The Sylow Theorems

Marco Riccardi
Casella Postale 49
54038 Montignoso, Italy

Abstract

Summary. The goal of this article is to formalize the Sylow theorems closely following the book [4]. Accordingly, the article introduces the group operating on a set, the stabilizer, the orbits, the p-groups and the Sylow subgroups.

MML identifier: GROUP_10, version: 7.8.05 4.87.985

The papers [20], [26], [18], [9], [21], [14], [11], [27], [6], [28], [7], [3], [5], [10], [1], [23], [24], [22], [16], [13], [19], [17], [2], [25], [15], [8], and [12] provide the notation and terminology for this paper.

1. Group Operating on a Set

Let S be a non empty 1 -sorted structure, let E be a set, let A be an action of the carrier of S on E, and let s be an element of S. We introduce $A^{\wedge} s$ as a synonym of $A(s)$.

Let S be a non empty 1 -sorted structure, let E be a set, let A be an action of the carrier of S on E, and let s be an element of S. Then $A^{\wedge} s$ is a function from E into E.

Let S be a unital non empty groupoid, let E be a set, and let A be an action of the carrier of S on E. We say that A is left-operation if and only if:
(Def. 1) $A^{\wedge}\left(\mathbf{1}_{S}\right)=\operatorname{id}_{E}$ and for all elements s_{1}, s_{2} of S holds $A^{\wedge}\left(s_{1} \cdot s_{2}\right)=$ $\left(A^{\wedge} s_{1}\right) \cdot\left(A^{\wedge} s_{2}\right)$.
Let S be a unital non empty groupoid and let E be a set. Note that there exists an action of the carrier of S on E which is left-operation.

Let S be a unital non empty groupoid and let E be a set. A left operation of S on E is a left-operation action of the carrier of S on E.

The scheme ExLeftOperation deals with a set \mathcal{A}, a group-like non empty groupoid \mathcal{B}, and a unary functor \mathcal{F} yielding a function from \mathcal{A} into \mathcal{A}, and states that:

There exists a left operation T of \mathcal{B} on \mathcal{A} such that for every element s of \mathcal{B} holds $T(s)=\mathcal{F}(s)$
provided the parameters meet the following requirements:

- $\mathcal{F}\left(\mathbf{1}_{\mathcal{B}}\right)=\mathrm{id}_{\mathcal{A}}$, and
- For all elements s_{1}, s_{2} of \mathcal{B} holds $\mathcal{F}\left(s_{1} \cdot s_{2}\right)=\mathcal{F}\left(s_{1}\right) \cdot \mathcal{F}\left(s_{2}\right)$.

Next we state the proposition
(1) Let E be a non empty set, S be a group-like non empty groupoid, s be an element of S, and L_{1} be a left operation of S on E. Then $L_{1} \curvearrowright s$ is one-to-one.

Let S be a non empty groupoid and let s be an element of S. We introduce γ_{s} as a synonym of s^{*}.

