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Summary. In this article, we define the partial differentiation of functions

of real variable and prove the linearity of this operator [18].
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The notation and terminology used here are introduced in the following papers:

[21], [24], [25], [5], [26], [7], [6], [15], [13], [3], [1], [20], [11], [22], [23], [14], [8],

[2], [4], [27], [28], [16], [9], [19], [17], [12], and [10].

1. Preliminaries

Let i, n be elements of N. The functor proj(i, n) yielding a function from

Rn into R is defined by:

(Def. 1) For every element x of Rn holds (proj(i, n))(x) = x(i).

Next we state two propositions:

(1) dom proj(1, 1) = R1 and rng proj(1, 1) = R and for every element x of R
holds (proj(1, 1))(〈x〉) = x and (proj(1, 1))−1(x) = 〈x〉.

(2)(i) (proj(1, 1))−1 is a function from R into R1,

(ii) (proj(1, 1))−1 is one-to-one,

(iii) dom((proj(1, 1))−1) = R,
(iv) rng((proj(1, 1))−1) = R1, and
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(v) there exists a function g from R into R1 such that g is bijective and

(proj(1, 1))−1 = g.

One can check that proj(1, 1) is bijective.

Let g be a partial function from R to R. The functor 〈g〉 yields a partial

function from R1 to R1 and is defined as follows:

(Def. 2) 〈g〉 = (proj(1, 1))−1 · g · proj(1, 1).

Let n be an element of N and let g be a partial function from Rn to R. The

functor 〈g〉 yielding a partial function from Rn to R1 is defined as follows:

(Def. 3) 〈g〉 = (proj(1, 1))−1 · g.
Let i, n be elements of N. The functor Proj(i, n) yielding a function from

〈En, ‖ · ‖〉 into 〈E1, ‖ · ‖〉 is defined as follows:

(Def. 4) For every point x of 〈En, ‖ · ‖〉 holds (Proj(i, n))(x) = 〈(proj(i, n))(x)〉.
Let i be an element of N and let x be a finite sequence of elements of R. The

functor reproj(i, x) yielding a function is defined as follows:

(Def. 5) dom reproj(i, x) = R and for every element r of R holds

(reproj(i, x))(r) = Replace(x, i, r).

Let n, i be elements of N and let x be an element of Rn. Then reproj(i, x)

is a function from R into Rn.

Let n, i be elements of N and let x be a point of 〈En, ‖ · ‖〉. The functor

reproj(i, x) yielding a function from 〈E 1, ‖ · ‖〉 into 〈En, ‖ · ‖〉 is defined by the

condition (Def. 6).

(Def. 6) Let r be an element of 〈E1, ‖ · ‖〉. Then there exists an element q of R
and there exists an element y of Rn such that r = 〈q〉 and y = x and

(reproj(i, x))(r) = (reproj(i, y))(q).

Let m, n be non empty elements of N, let f be a partial function from Rm

to Rn, and let x be an element of Rm. We say that f is differentiable in x if

and only if the condition (Def. 7) is satisfied.

(Def. 7) There exists a partial function g from 〈Em, ‖·‖〉 to 〈En, ‖·‖〉 and there ex-

ists a point y of 〈Em, ‖·‖〉 such that f = g and x = y and g is differentiable

in y.

Let m, n be non empty elements of N, let f be a partial function from Rm

to Rn, and let x be an element of Rm. Let us assume that f is differentiable

in x. The functor f ′(x) yields a function from Rm into Rn and is defined as

follows:

(Def. 8) There exists a partial function g from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉 and there

exists a point y of 〈Em, ‖ · ‖〉 such that f = g and x = y and f ′(x) = g′(y).

We now state four propositions:

(3) Let I be a function from R into R1. Suppose I = (proj(1, 1))−1. Then
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(i) for every vector x of 〈E1, ‖ · ‖〉 and for every element y of R such that

x = I(y) holds ‖x‖ = |y|,
(ii) for all vectors x, y of 〈E1, ‖ · ‖〉 and for all elements a, b of R such that

x = I(a) and y = I(b) holds x+ y = I(a+ b),

(iii) for every vector x of 〈E1, ‖ · ‖〉 and for every element y of R and for

every real number a such that x = I(y) holds a · x = I(a · y),

(iv) for every vector x of 〈E1, ‖ · ‖〉 and for every element a of R such that

x = I(a) holds −x = I(−a), and

(v) for all vectors x, y of 〈E1, ‖ · ‖〉 and for all elements a, b of R such that

x = I(a) and y = I(b) holds x− y = I(a− b).
(4) Let J be a function from R1 into R. Suppose J = proj(1, 1). Then

(i) for every vector x of 〈E1, ‖ · ‖〉 and for every element y of R such that

J(x) = y holds ‖x‖ = |y|,
(ii) for all vectors x, y of 〈E1, ‖ · ‖〉 and for all elements a, b of R such that

