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Summary. In this article the general theory of Commutative BCK-

algebras and BCI-algebras and several classes of BCK-algebras are given ac-

cording to [2].
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The articles [3] and [1] provide the notation and terminology for this paper.

1. The Basics of General Theory of Commutative BCK-algebras

Let I1 be a non empty BCI structure with 0. We say that I1 is commutative

if and only if:

(Def. 1) For all elements x, y of I1 holds x \ (x \ y) = y \ (y \ x).

Let us observe that BCI-EXAMPLE is commutative.

Let us note that there exists a BCK-algebra which is commutative.

In the sequel X denotes a BCK-algebra and I1 denotes a non empty subset

of X.

We now state a number of propositions:

(1) X is a commutative BCK-algebra iff for all elements x, y of X holds

x \ (x \ y) ≤ y \ (y \ x).
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(2) For every BCK-algebra X and for all elements x, y of X holds x\(x\y) ≤
y and x \ (x \ y) ≤ x.

(3) X is a commutative BCK-algebra iff for all elements x, y of X holds

x \ y = x \ (y \ (y \ x)).

(4) X is a commutative BCK-algebra iff for all elements x, y of X holds

x \ (x \ y) = y \ (y \ (x \ (x \ y))).

(5) X is a commutative BCK-algebra iff for all elements x, y of X such that

x ≤ y holds x = y \ (y \ x).

(6) Let X be a non empty BCI structure with 0. Then X is a commutative

BCK-algebra if and only if for all elements x, y, z ofX holds x\(0X\y) = x

and (x \ z) \ (x \ y) = y \ z \ (y \ x).

(7) If X is a commutative BCK-algebra, then for all elements x, y of X such

that x \ y = x holds y \ x = y.

(8) If X is a commutative BCK-algebra, then for all elements x, y, a of X

such that y ≤ a holds a \ x \ (a \ y) = y \ x.
(9) If X is a commutative BCK-algebra, then for all elements x, y of X

holds x \ y = x iff y \ (y \ x) = 0X .

(10) If X is a commutative BCK-algebra, then for all elements x, y of X

holds x \ (y \ (y \ x)) = x \ y and x \ y \ (x \ y \ x) = x \ y.
(11) Suppose X is a commutative BCK-algebra. Let x, y, a be elements of

X. If x ≤ a, then (a \ y) \ (a \ y \ (a \ x)) = a \ y \ (x \ y).

Let X be a BCI-algebra and let a be an element of X. We say that a is

greatest if and only if:

(Def. 2) For every element x of X holds x \ a = 0X .

We say that a is positive if and only if:

(Def. 3) 0X \ a = 0X .

2. The Basics of General Theory of Commutative BCI-algebras

Let I1 be a BCI-algebra. We say that I1 is BCI-commutative if and only if:

(Def. 4) For all elements x, y of I1 such that x \ y = 0(I1) holds x = y \ (y \ x).

We say that I1 is BCI-weakly-commutative if and only if:

(Def. 5) For all elements x, y of I1 holds (x\ (x\y))\ (0(I1 ) \ (x\y)) = y \ (y \x).

One can check that BCI-EXAMPLE is BCI-commutative and BCI-weakly-

commutative.

Let us note that there exists a BCI-algebra which is BCI-commutative and

BCI-weakly-commutative.

The following propositions are true:
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(12) For every BCI-algebra X such that there exists an element of X which

is greatest holds X is a BCK-algebra.

(13) Let X be a BCI-algebra. Suppose X is p-semisimple. Then X is BCI-

commutative and BCI-weakly-commutative.

(14) Every commutative BCK-algebra is a BCI-commutative BCI-algebra

and a BCI-weakly-commutative BCI-algebra.

(15) If X is a BCI-weakly-commutative BCI-algebra, then X is BCI-

commutative.

(16) Let X be a BCI-algebra. Then X is BCI-commutative if and only if for

all elements x, y of X holds x \ (x \ y) = y \ (y \ (x \ (x \ y))).

