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Summary. The goal of this article is to formalize the Sylow theorems

closely following the book [4]. Accordingly, the article introduces the group op-

erating on a set, the stabilizer, the orbits, the p-groups and the Sylow subgroups.
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The papers [20], [26], [18], [9], [21], [14], [11], [27], [6], [28], [7], [3], [5], [10],

[1], [23], [24], [22], [16], [13], [19], [17], [2], [25], [15], [8], and [12] provide the

notation and terminology for this paper.

1. Group Operating on a Set

Let S be a non empty 1-sorted structure, let E be a set, let A be an action

of the carrier of S on E, and let s be an element of S. We introduce A a s as a

synonym of A(s).

Let S be a non empty 1-sorted structure, let E be a set, let A be an action

of the carrier of S on E, and let s be an element of S. Then A a s is a function

from E into E.

Let S be a unital non empty groupoid, let E be a set, and let A be an action

of the carrier of S on E. We say that A is left-operation if and only if:

(Def. 1) A a (1S) = idE and for all elements s1, s2 of S holds A a (s1 · s2) =

(A a s1) · (A a s2).

Let S be a unital non empty groupoid and let E be a set. Note that there

exists an action of the carrier of S on E which is left-operation.

Let S be a unital non empty groupoid and let E be a set. A left operation

of S on E is a left-operation action of the carrier of S on E.
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The scheme ExLeftOperation deals with a set A, a group-like non empty

groupoid B, and a unary functor F yielding a function from A into A, and

states that:

There exists a left operation T of B on A such that for every

element s of B holds T (s) = F(s)

provided the parameters meet the following requirements:

• F(1B) = idA, and

• For all elements s1, s2 of B holds F(s1 · s2) = F(s1) · F(s2).

Next we state the proposition

(1) Let E be a non empty set, S be a group-like non empty groupoid, s be

an element of S, and L1 be a left operation of S on E. Then L1
a s is

one-to-one.

Let S be a non empty groupoid and let s be an element of S. We introduce

γs as a synonym of s∗.
Let S be a group-like associative non empty groupoid. The functor ΓS

yielding a left operation of S on the carrier of S is defined as follows:

(Def. 2) For every element s of S holds ΓS(s) = γs.

Let E be a set and let n be a set. The functor [E]n yielding a family of

subsets of E is defined by:

(Def. 3) [E]n = {X;X ranges over subsets of E: X = n}.
Let E be a finite set and let n be a set. One can verify that [E]n is finite.

The following two propositions are true:

(2) For every natural number n and for every non empty set E such that

n ≤ E holds [E]n is non empty.

(3) For every non empty finite set E and for every element k of N and for all

sets x1, x2 such that x1 6= x2 holds card Choose(E, k, x1, x2) = card([E]k).

Let E be a non empty set, let n be a natural number, let S be a group-like

non empty groupoid, let s be an element of S, and let L1 be a left operation of

S on E. Let us assume that n ≤ E . The functor γns,L1
yields a function from

[E]n into [E]n and is defined by:

(Def. 4) For every element X of [E]n holds γns,L1
(X) = (L1

a s)◦X.

Let E be a non empty set, let n be a natural number, let S be a group-like

non empty groupoid, and let L1 be a left operation of S on E. Let us assume

that n ≤ E . The functor ΓnL1
yields a left operation of S on [E]n and is defined

by:

(Def. 5) For every element s of S holds Γn
L1

(s) = γns,L1
.

Let S be a non empty groupoid, let s be an element of S, and let Z be a

non empty set. The functor γs,Z yielding a function from [: the carrier of S, Z :]

into [: the carrier of S, Z :] is defined by the condition (Def. 6).
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(Def. 6) Let z1 be an element of [: the carrier of S, Z :]. Then there exists an

element z2 of [: the carrier of S, Z :] and there exist elements s1, s2 of S

and there exists an element z of Z such that z2 = γs,Z(z1) and s2 = s · s1

and z1 = 〈〈s1, z〉〉 and z2 = 〈〈s2, z〉〉.
Let S be a group-like associative non empty groupoid and let Z be a non

empty set. The functor ΓS,Z yields a left operation of S on [: the carrier of S,

Z :] and is defined by:

(Def. 7) For every element s of S holds ΓS,Z(s) = γs,Z .

Let G be a group, let H, P be subgroups of G, and let h be an element of

H. The functor γh,P yields a function from the left cosets of P into the left

cosets of P and is defined by the condition (Def. 8).

(Def. 8) Let P1 be an element of the left cosets of P . Then there exists an element

P2 of the left cosets of P and there exist subsets A1, A2 of G and there

exists an element g of G such that P2 = γh,P (P1) and A2 = g · A1 and

A1 = P1 and A2 = P2 and g = h.

Let G be a group and let H, P be subgroups of G. The functor ΓH,P yields

a left operation of H on the left cosets of P and is defined as follows:

(Def. 9) For every element h of H holds ΓH,P (h) = γh,P .

2. Stabilizer and Orbits

Let G be a group, let E be a non empty set, let T be a left operation of G

on E, and let A be a subset of E. The functor TA yields a strict subgroup of G

and is defined as follows:

(Def. 10) The carrier of TA = {g; g ranges over elements of G: (T a g)◦A = A}.
Let G be a group, let E be a non empty set, let T be a left operation of G

on E, and let x be an element of E. The functor Tx yielding a strict subgroup

of G is defined by:

(Def. 11) Tx = T{x}.

Let S be a unital non empty groupoid, let E be a set, let T be a left operation

of S on E, and let x be an element of E. We say that x is fixed under T if and

only if:

(Def. 12) For every element s of S holds x = (T a s)(x).

