The Rank+Nullity Theorem

Jesse Alama
Department of Philosophy
Stanford University
USA

Abstract

Summary. The rank+nullity theorem states that, if T is a linear transformation from a finite-dimensional vector space V to a finite-dimensional vector space W, then $\operatorname{dim}(V)=\operatorname{rank}(T)+\operatorname{nullity}(T)$, where $\operatorname{rank}(T)=\operatorname{dim}(\operatorname{im}(T))$ and $\operatorname{nullity}(T)=\operatorname{dim}(\operatorname{ker}(T))$. The proof treated here is standard; see, for example, [14]: take a basis A of $\operatorname{ker}(T)$ and extend it to a basis B of V, and then show that $\operatorname{dim}(\operatorname{im}(T))$ is equal to $|B-A|$, and that T is one-to-one on $B-A$.

MML identifier: RANKNULL, version: 7.8.05 4.87.985

The articles [21], [11], [32], [22], [19], [33], [34], [7], [2], [17], [10], [18], [8], [9], [20], [1], [12], [3], [5], [6], [27], [29], [24], [31], [25], [13], [4], [30], [28], [26], [23], [15], [16], and [35] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following three propositions:
(1) For all functions f, g such that g is one-to-one and $f\lceil\operatorname{rng} g$ is one-to-one and $\operatorname{rng} g \subseteq \operatorname{dom} f$ holds $f \cdot g$ is one-to-one.
(2) For every function f and for all sets X, Y such that $X \subseteq Y$ and $f \upharpoonright Y$ is one-to-one holds $f \upharpoonright X$ is one-to-one.
(3) Let V be a 1 -sorted structure and X, Y be subsets of V. Then X meets Y if and only if there exists an element v of V such that $v \in X$ and $v \in Y$.
In the sequel F is a field and V, W are vector spaces over F.
Let F be a field and let V be a finite dimensional vector space over F. One can verify that there exists a basis of V which is finite.

Let F be a field and let V, W be vector spaces over F. Note that there exists a function from V into W which is linear.

Next we state three propositions:
(4) If Ω_{V} is finite, then V is finite dimensional.
(5) For every finite dimensional vector space V over F such that $\overline{\overline{\Omega_{V}}}=1$ holds $\operatorname{dim}(V)=0$.
(6) If $\overline{\overline{\Omega_{V}}}=2$, then $\operatorname{dim}(V)=1$.

2. Basic Facts of Linear Transformations

Let F be a field and let V, W be vector spaces over F. A linear transformation from V to W is a linear function from V into W.

In the sequel T is a linear transformation from V to W.
One can prove the following propositions:
(7) For all non empty 1-sorted structures V, W and for every function T from V into W holds dom $T=\Omega_{V}$ and $\operatorname{rng} T \subseteq \Omega_{W}$.
(8) For all elements x, y of V holds $T(x)-T(y)=T(x-y)$.
(9) $T\left(0_{V}\right)=0_{W}$.

Let F be a field, let V, W be vector spaces over F, and let T be a linear transformation from V to W. The functor $\operatorname{ker} T$ yielding a strict subspace of V is defined as follows:
(Def. 1) $\Omega_{\mathrm{ker} T}=\left\{u ; u\right.$ ranges over elements of $\left.V: T(u)=0_{W}\right\}$.
We now state the proposition
(10) For every element x of V holds $x \in \operatorname{ker} T$ iff $T(x)=0_{W}$.

Let V, W be non empty 1 -sorted structures, let T be a function from V into W, and let X be a subset of V. Then $T^{\circ} X$ is a subset of W.

