BX is vector space-like.

Let X be a set. One can verify that BX is vector space-like, Abelian, right
complementable, add-associative, and right zeroed.
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5. The Linear Independence and Linear Span of Singleton Subsets

Let X be a set. We say that X is singleton if and only if:

(Def. 8) X is non empty and trivial.

One can check that every set which is singleton is also non empty and trivial
and every set which is non empty and trivial is also singleton.
Let X be a set and let f be a subset of X. Let us observe that f is singleton

if and only if:

(Def. 9) There exists a set x such that x ∈ X and f = {x}.
Let X be a set. The functor SX is defined as follows:

(Def. 10) SX = {f ⊆ X: f is singleton}.
Let X be a set. Then SX is a subset of BX .
Let X be a non empty set. One can check that SX is non empty.
The following proposition is true

(30) For every non empty set X and for every subset f of X such that f is
an element of SX holds f is singleton.

Let F be a field, let V be a vector space over F , let l be a linear combination
of V , and let x be an element of V . Then l(x) is an element of F .
Let X be a non empty set, let s be a finite sequence of elements of BX , and

let x be an element of X. The functor s@x yielding a finite sequence of elements
of Z2 is defined as follows:

(Def. 11) len(s@x) = len s and for every natural number j such that 1 ≤ j ≤ len s
holds (s@x)(j) = s(j)@x.

The following propositions are true:

(31) For every non empty setX and for every element x ofX holds ε(BX)
@x =

ε(Z2).

(32) For every set X and for all elements u, v of BX and for every element x
of X holds (u+ v)@x = u@x+ v@x.

(33) Let X be a non empty set, s be a finite sequence of elements of BX ,
f be an element of BX , and x be an element of X. Then (s a 〈f〉)@x =
(s@x) a 〈f@x〉.

(34) Let X be a non empty set, s be a finite sequence of elements of BX , and
x be an element of X. Then (

∑
s)@x =

∑
s@x.

(35) Let X be a non empty set, l be a linear combination of BX , and x be
an element of BX . If x ∈ the support of l, then l(x) = 1Z2 .

(36) S∅ = ∅.
(37) SX is linearly independent.

(38) For every element f of BX such that there exists a set x such that x ∈ X
and f = {x} holds f ∈ SX .
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(39) For every finite set X and for every subset A of X there exists a linear
combination l of SX such that

∑
l = A.

(40) For every finite set X holds Lin(SX) = BX .

(41) For every finite set X holds SX is a basis of BX .

Let X be a finite set. Observe that SX is finite.
Let X be a finite set. One can verify that BX is finite dimensional.
Next we state three propositions:

(42) SX = X .

(43) ΩBX = 2
X .

(44) dim(B∅) = 0.
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