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Summary. In this article, we prove a series of differentiation identities [3]

involving the secant and cosecant functions and specific combinations of special

functions including trigonometric, exponential and logarithmic functions.
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The papers [11], [13], [1], [15], [2], [8], [9], [16], [5], [12], [10], [4], [6], [7], and [14]

provide the notation and terminology for this paper.

In this paper x denotes a real number and Z denotes an open subset of R.

One can prove the following propositions:

(1) Suppose Z ⊆ dom((the function tan) ·(the function cot)). Then

(i) (the function tan) ·(the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan) ·(the function

cot))′�Z (x) = 1
(the function cos)((the function cot)(x))2 · − 1

(the function sin)(x)2 .

(2) Suppose Z ⊆ dom((the function tan) ·(the function tan)). Then

(i) (the function tan) ·(the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan) ·(the function

tan))′�Z(x) = 1
(the function cos)((the function tan)(x))2 · 1

(the function cos)(x)2 .

(3) Suppose Z ⊆ dom((the function cot) ·(the function cot)). Then

(i) (the function cot) ·(the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cot) ·(the function

cot))′�Z (x) = 1
(the function sin)((the function cot)(x))2

· 1
(the function sin)(x)2

.

(4) Suppose Z ⊆ dom((the function cot) ·(the function tan)). Then

(i) (the function cot) ·(the function tan) is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds ((the function cot) ·(the function

tan))′�Z(x) = (− 1
(the function sin)((the function tan)(x))2

) · 1
(the function cos)(x)2

.

(5) Suppose Z ⊆ dom((the function tan)−(the function cot)). Then

(i) (the function tan)−(the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan)−(the function

cot))′�Z (x) = 1
(the function cos)(x)2

+ 1
(the function sin)(x)2

.

(6) Suppose Z ⊆ dom((the function tan)+(the function cot)). Then

(i) (the function tan)+(the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan)+(the function

cot))′�Z (x) = 1
(the function cos)(x)2

− 1
(the function sin)(x)2

.

(7)(i) (The function sin) ·(the function sin) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ·(the func-

tion sin))′�Z(x) = (the function cos)((the function sin)(x)) · (the function

cos)(x).

(8)(i) (The function sin) ·(the function cos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ·(the function

cos))′�Z (x) = −(the function cos)((the function cos)(x)) · (the function sin)

(x).

(9)(i) (The function cos) ·(the function sin) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ·(the function

sin))′�Z(x) = −(the function sin)((the function sin)(x)) · (the function cos)

(x).

(10)(i) (The function cos) ·(the function cos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ·(the func-

tion cos))′�Z (x) = (the function sin)((the function cos)(x)) · (the function

sin)(x).

(11) Suppose Z ⊆ dom((the function cos) (the function cot)). Then

(i) (the function cos) (the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) (the function

cot))′�Z (x) = −(the function cos)(x)− (the function cos)(x)
(the function sin)(x)2

.

(12) Suppose Z ⊆ dom((the function sin) (the function tan)). Then

(i) (the function sin) (the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) (the function

tan))′�Z(x) = (the function sin)(x) + (the function sin)(x)
(the function cos)(x)2

.

(13) Suppose Z ⊆ dom((the function sin) (the function cot)). Then

(i) (the function sin) (the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) (the

function cot))′�Z (x) = (the function cos)(x) · (the function cot)(x) −
1

(the function sin)(x) .
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(14) Suppose Z ⊆ dom((the function cos) (the function tan)). Then

(i) (the function cos) (the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) (the function

tan))′�Z(x) = − (the function sin)(x)2

(the function cos)(x) + 1
(the function cos)(x) .

(15) Suppose Z ⊆ dom((the function sin) (the function cos)). Then

(i) (the function sin) (the function cos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) (the function

cos))′�Z(x) = (the function cos)(x)2 − (the function sin)(x)2.

(16) Suppose Z ⊆ dom((the function ln) (the function sin)). Then

(i) (the function ln) (the function sin) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) (the function

sin))′�Z(x) = (the function sin)(x)
x +(the function ln)(x)·(the function cos)(x).

(17) Suppose Z ⊆ dom((the function ln) (the function cos)). Then

(i) (the function ln) (the function cos) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) (the function

cos))′�Z(x) = (the function cos)(x)
x −(the function ln)(x)·(the function sin)(x).

(18) Suppose Z ⊆ dom((the function ln) (the function exp)). Then

(i) (the function ln) (the function exp) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) (the func-

tion exp))′�Z(x) = (the function exp)(x)
x + (the function ln)(x) · (the function

exp)(x).