Let S be a group-like associative non empty groupoid. The functor $\boldsymbol{\Gamma}_{S}$ yielding a left operation of S on the carrier of S is defined as follows:
(Def. 2) For every element s of S holds $\boldsymbol{\Gamma}_{S}(s)=\gamma_{s}$.
Let E be a set and let n be a set. The functor $[E]^{n}$ yielding a family of subsets of E is defined by:
(Def. 3) $[E]^{n}=\{X ; X$ ranges over subsets of $E: \overline{\bar{X}}=n\}$.
Let E be a finite set and let n be a set. One can verify that $[E]^{n}$ is finite.
The following two propositions are true:
(2) For every natural number n and for every non empty set E such that $\overline{\bar{n}} \leq \overline{\bar{E}}$ holds $[E]^{n}$ is non empty.
(3) For every non empty finite set E and for every element k of \mathbb{N} and for all sets x_{1}, x_{2} such that $x_{1} \neq x_{2}$ holds card $\operatorname{Choose}\left(E, k, x_{1}, x_{2}\right)=\operatorname{card}\left([E]^{k}\right)$.
Let E be a non empty set, let n be a natural number, let S be a group-like non empty groupoid, let s be an element of S, and let L_{1} be a left operation of S on E. Let us assume that $\overline{\bar{n}} \leq \overline{\bar{E}}$. The functor $\gamma_{s, L_{1}}^{n}$ yields a function from $[E]^{n}$ into $[E]^{n}$ and is defined by:
(Def. 4) For every element X of $[E]^{n}$ holds $\gamma_{s, L_{1}}^{n}(X)=\left(L_{1} \curvearrowleft s\right)^{\circ} X$.
Let E be a non empty set, let n be a natural number, let S be a group-like non empty groupoid, and let L_{1} be a left operation of S on E. Let us assume that $\overline{\bar{n}} \leq \overline{\bar{E}}$. The functor $\Gamma_{L_{1}}^{n}$ yields a left operation of S on $[E]^{n}$ and is defined by:
(Def. 5) For every element s of S holds $\Gamma_{L_{1}}^{n}(s)=\gamma_{s, L_{1}}^{n}$.
Let S be a non empty groupoid, let s be an element of S, and let Z be a non empty set. The functor $\gamma_{s, Z}$ yielding a function from : the carrier of S, Z : into $:$ the carrier of $S, Z:]$ is defined by the condition (Def. 6).
(Def. 6) Let z_{1} be an element of $:$ the carrier of $S, Z:$. Then there exists an element z_{2} of : the carrier of S, Z : and there exist elements s_{1}, s_{2} of S and there exists an element z of Z such that $z_{2}=\boldsymbol{\gamma}_{s, Z}\left(z_{1}\right)$ and $s_{2}=s \cdot s_{1}$ and $z_{1}=\left\langle s_{1}, z\right\rangle$ and $z_{2}=\left\langle s_{2}, z\right\rangle$.
Let S be a group-like associative non empty groupoid and let Z be a non empty set. The functor $\boldsymbol{\Gamma}_{S, Z}$ yields a left operation of S on : the carrier of S, Z : and is defined by:
(Def. 7) For every element s of S holds $\boldsymbol{\Gamma}_{S, Z}(s)=\gamma_{s, Z}$.
Let G be a group, let H, P be subgroups of G, and let h be an element of H. The functor $\gamma_{h, P}$ yields a function from the left cosets of P into the left cosets of P and is defined by the condition (Def. 8).
(Def. 8) Let P_{1} be an element of the left cosets of P. Then there exists an element P_{2} of the left cosets of P and there exist subsets A_{1}, A_{2} of G and there exists an element g of G such that $P_{2}=\gamma_{h, P}\left(P_{1}\right)$ and $A_{2}=g \cdot A_{1}$ and $A_{1}=P_{1}$ and $A_{2}=P_{2}$ and $g=h$.
Let G be a group and let H, P be subgroups of G. The functor $\boldsymbol{\Gamma}_{H, P}$ yields a left operation of H on the left cosets of P and is defined as follows:
(Def. 9) For every element h of H holds $\boldsymbol{\Gamma}_{H, P}(h)=\gamma_{h, P}$.

