Several Differentiation Formulas of Special Functions. Part VI

Bo Li Qingdao University of Science and Technology China Pan Wang Qingdao University of Science and Technology China

Summary. In this article, we prove a series of differentiation identities [3] involving the secant and cosecant functions and specific combinations of special functions including trigonometric, exponential and logarithmic functions.

MML identifier: FDIFF_10, version: 7.8.05 4.89.993

The papers [11], [13], [1], [15], [2], [8], [9], [16], [5], [12], [10], [4], [6], [7], and [14] provide the notation and terminology for this paper.

In this paper x denotes a real number and Z denotes an open subset of \mathbb{R} . One can prove the following propositions:

- (1) Suppose $Z \subseteq \text{dom}((\text{the function tan}) \cdot (\text{the function cot}))$. Then
- (i) (the function \tan) (the function \cot) is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function tan) (the function \cot))'_{|Z}(x) = $\frac{1}{(\text{the function } \cos)((\text{the function } \cot)(x))^2} \cdot -\frac{1}{(\text{the function } \sin)(x)^2}$.
- (2) Suppose $Z \subseteq \text{dom}((\text{the function tan}) \cdot (\text{the function tan}))$. Then
- (i) (the function tan) \cdot (the function tan) is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function \tan) ·(the function \tan)) $_{\uparrow Z}(x) = \frac{1}{(\text{the function } \cos)((\text{the function } \tan)(x))^2} \cdot \frac{1}{(\text{the function } \cos)(x)^2}$.
- (3) Suppose $Z \subseteq \text{dom}((\text{the function cot}) \cdot (\text{the function cot}))$. Then
- (i) (the function \cot) (the function \cot) is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function \cot) ·(the function \cot)) $_{\uparrow Z}(x) = \frac{1}{(\text{the function } \sin)((\text{the function } \cot)(x))^2} \cdot \frac{1}{(\text{the function } \sin)(x)^2}$.
- (4) Suppose $Z \subseteq \text{dom}((\text{the function cot}) \cdot (\text{the function tan}))$. Then
- (i) (the function \cot) (the function \tan) is differentiable on Z, and

C 2007 University of Białystok ISSN 1426-2630

BO LI AND PAN WANG

- (ii) for every x such that $x \in Z$ holds ((the function cot) (the function $\tan))'_{|Z}(x) = \left(-\frac{1}{(\text{the function } \sin)((\text{the function } \tan)(x))^2}\right) \cdot \frac{1}{(\text{the function } \cos)(x)^2}.$
- (5) Suppose $Z \subseteq \text{dom}((\text{the function } \tan) (\text{the function } \cot))$. Then
- (i) (the function \tan)-(the function \cot) is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function \tan)-(the function \cot))'_{|Z}(x) = $\frac{1}{(\text{the function } \cos)(x)^2} + \frac{1}{(\text{the function } \sin)(x)^2}$.
- (6) Suppose $Z \subseteq \text{dom}((\text{the function } \tan)+(\text{the function } \cot))$. Then
- (i) (the function \tan)+(the function \cot) is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function \tan)+(the function \cot))'_{|Z}(x) = $\frac{1}{(\text{the function } \cos)(x)^2} \frac{1}{(\text{the function } \sin)(x)^2}$.
- (7)(i) (The function \sin) \cdot (the function \sin) is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function sin) \cdot (the function $\sin)$)'_{|Z}(x) = (the function \cos)((the function \sin)(x)) \cdot (the function \cos)(x).
- (8)(i) (The function sin) \cdot (the function cos) is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function sin) \cdot (the function \cos))'_{|Z}(x) = -(the function \cos)((the function \cos)(x)) \cdot (the function sin) (x).
- (9)(i) (The function \cos) (the function \sin) is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function \cos) (the function \sin))'_{|Z}(x) = -(the function \sin)((the function \sin)(x)) (the function \cos)(x).
- (10)(i) (The function \cos) (the function \cos) is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function \cos) ·(the function \cos))'_{[Z}(x) = (the function \sin)((the function \cos)(x)) · (the function \sin)(x).
- (11) Suppose $Z \subseteq \text{dom}((\text{the function cos}) \ (\text{the function cot}))$. Then
 - (i) (the function \cos) (the function \cot) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function cos) (the function \cot)) $_{\uparrow Z}(x) = -(\text{the function } \cos)(x) \frac{(\text{the function } \cos)(x)}{(\text{the function } \sin)(x)^2}$.
- (12) Suppose $Z \subseteq \text{dom}((\text{the function sin}) \text{ (the function tan}))$. Then
 - (i) (the function \sin) (the function \tan) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function sin) (the function $\tan)$)' $_{\uparrow Z}(x) = (\text{the function } \sin)(x) + \frac{(\text{the function } \sin)(x)}{(\text{the function } \cos)(x)^2}.$
- (13) Suppose $Z \subseteq \text{dom}((\text{the function sin}) \text{ (the function cot}))$. Then
 - (i) (the function sin) (the function \cot) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function sin) (the function \cot))'_{$\uparrow Z$}(x) = (the function \cos) $(x) \cdot$ (the function \cot) $(x) \frac{1}{(\text{the function sin})(x)}$.