(17) Let X be a BCI-algebra. Then X is BCI-commutative if and only if for

all elements x, y of X holds (x \ (x \ y)) \ (y \ (y \ x)) = 0X \ (x \ y).

(18) Let X be a BCI-algebra. Then X is BCI-commutative if and only if

for every element a of AtomSetX and for all elements x, y of BranchV a

holds x \ (x \ y) = y \ (y \ x).

(19) Let X be a non empty BCI structure with 0. Then X is a BCI-

commutative BCI-algebra if and only if for all elements x, y, z of X holds

x\y\(x\z)\(z\y) = 0X and x\0X = x and x\(x\y) = y\(y\(x\(x\y))).

(20) Let X be a BCI-algebra. Then X is BCI-commutative if and only if for

all elements x, y, z of X such that x ≤ z and z \ y ≤ z \ x holds x ≤ y.
(21) Let X be a BCI-algebra. Then X is BCI-commutative if and only if for

all elements x, y, z of X such that x ≤ y and x ≤ z holds x ≤ y \ (y \ z).

3. Bounded BCK-algebras

Let I1 be a BCK-algebra. We say that I1 is bounded if and only if:

(Def. 6) There exists an element of I1 which is greatest.

Let us note that BCI-EXAMPLE is bounded.

One can verify that there exists a BCK-algebra which is bounded and com-

mutative.

Let I1 be a bounded BCK-algebra. We say that I1 is involutory if and only

if:

(Def. 7) For every element a of I1 such that a is greatest and for every element

x of I1 holds a \ (a \ x) = x.

Next we state three propositions:

(22) Let X be a bounded BCK-algebra. Then X is involutory if and only if

for every element a of X such that a is greatest and for all elements x, y

of X holds x \ y = a \ y \ (a \ x).
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(23) Let X be a bounded BCK-algebra. Then X is involutory if and only if

for every element a of X such that a is greatest and for all elements x, y

of X holds x \ (a \ y) = y \ (a \ x).

(24) Let X be a bounded BCK-algebra. Then X is involutory if and only if

for every element a of X such that a is greatest and for all elements x, y

of X such that x ≤ a \ y holds y ≤ a \ x.
Let I1 be a BCK-algebra and let a be an element of I1. We say that a is

Iseki if and only if:

(Def. 8) For every element x of I1 holds x \ a = 0(I1) and a \ x = a.

Let I1 be a BCK-algebra. We say that I1 is Iseki-extension if and only if:

(Def. 9) There exists an element of I1 which is Iseki.

Let us observe that BCI-EXAMPLE is Iseki-extension.

Let X be a BCK-algebra. A non empty subset of X is said to be a

commutative-ideal of X if:

(Def. 10) 0X ∈ it and for all elements x, y, z of X such that x \ y \ z ∈ it and

z ∈ it holds x \ (y \ (y \ x)) ∈ it.

The following three propositions are true:

(25) If I1 is a commutative-ideal of X, then for all elements x, y of X such

that x \ y ∈ I1 holds x \ (y \ (y \ x)) ∈ I1.

(26) For every BCK-algebra X such that I1 is a commutative-ideal of X holds

I1 is an ideal of X.

(27) If I1 is a commutative-ideal of X, then for all elements x, y of X such

that x \ (x \ y) ∈ I1 holds y \ (y \ x) \ (x \ y) ∈ I1.

4. Implicative and Positive-Implicative BCK-algebras

Let I1 be a BCK-algebra. We say that I1 is BCK-positive-implicative if and

only if:

(Def. 11) For all elements x, y, z of I1 holds (x \ y) \ z = x \ z \ (y \ z).
We say that I1 is BCK-implicative if and only if:

(Def. 12) For all elements x, y of I1 holds x \ (y \ x) = x.

Let us observe that BCI-EXAMPLE is BCK-positive-implicative and BCK-

implicative.

Let us mention that there exists a BCK-algebra which is Iseki-extension,

BCK-positive-implicative, BCK-implicative, bounded, and commutative.