2. Stabilizer and Orbits

Let G be a group, let E be a non empty set, let T be a left operation of G on E, and let A be a subset of E. The functor T_{A} yields a strict subgroup of G and is defined as follows:
(Def. 10) The carrier of $T_{A}=\left\{g ; g\right.$ ranges over elements of $\left.G:\left(T^{\wedge} g\right)^{\circ} A=A\right\}$.
Let G be a group, let E be a non empty set, let T be a left operation of G on E, and let x be an element of E. The functor T_{x} yielding a strict subgroup of G is defined by:
(Def. 11) $\quad T_{x}=T_{\{x\}}$.
Let S be a unital non empty groupoid, let E be a set, let T be a left operation of S on E, and let x be an element of E. We say that x is fixed under T if and only if:
(Def. 12) For every element s of S holds $x=\left(T^{\wedge} s\right)(x)$.
Let S be a unital non empty groupoid, let E be a set, and let T be a left operation of S on E. The functor T_{0} yields a subset of E and is defined by:
(Def. 13) $\quad T_{0}=\left\{\begin{array}{l}\{x ; x \text { ranges over elements of } E: x \text { is fixed under } T\}, \\ \text { if } E \text { is non empty, } \\ \emptyset_{E}, \text { otherwise. }\end{array}\right.$

Let S be a unital non empty groupoid, let E be a set, let T be a left operation of S on E, and let x, y be elements of E. We say that x and y are conjugated under T if and only if:
(Def. 14) There exists an element s of S such that $y=\left(T^{\wedge} s\right)(x)$.
We now state three propositions:
(4) Let S be a unital non empty groupoid, E be a non empty set, x be an element of E, and T be a left operation of S on E. Then x and x are conjugated under T.
(5) Let G be a group, E be a non empty set, x, y be elements of E, and T be a left operation of G on E. Suppose x and y are conjugated under T. Then y and x are conjugated under T.
(6) Let S be a unital non empty groupoid, E be a non empty set, x, y, z be elements of E, and T be a left operation of S on E. Suppose x and y are conjugated under T and y and z are conjugated under T. Then x and z are conjugated under T.
Let S be a unital non empty groupoid, let E be a non empty set, let T be a left operation of S on E, and let x be an element of E. The functor $T(x)$ yields a subset of E and is defined as follows:
(Def. 15) $T(x)=\{y ; y$ ranges over elements of $E: x$ and y are conjugated under $T\}$.
One can prove the following four propositions:
(7) Let S be a unital non empty groupoid, E be a non empty set, x be an element of E, and T be a left operation of S on E. Then $T(x)$ is non empty.
(8) Let G be a group, E be a non empty set, x, y be elements of E, and T be a left operation of G on E. Then $T(x)$ misses $T(y)$ or $T(x)=T(y)$.
(9) Let S be a unital non empty groupoid, E be a non empty finite set, x be an element of E, and T be a left operation of S on E. If x is fixed under T, then $T(x)=\{x\}$.
(10) Let G be a group, E be a non empty set, a be an element of E, and T be a left operation of G on E. Then $\overline{\overline{T(a)}}=\left|\bullet: T_{a}\right|$.
Let G be a group, let E be a non empty set, and let T be a left operation of G on E. The orbits of T yields a partition of E and is defined by:
(Def. 16) The orbits of $T=\left\{X ; X\right.$ ranges over subsets of $E: \bigvee_{x: \text { element of } E} X=$ $T(x)\}$.

3. p-GROUPS

Let p be a prime natural number and let G be a group. We say that G is a p-group if and only if:
(Def. 17) There exists a natural number r such that $\operatorname{ord}(G)=p^{r}$.
Let p be a prime natural number, let G be a group, and let P be a subgroup of G. We say that P is a p-group if and only if:
(Def. 18) There exists a finite group H such that $P=H$ and H is a p-group.
One can prove the following proposition
(11) Let E be a non empty finite set, G be a finite group, p be a prime natural number, and T be a left operation of G on E. If G is a p-group, then $\operatorname{card} T_{0} \bmod p=\operatorname{card} E \bmod p$.