244

- (14) Suppose $Z \subseteq \text{dom}((\text{the function cos}) \ (\text{the function tan}))$. Then
- (i) (the function \cos) (the function \tan) is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function cos) (the function $\tan))'_{\uparrow Z}(x) = -\frac{(\text{the function } \sin)(x)^2}{(\text{the function } \cos)(x)} + \frac{1}{(\text{the function } \cos)(x)}.$
- (15) Suppose $Z \subseteq \text{dom}((\text{the function sin}) \text{ (the function cos}))$. Then
 - (i) (the function \sin) (the function \cos) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function sin) (the function \cos))'_{|Z}(x) = (the function \cos)(x)² (the function \sin)(x)².
- (16) Suppose $Z \subseteq \text{dom}((\text{the function ln}) \text{ (the function sin)}).$ Then
 - (i) (the function \ln) (the function \sin) is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function ln) (the function $\sin)'_{|Z}(x) = \frac{(\text{the function } \sin)(x)}{x} + (\text{the function } \ln)(x) \cdot (\text{the function } \cos)(x).$
- (17) Suppose $Z \subseteq \operatorname{dom}((\text{the function ln}) \text{ (the function cos)})$. Then
- (i) (the function ln) (the function \cos) is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function ln) (the function \cos))'_{|Z}(x) = $\frac{(\text{the function } \cos)(x)}{x} (\text{the function } \ln)(x) \cdot (\text{the function } \sin)(x).$
- (18) Suppose $Z \subseteq \operatorname{dom}((\text{the function ln}) \text{ (the function exp}))$. Then
 - (i) (the function \ln) (the function exp) is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function ln) (the function \exp)))'_{|Z}(x) = $\frac{(\text{the function } \exp)(x)}{x}$ + (the function $\ln)(x) \cdot (\text{the function } \exp)(x)$.
- (19) Suppose $Z \subseteq \text{dom}((\text{the function ln}) \cdot (\text{the function ln}))$ and for every x such that $x \in Z$ holds x > 0. Then
 - (i) (the function \ln) (the function \ln) is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function ln) ·(the function ln))'_{$|Z|}(x) = \frac{1}{(\text{the function ln})(x) \cdot x}$.</sub>
- (20) Suppose $Z \subseteq \text{dom}((\text{the function exp}) \cdot (\text{the function exp}))$. Then
- (i) (the function exp) \cdot (the function exp) is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function exp)) \cdot (the function exp)) $'_{\uparrow Z}(x) =$ (the function exp)((the function exp)(x)) \cdot (the function exp)(x).
- (21) Suppose $Z \subseteq \text{dom}((\text{the function sin}) \cdot (\text{the function tan}))$. Then
 - (i) (the function \sin) (the function \tan) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function sin) \cdot (the function \tan))'_{|Z} $(x) = \frac{\cos (\text{the function } \tan)(x)}{(\text{the function } \cos)(x)^2}$.
- (22) Suppose $Z \subseteq \text{dom}((\text{the function sin}) \cdot (\text{the function cot}))$. Then
- (i) (the function sin) \cdot (the function cot) is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function sin) \cdot (the function \cot)) $_{\upharpoonright Z}(x) = -\frac{\cos(\text{the function } \cot)(x)}{(\text{the function } \sin)(x)^2}$.