Let F be a field, let V, W be vector spaces over F, and let T be a linear transformation from V to W. The functor $\operatorname{im} T$ yielding a strict subspace of W is defined as follows:
(Def. 2) $\quad \Omega_{\operatorname{im} T}=T^{\circ}\left(\Omega_{V}\right)$.
The following propositions are true:
(11) $0_{V} \in \operatorname{ker} T$.
(12) For every subset X of V holds $T^{\circ} X$ is a subset of $\operatorname{im} T$.
(13) For every element y of W holds $y \in \operatorname{im} T$ iff there exists an element x of V such that $y=T(x)$.
(14) For every element x of ker T holds $T(x)=0_{W}$.
(15) If T is one-to-one, then $\operatorname{ker} T=\mathbf{0}_{V}$.
(16) For every finite dimensional vector space V over F holds $\operatorname{dim}\left(\mathbf{0}_{V}\right)=0$.
(17) For all elements x, y of V such that $T(x)=T(y)$ holds $x-y \in \operatorname{ker} T$.
(18) For every subset A of V and for all elements x, y of V such that $x-y \in$ $\operatorname{Lin}(A)$ holds $x \in \operatorname{Lin}(A \cup\{y\})$.

3. Some Lemmas on Linearly Independent Subsets, Linear Combinations, and Linear Transformations

One can prove the following propositions:
(19) For every subset X of V such that V is a subspace of W holds X is a subset of W.
(20) For every subset A of V such that A is linearly independent holds A is a basis of $\operatorname{Lin}(A)$.
(21) For every subset A of V and for every element x of V such that $x \in$ $\operatorname{Lin}(A)$ and $x \notin A$ holds $A \cup\{x\}$ is linearly dependent.
(22) For every subset A of V and for every basis B of V such that A is a basis of ker T and $A \subseteq B$ holds $T \upharpoonright(B \backslash A)$ is one-to-one.
(23) Let A be a subset of V, l be a linear combination of A, x be an element of V, and a be an element of F. Then $l+\cdot(x, a)$ is a linear combination of $A \cup\{x\}$.
Let V be a 1-sorted structure and let X be a subset of V. The functor $V \backslash X$ yields a subset of V and is defined by:
(Def. 3) $\quad V \backslash X=\Omega_{V} \backslash X$.
Let F be a field, let V be a vector space over F, let l be a linear combination of V, and let X be a subset of V. Then $l^{\circ} X$ is a subset of F.

In the sequel l is a linear combination of V.
Let F be a field and let V be a vector space over F. Note that there exists a subset of V which is linearly dependent.

Let F be a field, let V be a vector space over F, let l be a linear combination of V, and let A be a subset of V. The functor $l[A]$ yields a linear combination of A and is defined by:
(Def. 4) $\quad l[A]=l \upharpoonright A+\cdot\left(V \backslash A \longmapsto 0_{F}\right)$.
The following propositions are true:
(24) $l=l[$ the support of $l]$.
(25) For every subset A of V and for every element v of V such that $v \in A$ holds $l[A](v)=l(v)$.
(26) For every subset A of V and for every element v of V such that $v \notin A$ holds $l[A](v)=0_{F}$.
(27) For all subsets A, B of V and for every linear combination l of B such that $A \subseteq B$ holds $l=l[A]+l[B \backslash A]$.

Let F be a field, let V be a vector space over F, let l be a linear combination of V, and let X be a subset of V. Observe that $l^{\circ} X$ is finite.

Let V, W be non empty 1 -sorted structures, let T be a function from V into W, and let X be a subset of W. Then $T^{-1}(X)$ is a subset of V.