4. The Sylow Theorems

Let p be a prime natural number, let G be a group, and let P be a subgroup of G. We say that P is a Sylow p-subgroup if and only if:
(Def. 19) $\quad P$ is a p-group and $p \nmid \bullet:\left.P\right|_{\mathbb{N}}$.
We now state three propositions:
(12) For every finite group G and for every prime natural number p holds there exists a subgroup of G which is a Sylow p-subgroup.
(13) Let G be a finite group and p be a prime natural number. If $p \mid \operatorname{ord}(G)$, then there exists an element g of G such that $\operatorname{ord}(g)=p$.
(14) Let G be a finite group and p be a prime natural number. Then
(i) for every subgroup H of G such that H is a p-group there exists a subgroup P of G such that P is a Sylow p-subgroup and H is a subgroup of P, and
(ii) for all subgroups P_{1}, P_{2} of G such that P_{1} is a Sylow p-subgroup and P_{2} is a Sylow p-subgroup holds P_{1} and P_{2} are conjugated.
Let G be a group and let p be a prime natural number. The functor $\operatorname{Syl}_{p}(G)$ yielding a subset of $\operatorname{SubGr} G$ is defined as follows:
(Def. 20) $\mathrm{Syl}_{p}(G)=\{H ; H$ ranges over elements of $\operatorname{SubGr} G$:
$\bigvee_{P \text { : strict subgroup of } G}(P=H \wedge P$ is a Sylow p-subgroup $\left.)\right\}$.
Let G be a finite group and let p be a prime natural number. Note that Syl $_{p}(G)$ is non empty and finite.

Let G be a finite group, let p be a prime natural number, let H be a subgroup of G, and let h be an element of H. The functor $\gamma_{h, p}$ yielding a function from $\mathrm{Syl}_{p}(G)$ into $\mathrm{Syl}_{p}(G)$ is defined by the condition (Def. 21).
(Def. 21) Let P_{1} be an element of $\operatorname{Syl}_{p}(G)$. Then there exists an element P_{2} of Syl $_{p}(G)$ and there exist strict subgroups H_{1}, H_{2} of G and there exists an element g of G such that $P_{2}=\gamma_{h, p}\left(P_{1}\right)$ and $P_{1}=H_{1}$ and $P_{2}=H_{2}$ and $h^{-1}=g$ and $H_{2}=H_{1}{ }^{g}$.

Let G be a finite group, let p be a prime natural number, and let H be a subgroup of G. The functor $\boldsymbol{\Gamma}_{H, p}$ yields a left operation of H on $\operatorname{Syl}_{p}(G)$ and is defined as follows:
(Def. 22) For every element h of H holds $\boldsymbol{\Gamma}_{H, p}(h)=\gamma_{h, p}$.
The following proposition is true
(15) For every finite group G and for every prime natural number p holds $\operatorname{card}\left(\operatorname{Syl}_{p}(G)\right) \bmod p=1$ and $\operatorname{card}\left(\operatorname{Syl}_{p}(G)\right) \mid \operatorname{ord}(G)$.

5. Appendix

The following propositions are true:
(16) For all non empty sets X, Y holds $\overline{\overline{\{: X,\{y\}:}: y \text { ranges over elements of } Y\}}=\overline{\bar{Y}}$.
(17) For all natural numbers n, m, r and for every prime natural number p such that $n=p^{r} \cdot m$ and $p \nmid m$ holds $\binom{n}{p^{r}} \bmod p \neq 0$.
(18) For every natural number n such that $n>0$ holds $\operatorname{ord}\left(\mathbb{Z}_{n}^{+}\right)=n$.
(19) For every group G and for every non empty subset A of G and for every element g of G holds $\overline{\bar{A}}=\overline{\overline{A \cdot g}}$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Nicolas Bourbaki. Elements of Mathematics. Algebra I. Chapters 1-3. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55$65,1990$.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[12] Artur Korniłowicz. The definition and basic properties of topological groups. Formalized Mathematics, 7(2):217-225, 1998.
[13] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[14] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[15] Karol Pa̧k. Cardinal numbers and finite sets. Formalized Mathematics, 13(3):399-406, 2005.
[16] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[17] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.
[18] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[21] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[22] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.
[23] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[24] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.
[25] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.
[26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received August 13, 2007