- (23) Suppose $Z \subseteq \text{dom}((\text{the function cos}) \cdot (\text{the function tan}))$. Then
 - (i) (the function \cos) (the function \tan) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function \cos) (the function \tan))' $_{\uparrow Z}(x) = -\frac{\sin(\text{the function } \tan)(x)}{(\text{the function } \cos)(x)^2}$.
- (24) Suppose $Z \subseteq \text{dom}((\text{the function cos}) \cdot (\text{the function cot}))$. Then
 - (i) (the function \cos) (the function \cot) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function \cos) (the function \cot))'_{|Z} $(x) = \frac{\sin(\text{the function } \cot)(x)}{(\text{the function } \sin)(x)^2}$.
- (25) Suppose $Z \subseteq \text{dom}((\text{the function sin}) ((\text{the function tan})+(\text{the function cot})))$. Then
 - (i) (the function sin) ((the function \tan)+(the function \cot)) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function sin) ((the function tan)+(the function cot)))'_{$|Z|}(x) = (the function cos)(x) \cdot ((the$ $function tan)(x) + (the function cot)(x)) + (the function sin)(x) \cdot (\frac{1}{(the function cos)(x)^2} - \frac{1}{(the function sin)(x)^2}).$ </sub>
- (26) Suppose $Z \subseteq \text{dom}((\text{the function cos}) ((\text{the function tan})+(\text{the function cot})))$. Then
 - (i) (the function \cos) ((the function \tan)+(the function \cot)) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function cos) ((the function $\tan)+(\text{the function cot})))'_{\uparrow Z}(x) = -(\text{the function } \sin)(x) \cdot ((\text{the function } \tan)(x) + (\text{the function cot})(x)) + (\text{the function } \cos)(x) \cdot (\frac{1}{(\text{the function } \cos)(x)^2} \frac{1}{(\text{the function } \sin)(x)^2}).$
- (27) Suppose $Z \subseteq \text{dom}((\text{the function sin}) \ ((\text{the function tan})-(\text{the function cot})))$. Then
 - (i) (the function sin) ((the function \tan)-(the function \cot)) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function sin) ((the function $\tan)$ -(the function \cot)))' $_{\upharpoonright Z}(x) =$ (the function $\cos)(x) \cdot$ ((the function $\tan)(x)$ (the function $\cot)(x)$) + (the function $\sin)(x) \cdot (\frac{1}{(\text{the function } \cos)(x)^2} + \frac{1}{(\text{the function } \sin)(x)^2}).$
- (28) Suppose $Z \subseteq \text{dom}(\text{(the function cos)} ((\text{the function tan})-(\text{the function cot})))$. Then
 - (i) (the function \cos) ((the function \tan)-(the function \cot)) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function cos) ((the function $\tan)-(\text{the function cot})))'_{\uparrow Z}(x) = -(\text{the function } \sin)(x) \cdot ((\text{the function } \tan)(x) (\text{the function cot})(x)) + (\text{the function } \cos)(x) \cdot (\frac{1}{(\text{the function } \cos)(x)^2} + \frac{1}{(\text{the function } \sin)(x)^2}).$

246

- (29) Suppose $Z \subseteq \text{dom}((\text{the function exp}) \ ((\text{the function tan})+(\text{the function cot})))$. Then
 - (i) (the function exp) ((the function \tan)+(the function \cot)) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function exp) ((the function tan)+(the function cot)))'_{|Z}(x) = (the function exp)(x) · ((the function tan)(x) + (the function cot)(x)) + (the function exp)(x) · $(\frac{1}{(\text{the function cos})(x)^2} - \frac{1}{(\text{the function sin})(x)^2}).$
- (30) Suppose $Z \subseteq \text{dom}((\text{the function exp}) \ ((\text{the function tan})-(\text{the function cot})))$. Then
 - (i) (the function exp) ((the function \tan)-(the function \cot)) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function exp) ((the function tan)-(the function cot)))'_{|Z}(x) = (the function exp)(x) · ((the function tan)(x) - (the function cot)(x)) + (the function exp)(x) · $(\frac{1}{(\text{the function cos})(x)^2} + \frac{1}{(\text{the function sin})(x)^2}).$
- (31) Suppose $Z \subseteq \text{dom}(\text{(the function sin)} + (\text{the function sin}) + (\text{the function cos})))$. Then
 - (i) (the function \sin) ((the function \sin)+(the function \cos)) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function sin) ((the function $\sin)$ +(the function \cos)))'_{|Z}(x) = ((the function $\cos)(x)^2 + 2 \cdot (\text{the function } \sin)(x) \cdot (\text{the function } \cos)(x)) (\text{the function } \sin)(x)^2$.
- (32) Suppose $Z \subseteq \text{dom}((\text{the function sin}) \ ((\text{the function sin})-(\text{the function cos})))$. Then
 - (i) (the function \sin) ((the function \sin)-(the function \cos)) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function sin) ((the function $\sin)$)-(the function \cos)))'_{|Z}(x) = ((the function $\sin)(x)^2 + 2 \cdot (\text{the function } \sin)(x) \cdot (\text{the function } \cos)(x)) (\text{the function } \cos)(x)^2$.
- (33) Suppose $Z \subseteq \text{dom}(\text{(the function cos)} ((\text{the function sin})-(\text{the function cos})))$. Then
 - (i) (the function \cos) ((the function \sin)-(the function \cos)) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function cos) ((the function $\sin)$ -(the function \cos)))'_{|Z}(x) = ((the function $\cos)(x)^2 + 2 \cdot (\text{the function } \sin)(x) \cdot (\text{the function } \cos)(x)) (\text{the function } \sin)(x)^2$.
- (34) Suppose $Z \subseteq \text{dom}(\text{(the function cos)} ((\text{the function sin})+(\text{the function cos})))$. Then
 - (i) (the function \cos) ((the function \sin)+(the function \cos)) is differentiable on Z, and