The following propositions are true:

(28) X is a BCK-positive-implicative BCK-algebra iff for all elements x, y of

X holds x \ y = x \ y \ y.
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(29) X is a BCK-positive-implicative BCK-algebra if and only if for all ele-

ments x, y of X holds (x \ (x \ y)) \ (y \ x) = x \ (x \ (y \ (y \ x))).

(30) X is a BCK-positive-implicative BCK-algebra iff for all elements x, y of

X holds x \ y = x \ y \ (x \ (x \ y)).

(31) X is a BCK-positive-implicative BCK-algebra if and only if for all ele-

ments x, y, z of X holds x \ z \ (y \ z) ≤ (x \ y) \ z.
(32) X is a BCK-positive-implicative BCK-algebra iff for all elements x, y of

X holds x \ y ≤ x \ y \ y.
(33) X is a BCK-positive-implicative BCK-algebra if and only if for all ele-

ments x, y of X holds x \ (x \ (y \ (y \ x))) ≤ (x \ (x \ y)) \ (y \ x).

(34) X is a BCK-implicative BCK-algebra if and only if X is a commutative

BCK-algebra and a BCK-positive-implicative BCK-algebra.

(35) X is a BCK-implicative BCK-algebra iff for all elements x, y of X holds

(x \ (x \ y)) \ (x \ y) = y \ (y \ x).

(36) Let X be a non empty BCI structure with 0. Then X is a BCK-

implicative BCK-algebra if and only if for all elements x, y, z of X holds

x \ (0X \ y) = x and (x \ z) \ (x \ y) = y \ z \ (y \ x) \ (x \ y).

(37) Let X be a bounded BCK-algebra and a be an element of X. Suppose

a is greatest. Then X is BCK-implicative if and only if X is involutory

and BCK-positive-implicative.

(38) X is a BCK-implicative BCK-algebra iff for all elements x, y of X holds

x \ (x \ (y \ x)) = 0X .

(39) X is a BCK-implicative BCK-algebra iff for all elements x, y of X holds

(x \ (x \ y)) \ (x \ y) = y \ (y \ (x \ (x \ y))).

(40) X is a BCK-implicative BCK-algebra iff for all elements x, y, z of X

holds (x \ z) \ (x \ y) = y \ z \ (y \ x \ z).
(41) X is a BCK-implicative BCK-algebra iff for all elements x, y, z of X

holds x \ (x \ (y \ z)) = (y \ z) \ (y \ z \ (x \ z)).
(42) X is a BCK-implicative BCK-algebra iff for all elements x, y of X holds

x \ (x \ y) = (y \ (y \ x)) \ (x \ y).

(43) Let X be a bounded commutative BCK-algebra and a be an element of

X. Suppose a is greatest. Then X is BCK-implicative if and only if for

every element x of X holds a \ x \ (a \ x \ x) = 0X .

(44) Let X be a bounded commutative BCK-algebra and a be an element of

X. Suppose a is greatest. Then X is BCK-implicative if and only if for

every element x of X holds x \ (a \ x) = x.

(45) Let X be a bounded commutative BCK-algebra and a be an element of

X. Suppose a is greatest. Then X is BCK-implicative if and only if for

every element x of X holds a \ x \ x = a \ x.
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(46) Let X be a bounded commutative BCK-algebra and a be an element of

X. Suppose a is greatest. Then X is BCK-implicative if and only if for

all elements x, y of X holds a \ y \ (a \ y \ x) = x \ y.
(47) Let X be a bounded commutative BCK-algebra and a be an element of

X. Suppose a is greatest. Then X is BCK-implicative if and only if for

all elements x, y of X holds y \ (y \ x) = x \ (a \ y).

(48) Let X be a bounded commutative BCK-algebra and a be an element of

X. Suppose a is greatest. Then X is BCK-implicative if and only if for

all elements x, y, z of X holds (x \ (y \ z)) \ (x \ y) ≤ x \ (a \ z).
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