Let S be a unital non empty groupoid, let E be a set, and let T be a left

operation of S on E. The functor T0 yields a subset of E and is defined by:

(Def. 13) T0 =




{x;x ranges over elements of E: x is fixed under T},

if E is non empty,

∅E , otherwise.
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Let S be a unital non empty groupoid, let E be a set, let T be a left operation

of S on E, and let x, y be elements of E. We say that x and y are conjugated

under T if and only if:

(Def. 14) There exists an element s of S such that y = (T a s)(x).

We now state three propositions:

(4) Let S be a unital non empty groupoid, E be a non empty set, x be an

element of E, and T be a left operation of S on E. Then x and x are

conjugated under T .

(5) Let G be a group, E be a non empty set, x, y be elements of E, and T

be a left operation of G on E. Suppose x and y are conjugated under T .

Then y and x are conjugated under T .

(6) Let S be a unital non empty groupoid, E be a non empty set, x, y, z be

elements of E, and T be a left operation of S on E. Suppose x and y are

conjugated under T and y and z are conjugated under T . Then x and z

are conjugated under T .

Let S be a unital non empty groupoid, let E be a non empty set, let T be a

left operation of S on E, and let x be an element of E. The functor T (x) yields

a subset of E and is defined as follows:

(Def. 15) T (x) = {y; y ranges over elements of E: x and y are conjugated under

T}.
One can prove the following four propositions:

(7) Let S be a unital non empty groupoid, E be a non empty set, x be an

element of E, and T be a left operation of S on E. Then T (x) is non

empty.

(8) Let G be a group, E be a non empty set, x, y be elements of E, and T

be a left operation of G on E. Then T (x) misses T (y) or T (x) = T (y).

(9) Let S be a unital non empty groupoid, E be a non empty finite set, x be

an element of E, and T be a left operation of S on E. If x is fixed under

T , then T (x) = {x}.
(10) Let G be a group, E be a non empty set, a be an element of E, and T

be a left operation of G on E. Then T (a) = |• : Ta|.
Let G be a group, let E be a non empty set, and let T be a left operation

of G on E. The orbits of T yields a partition of E and is defined by:

(Def. 16) The orbits of T = {X;X ranges over subsets of E:
∨
x : element of E X =

T (x)}.

3. p-groups

Let p be a prime natural number and let G be a group. We say that G is a

p-group if and only if:
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(Def. 17) There exists a natural number r such that ord(G) = pr.

Let p be a prime natural number, let G be a group, and let P be a subgroup

of G. We say that P is a p-group if and only if:

(Def. 18) There exists a finite group H such that P = H and H is a p-group.

One can prove the following proposition

(11) Let E be a non empty finite set, G be a finite group, p be a prime

natural number, and T be a left operation of G on E. If G is a p-group,

then cardT0 mod p = cardE mod p.

4. The Sylow Theorems

Let p be a prime natural number, let G be a group, and let P be a subgroup

of G. We say that P is a Sylow p-subgroup if and only if:

(Def. 19) P is a p-group and p - |• : P |N.
We now state three propositions:

(12) For every finite group G and for every prime natural number p holds

there exists a subgroup of G which is a Sylow p-subgroup.

(13) Let G be a finite group and p be a prime natural number. If p | ord(G),

then there exists an element g of G such that ord(g) = p.

(14) Let G be a finite group and p be a prime natural number. Then

(i) for every subgroup H of G such that H is a p-group there exists a

subgroup P of G such that P is a Sylow p-subgroup and H is a subgroup

of P , and

(ii) for all subgroups P1, P2 of G such that P1 is a Sylow p-subgroup and

P2 is a Sylow p-subgroup holds P1 and P2 are conjugated.

Let G be a group and let p be a prime natural number. The functor Sylp(G)

yielding a subset of SubGrG is defined as follows:

(Def. 20) Sylp(G) = {H;H ranges over elements of SubGrG :∨
P : strict subgroup of G (P = H ∧ P is a Sylow p-subgroup)}.

Let G be a finite group and let p be a prime natural number. Note that

Sylp(G) is non empty and finite.

Let G be a finite group, let p be a prime natural number, let H be a subgroup

of G, and let h be an element of H. The functor γh,p yielding a function from

Sylp(G) into Sylp(G) is defined by the condition (Def. 21).

(Def. 21) Let P1 be an element of Sylp(G). Then there exists an element P2 of

Sylp(G) and there exist strict subgroups H1, H2 of G and there exists an

element g of G such that P2 = γh,p(P1) and P1 = H1 and P2 = H2 and

h−1 = g and H2 = H1
g.
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Let G be a finite group, let p be a prime natural number, and let H be a

subgroup of G. The functor ΓH,p yields a left operation of H on Sylp(G) and is

defined as follows:

(Def. 22) For every element h of H holds ΓH,p(h) = γh,p.

The following proposition is true

(15) For every finite group G and for every prime natural number p holds

card(Sylp(G)) mod p = 1 and card(Sylp(G)) | ord(G).

5. Appendix

The following propositions are true:

(16) For all non empty sets X, Y holds

{[:X, {y} :] : y ranges over elements of Y } = Y .

(17) For all natural numbers n, m, r and for every prime natural number p

such that n = pr ·m and p - m holds
(
n
pr

)
mod p 6= 0.

(18) For every natural number n such that n > 0 holds ord(Z+
n ) = n.

(19) For every group G and for every non empty subset A of G and for every

element g of G holds A = A · g .
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