BO LI AND PAN WANG

- (ii) for every x such that $x \in Z$ holds ((the function cos) ((the function $\sin)$ +(the function \cos)))'_{[Z}(x) = (the function \cos)(x)² 2 · (the function \sin)(x) · (the function \cos)(x) (the function \sin)(x)².
- (35) Suppose $Z \subseteq \text{dom}((\text{the function sin}) \cdot ((\text{the function tan}) + (\text{the function cot})))$. Then
 - (i) (the function \sin) \cdot ((the function \tan)+(the function \cot)) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function sin) \cdot ((the function tan)+(the function \cot)))'_{|Z}(x) = (the function \cos)((the function $\tan)(x)$ + (the function $\cot)(x)$) $\cdot (\frac{1}{(\text{the function } \cos)(x)^2} \frac{1}{(\text{the function } \sin)(x)^2})$.
- (36) Suppose $Z \subseteq \text{dom}((\text{the function sin}) \cdot ((\text{the function tan}) (\text{the function cot})))$. Then
 - (i) (the function \sin) \cdot ((the function \tan) (the function \cot)) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function sin) \cdot ((the function tan)-(the function \cot)))'_Z(x) = (the function \cos)((the function $\tan)(x) (\text{the function } \cot)(x)) \cdot (\frac{1}{(\text{the function } \cos)(x)^2} + \frac{1}{(\text{the function } \sin)(x)^2}).$
- (37) Suppose $Z \subseteq \text{dom}((\text{the function cos}) \cdot ((\text{the function tan}) (\text{the function cot})))$. Then
 - (i) (the function \cos) ·((the function \tan)-(the function \cot)) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function \cos) ·((the function $\tan)$ -(the function \cot)))'_{|Z}(x) = -(the function \sin)((the function $\tan)(x)$ (the function $\cot)(x)$) · $(\frac{1}{(\text{the function }\cos)(x)^2} + \frac{1}{(\text{the function }\sin)(x)^2})$.
- (38) Suppose $Z \subseteq \text{dom}((\text{the function cos}) \cdot ((\text{the function tan}) + (\text{the function cot})))$. Then
 - (i) (the function \cos) \cdot ((the function \tan)+(the function \cot)) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function cos) \cdot ((the function tan)+(the function cot)))'_{|Z}(x) = -(the function sin)((the function tan) (x) + (the function cot)(x)) $\cdot \left(\frac{1}{(\text{the function } \cos)(x)^2} - \frac{1}{(\text{the function } \sin)(x)^2}\right)$.
- (39) Suppose $Z \subseteq \text{dom}((\text{the function } \exp) \cdot ((\text{the function } \tan) + (\text{the function } \cot)))$. Then
 - (i) (the function exp) \cdot ((the function tan)+(the function cot)) is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function exp) \cdot ((the function tan)+(the function cot)))'_{|Z}(x) = (the function exp)((the function tan)(x) + (the function cot)(x)) $\cdot (\frac{1}{(\text{the function cos})(x)^2} \frac{1}{(\text{the function sin})(x)^2}).$
- (40) Suppose $Z \subseteq \text{dom}((\text{the function exp}) \cdot ((\text{the function tan}) (\text{the function cot})))$. Then