(19) Suppose Z ⊆ dom((the function ln) ·(the function ln)) and for every x

such that x ∈ Z holds x > 0. Then

(i) (the function ln) ·(the function ln) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) ·(the function

ln))′�Z(x) = 1
(the function ln)(x)·x .

(20) Suppose Z ⊆ dom((the function exp) ·(the function exp)). Then

(i) (the function exp) ·(the function exp) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ·(the func-

tion exp))′�Z(x) = (the function exp)((the function exp)(x)) · (the function

exp)(x).

(21) Suppose Z ⊆ dom((the function sin) ·(the function tan)). Then

(i) (the function sin) ·(the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ·(the function

tan))′�Z(x) = cos (the function tan)(x)
(the function cos)(x)2

.

(22) Suppose Z ⊆ dom((the function sin) ·(the function cot)). Then

(i) (the function sin) ·(the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ·(the function

cot))′�Z (x) = − cos (the function cot)(x)
(the function sin)(x)2

.
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(23) Suppose Z ⊆ dom((the function cos) ·(the function tan)). Then

(i) (the function cos) ·(the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ·(the function

tan))′�Z(x) = − sin (the function tan)(x)
(the function cos)(x)2

.

(24) Suppose Z ⊆ dom((the function cos) ·(the function cot)). Then

(i) (the function cos) ·(the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ·(the function

cot))′�Z (x) = sin (the function cot)(x)
(the function sin)(x)2

.

(25) Suppose Z ⊆ dom((the function sin) ((the function tan)+(the function

cot))). Then

(i) (the function sin) ((the function tan)+(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ((the func-

tion tan)+(the function cot)))′�Z (x) = (the function cos)(x) · ((the

function tan)(x) + (the function cot)(x)) + (the function sin)(x) ·
( 1

(the function cos)(x)2
− 1

(the function sin)(x)2
).

(26) Suppose Z ⊆ dom((the function cos) ((the function tan)+(the function

cot))). Then

(i) (the function cos) ((the function tan)+(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ((the function

tan)+(the function cot)))′�Z (x) = −(the function sin)(x) · ((the function

tan)(x) + (the function cot)(x))+(the function cos)(x)·( 1
(the function cos)(x)2

−
1

(the function sin)(x)2 ).

(27) Suppose Z ⊆ dom((the function sin) ((the function tan)−(the function

cot))). Then

(i) (the function sin) ((the function tan)−(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ((the func-

tion tan)−(the function cot)))′�Z (x) = (the function cos)(x) · ((the

function tan)(x) − (the function cot)(x)) + (the function sin)(x) ·
( 1

(the function cos)(x)2
+ 1

(the function sin)(x)2
).

(28) Suppose Z ⊆ dom((the function cos) ((the function tan)−(the function

cot))). Then

(i) (the function cos) ((the function tan)−(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ((the function

tan)−(the function cot)))′�Z (x) = −(the function sin)(x) · ((the function

tan)(x)− (the function cot)(x))+(the function cos)(x)·( 1
(the function cos)(x)2 +

1
(the function sin)(x)2

).
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(29) Suppose Z ⊆ dom((the function exp) ((the function tan)+(the function

cot))). Then

(i) (the function exp) ((the function tan)+(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ((the func-

tion tan)+(the function cot)))′�Z (x) = (the function exp)(x) · ((the

function tan)(x) + (the function cot)(x)) + (the function exp)(x) ·
( 1

(the function cos)(x)2
− 1

(the function sin)(x)2
).

(30) Suppose Z ⊆ dom((the function exp) ((the function tan)−(the function

cot))). Then

(i) (the function exp) ((the function tan)−(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ((the func-

tion tan)−(the function cot)))′�Z (x) = (the function exp)(x) · ((the

function tan)(x) − (the function cot)(x)) + (the function exp)(x) ·
( 1

(the function cos)(x)2
+ 1

(the function sin)(x)2
).

(31) Suppose Z ⊆ dom((the function sin) ((the function sin)+(the function

cos))). Then

(i) (the function sin) ((the function sin)+(the function cos)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ((the function

sin)+(the function cos)))′�Z (x) = ((the function cos)(x)2 +2 · (the function

sin)(x) · (the function cos)(x)) − (the function sin)(x)2.

(32) Suppose Z ⊆ dom((the function sin) ((the function sin)−(the function

cos))). Then

(i) (the function sin) ((the function sin)−(the function cos)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ((the function

sin)−(the function cos)))′�Z (x) = ((the function sin)(x)2 +2 · (the function

sin)(x) · (the function cos)(x)) − (the function cos)(x)2.

(33) Suppose Z ⊆ dom((the function cos) ((the function sin)−(the function

cos))). Then

(i) (the function cos) ((the function sin)−(the function cos)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ((the function

sin)−(the function cos)))′�Z (x) = ((the function cos)(x)2 +2 · (the function

sin)(x) · (the function cos)(x)) − (the function sin)(x)2.