We now state the proposition
(28) For every subset X of V such that X misses the support of l holds $l^{\circ} X \subseteq\left\{0_{F}\right\}$.
Let F be a field, let V, W be vector spaces over F, let l be a linear combination of V, and let T be a linear transformation from V to W. The functor $T^{@} l$ yielding a linear combination of W is defined by:
(Def. 5) For every element w of W holds $\left(T^{@} l\right)(w)=\sum\left(l^{\circ} T^{-1}(\{w\})\right)$.
One can prove the following propositions:
(29) $\quad T^{@} l$ is a linear combination of T° (the support of l).
(30) The support of $T^{@} l \subseteq T^{\circ}$ (the support of l).
(31) Let l, m be linear combinations of V. Suppose the support of l misses the support of m. Then the support of $l+m=($ the support of $l) \cup($ the support of m).
(32) Let l, m be linear combinations of V. Suppose the support of l misses the support of m. Then the support of $l-m=$ (the support of l) \cup (the support of m).
(33) For all subsets A, B of V such that $A \subseteq B$ and B is a basis of V holds V is the direct sum of $\operatorname{Lin}(A)$ and $\operatorname{Lin}(B \backslash A)$.
(34) Let A be a subset of V, l be a linear combination of A, and v be an element of V. Suppose $T \upharpoonright A$ is one-to-one and $v \in A$. Then there exists a subset X of V such that X misses A and $T^{-1}(\{T(v)\})=\{v\} \cup X$.
(35) For every subset X of V such that X misses the support of l and $X \neq \emptyset$ holds $l^{\circ} X=\left\{0_{F}\right\}$.
(36) For every element w of W such that $w \in$ the support of $T^{@} l$ holds $T^{-1}(\{w\})$ meets the support of l.
(37) Let v be an element of V. Suppose $T \upharpoonright($ the support of l) is one-to-one and $v \in$ the support of l. Then $\left(T^{@} l\right)(T(v))=l(v)$.
(38) Let G be a finite sequence of elements of V. Suppose $\operatorname{rng} G=$ the support of l and $T \upharpoonright($ the support of $l)$ is one-to-one. Then $T \cdot(l G)=\left(T^{@} l\right)(T \cdot G)$.
(39) If $T \upharpoonright($ the support of $l)$ is one-to-one, then $T^{\circ}($ the support of $l)=$ the support of $T^{@} l$.
(40) Let A be a subset of V, B be a basis of V, and l be a linear combination of $B \backslash A$. If A is a basis of $\operatorname{ker} T$ and $A \subseteq B$, then $T\left(\sum l\right)=\sum\left(T^{@} l\right)$.
(41) Let X be a subset of V. Suppose X is linearly dependent. Then there exists a linear combination l of X such that the support of $l \neq \emptyset$ and

$$
\sum l=0_{V} .
$$

Let F be a field, let V, W be vector spaces over F, let X be a subset of V, let T be a linear transformation from V to W, and let l be a linear combination of $T^{\circ} \mathrm{X}$. Let us assume that $T \upharpoonright X$ is one-to-one. The functor $T \# l$ yields a linear combination of X and is defined as follows:
(Def. 6) $T \# l=l \cdot T+\cdot\left(V \backslash X \longmapsto 0_{F}\right)$.
We now state two propositions:
(42) Let X be a subset of V, l be a linear combination of $T^{\circ} X$, and v be an element of V. If $v \in X$ and $T \upharpoonright X$ is one-to-one, then $(T \# l)(v)=l(T(v))$.
(43) For every subset X of V and for every linear combination l of $T^{\circ} X$ such that $T \upharpoonright X$ is one-to-one holds $T{ }^{@} T \# l=l$.

4. The Rank+Nullity Theorem

Let F be a field, let V, W be finite dimensional vector spaces over F, and let T be a linear transformation from V to W. The functor $\operatorname{rank} T$ yielding a natural number is defined by:
(Def. 7) $\quad \operatorname{rank} T=\operatorname{dim}(\operatorname{im} T)$.
The functor nullity T yields a natural number and is defined by:
(Def. 8) nullity $T=\operatorname{dim}(\operatorname{ker} T)$.
Next we state two propositions:
(44) Let V, W be finite dimensional vector spaces over F and T be a linear transformation from V to W. Then $\operatorname{dim}(V)=\operatorname{rank} T+\operatorname{nullity} T$.
(45) Let V, W be finite dimensional vector spaces over F and T be a linear transformation from V to W. If T is one-to-one, then $\operatorname{dim}(V)=\operatorname{rank} T$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.
[5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[12] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[14] Serge Lang. Algebra. Springer, 3rd edition, 2005.
[15] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339345, 1996.
[16] Michał Muzalewski. Rings and modules - part II. Formalized Mathematics, 2(4):579-585, 1991.
[17] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[20] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[22] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[23] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.
[24] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[25] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.
[26] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990.
[27] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.
[28] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871-876, 1990.
[29] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[30] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
[31] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[32] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[33] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[34] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[35] Mariusz Żynel. The Steinitz theorem and the dimension of a vector space. Formalized Mathematics, 5(3):423-428, 1996.

Received July 31, 2007