248

- (i) (the function exp) \cdot ((the function tan)-(the function cot)) is differentiable on Z, and
- for every x such that $x \in Z$ holds ((the function exp) \cdot ((the func-(ii) tion tan)-(the function cot)))'_Z(x) = (the function exp)((the function $\tan(x) - (\text{the function } \cot(x)) \cdot \left(\frac{1}{(\text{the function } \cos(x)^2)} + \frac{1}{(\text{the function } \sin(x)^2)}\right).$ (41) Suppose $Z \subseteq \operatorname{dom}(\frac{(\text{the function } \tan) - (\text{the function } \cot)}{\text{the function } \exp})$. Then (the function tan)-(the function cot)) is differentiable on Z, and (i) the function exp for every x such that $x \in Z$ holds $\left(\frac{\text{(the function tan)} - (\text{the function cot)}}{\text{the function exp}}\right)'_{\uparrow Z}(x) =$ (ii) $\frac{\left(\left(\frac{1}{(\text{the function } \cos)(x)^2} + \frac{1}{(\text{the function } \sin)(x)^2}\right) - (\text{the function } \tan)(x)\right) + (\text{the function } \cot)(x)}{(\text{the function } \exp)(x)}$ Suppose $Z \subseteq \operatorname{dom}(\frac{(\operatorname{the function } \operatorname{tan}) + (\operatorname{the function } \operatorname{cot})}{\operatorname{the function } \exp})$. Then $\frac{(\operatorname{the function } \operatorname{tan}) + (\operatorname{the function } \operatorname{cot})}{\operatorname{the function } \exp} \text{ is differentiable on } Z, \text{ and}$ (42)(i) the function exp for every x such that $x \in Z$ holds $\left(\frac{\text{(the function tan)} + (\text{the function cot)}}{\text{the function exp}}\right)'_{\upharpoonright Z}(x) = \frac{1}{(\text{the function cos})(x)^2 - \frac{1}{(\text{the function sin})(x)^2} - (\text{the function tan})(x) - (\text{the function cot})(x)}$ (ii) (the function $\exp(x)$ Suppose $Z \subseteq \text{dom}(\text{(the function sin)} \cdot \text{sec})$. Then (43)(the function \sin) \cdot sec is differentiable on Z, and (i) (ii) for every x such that $x \in Z$ holds ((the function sin) $\cdot \sec)'_{\uparrow Z}(x) =$ $\frac{(\text{the function } \cos)((\sec)(x))\cdot(\text{the function } \sin)(x)}{(\text{the function } \cos)(x)^2}$ (44) Suppose $Z \subseteq \operatorname{dom}((\text{the function } \cos) \cdot \sec)$. Then (the function \cos) \cdot sec is differentiable on Z, and (i) for every x such that $x \in Z$ holds ((the function $\cos) \cdot \sec)'_{\perp Z}(x) =$ (ii) (the function $\sin((\sec)(x))$) (the function $\sin(x)$) (the function $\cos(x)^2$ (45)Suppose $Z \subseteq \operatorname{dom}((\text{the function sin}) \cdot \operatorname{cosec})$. Then
- (i) (the function \sin) \cdot cosec is differentiable on Z, and
- (ii) for every x such that $x \in Z$ holds ((the function sin) $\cdot \operatorname{cosec})'_{\upharpoonright Z}(x) = -\frac{(\text{the function } \cos)((\operatorname{cosec})(x)) \cdot (\text{the function } \cos)(x)}{(\text{the function } \sin)(x)^2}.$
- (46) Suppose $Z \subseteq \text{dom}((\text{the function } \cos) \cdot \csc)$. Then
 - (i) (the function \cos) \cdot cosec is differentiable on Z, and
 - (ii) for every x such that $x \in Z$ holds ((the function $\cos) \cdot \csc)'_{\upharpoonright Z}(x) = \frac{(\text{the function } \sin)((\csc)(x)) \cdot (\text{the function } \cos)(x)}{(\text{the function } \sin)(x)^2}$.

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [2] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [3] Fritz Chemnitius. Differentiation und Integration ausgewählter Beispiele. VEB Verlag Technik, Berlin, 1956.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.

BO LI AND PAN WANG

- [5] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- [6] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [7] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797–801, 1990.
- [8] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [9] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195–200, 2004.
- [10] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
 [11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
- 1990
- [12] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [14] Peng Wang and Bo Li. Several differentiation formulas of special functions. Part V. Formalized Mathematics, 15(3):73–79, 2007.
- [15] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181–186, 1990.
- [16] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255–263, 1998.

Received September 19, 2007