(34) Suppose Z ⊆ dom((the function cos) ((the function sin)+(the function

cos))). Then

(i) (the function cos) ((the function sin)+(the function cos)) is differen-

tiable on Z, and
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(ii) for every x such that x ∈ Z holds ((the function cos) ((the function

sin)+(the function cos)))′�Z (x) = (the function cos)(x)2 − 2 · (the function

sin)(x) · (the function cos)(x) − (the function sin)(x)2.

(35) Suppose Z ⊆ dom((the function sin) ·((the function tan)+(the function

cot))). Then

(i) (the function sin) ·((the function tan)+(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ·((the func-

tion tan)+(the function cot)))′�Z (x) = (the function cos)((the function

tan)(x) + (the function cot)(x)) · ( 1
(the function cos)(x)2

− 1
(the function sin)(x)2

).

(36) Suppose Z ⊆ dom((the function sin) ·((the function tan)−(the function

cot))). Then

(i) (the function sin) ·((the function tan)−(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ·((the func-

tion tan)−(the function cot)))′�Z (x) = (the function cos)((the function

tan)(x)− (the function cot)(x)) · ( 1
(the function cos)(x)2

+ 1
(the function sin)(x)2

).

(37) Suppose Z ⊆ dom((the function cos) ·((the function tan)−(the function

cot))). Then

(i) (the function cos) ·((the function tan)−(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ·((the function

tan)−(the function cot)))′�Z (x) = −(the function sin)((the function

tan)(x)− (the function cot)(x)) · ( 1
(the function cos)(x)2

+ 1
(the function sin)(x)2

).

(38) Suppose Z ⊆ dom((the function cos) ·((the function tan)+(the function

cot))). Then

(i) (the function cos) ·((the function tan)+(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ·((the function

tan)+(the function cot)))′�Z (x) = −(the function sin)((the function tan)

(x) + (the function cot)(x)) · ( 1
(the function cos)(x)2

− 1
(the function sin)(x)2

).

(39) Suppose Z ⊆ dom((the function exp) ·((the function tan)+(the function

cot))). Then

(i) (the function exp) ·((the function tan)+(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ·((the func-

tion tan)+(the function cot)))′�Z (x) = (the function exp)((the function

tan)(x) + (the function cot)(x)) · ( 1
(the function cos)(x)2 − 1

(the function sin)(x)2 ).

(40) Suppose Z ⊆ dom((the function exp) ·((the function tan)−(the function

cot))). Then
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(i) (the function exp) ·((the function tan)−(the function cot)) is differen-

tiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ·((the func-

tion tan)−(the function cot)))′�Z (x) = (the function exp)((the function

tan)(x)− (the function cot)(x)) · ( 1
(the function cos)(x)2

+ 1
(the function sin)(x)2

).

(41) Suppose Z ⊆ dom( (the function tan)−(the function cot)
the function exp ). Then

(i) (the function tan)−(the function cot)
the function exp is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( (the function tan)−(the function cot)
the function exp )′�Z(x) =

(( 1
(the function cos)(x)2

+ 1
(the function sin)(x)2

)−(the function tan)(x))+(the function cot)(x)

(the function exp)(x) .

(42) Suppose Z ⊆ dom( (the function tan)+(the function cot)
the function exp ). Then

(i) (the function tan)+(the function cot)
the function exp is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( (the function tan)+(the function cot)
the function exp )′�Z(x) =

1
(the function cos)(x)2

− 1
(the function sin)(x)2

−(the function tan)(x)−(the function cot)(x)

(the function exp)(x) .

(43) Suppose Z ⊆ dom((the function sin) · sec). Then

(i) (the function sin) · sec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) · sec)′�Z(x) =
(the function cos)((sec)(x))·(the function sin)(x)

(the function cos)(x)2 .

(44) Suppose Z ⊆ dom((the function cos) · sec). Then

(i) (the function cos) · sec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) · sec)′�Z(x) =

− (the function sin)((sec)(x))·(the function sin)(x)
(the function cos)(x)2

.

(45) Suppose Z ⊆ dom((the function sin) · cosec). Then

(i) (the function sin) · cosec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) · cosec)′�Z(x) =

− (the function cos)((cosec)(x))·(the function cos)(x)
(the function sin)(x)2

.

(46) Suppose Z ⊆ dom((the function cos) · cosec). Then

(i) (the function cos) · cosec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) · cosec)′�Z(x) =
(the function sin)((cosec)(x))·(the function cos)(x)

(the function sin)(x)2 .
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