J(x) = a and J(y) = b holds J(x+ y) = a+ b,

(iii) for every vector x of 〈E1, ‖ · ‖〉 and for every element y of R and for

every real number a such that J(x) = y holds J(a · x) = a · y,
(iv) for every vector x of 〈E1, ‖ · ‖〉 and for every element a of R such that

J(x) = a holds J(−x) = −a, and

(v) for all vectors x, y of 〈E1, ‖ · ‖〉 and for all elements a, b of R such that

J(x) = a and J(y) = b holds J(x− y) = a− b.
(5) Let I be a function from R into R1 and J be a function from R1 into

R. Suppose I = (proj(1, 1))−1 and J = proj(1, 1). Then

(i) for every rest R of 〈E1, ‖ · ‖〉, 〈E1, ‖ · ‖〉 holds J · R · I is a rest, and

(ii) for every linear operator L from 〈E 1, ‖ · ‖〉 into 〈E1, ‖ · ‖〉 holds J · L · I
is a linear function.

(6) Let I be a function from R into R1 and J be a function from R1 into

R. Suppose I = (proj(1, 1))−1 and J = proj(1, 1). Then

(i) for every rest R holds I · R · J is a rest of 〈E 1, ‖ · ‖〉, 〈E1, ‖ · ‖〉, and

(ii) for every linear function L holds I · L · J is a bounded linear operator

from 〈E1, ‖ · ‖〉 into 〈E1, ‖ · ‖〉.
In the sequel f is a partial function from 〈E 1, ‖ · ‖〉 to 〈E1, ‖ · ‖〉, g is a partial

function from R to R, x is a point of 〈E 1, ‖ · ‖〉, and y is an element of R.

We now state four propositions:

(7) If f = 〈g〉 and x = 〈y〉 and f is differentiable in x, then g is differentiable

in y and g′(y) = (proj(1, 1) · f ′(x) · (proj(1, 1))−1)(1).

(8) If f = 〈g〉 and x = 〈y〉 and g is differentiable in y, then f is differentiable

in x and f ′(x)(〈1〉) = 〈g′(y)〉.
(9) If f = 〈g〉 and x = 〈y〉, then f is differentiable in x iff g is differentiable

in y.
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(10) If f = 〈g〉 and x = 〈y〉 and f is differentiable in x, then f ′(x)(〈1〉) =

〈g′(y)〉.

2. Partial Differentiation

For simplicity, we adopt the following rules: m, n are non empty elements

of N, i, j are elements of N, f is a partial function from 〈En, ‖ · ‖〉 to 〈E1, ‖ · ‖〉, g
is a partial function from Rn to R, x is a point of 〈En, ‖ · ‖〉, and y is an element

of Rn.

Let n, m be non empty elements of N, let i be an element of N, let f be a

partial function from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and let x be a point of 〈Em, ‖ · ‖〉.
We say that f is partially differentiable in x w.r.t. i if and only if:

(Def. 9) f · reproj(i, x) is differentiable in (Proj(i,m))(x).

Let m, n be non empty elements of N, let i be an element of N, let f be a

partial function from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and let x be a point of 〈Em, ‖ · ‖〉.
The functor partdiff(f, x, i) yielding a point of the real norm space of bounded

linear operators from 〈E1, ‖ · ‖〉 into 〈En, ‖ · ‖〉 is defined as follows:

(Def. 10) partdiff(f, x, i) = (f · reproj(i, x))′((Proj(i,m))(x)).

Let n be a non empty element of N, let i be an element of N, let f be a

partial function from Rn to R, and let x be an element of Rn. We say that f is

partially differentiable in x w.r.t. i if and only if:

(Def. 11) f · reproj(i, x) is differentiable in (proj(i, n))(x).

Let n be a non empty element of N, let i be an element of N, let f be a

partial function from Rn to R, and let x be an element of Rn. The functor

partdiff(f, x, i) yields a real number and is defined by:

(Def. 12) partdiff(f, x, i) = (f · reproj(i, x))′((proj(i, n))(x)).

We now state several propositions:

(11) Proj(i, n) = (proj(1, 1))−1 · proj(i, n).

(12) If x = y, then reproj(i, y) · proj(1, 1) = reproj(i, x).

(13) If f = 〈g〉 and x = y, then 〈g · reproj(i, y)〉 = f · reproj(i, x).

(14) Suppose f = 〈g〉 and x = y. Then f is partially differentiable in x w.r.t.

i if and only if g is partially differentiable in y w.r.t. i.

(15) If f = 〈g〉 and x = y and f is partially differentiable in x w.r.t. i, then

(partdiff(f, x, i))(〈1〉) = 〈partdiff(g, y, i)〉.
Let m, n be non empty elements of N, let i be an element of N, let f be a

partial function from Rm to Rn, and let x be an element of Rm. We say that

f is partially differentiable in x w.r.t. i if and only if the condition (Def. 13) is

satisfied.
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(Def. 13) There exists a partial function g from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉 and there

exists a point y of 〈Em, ‖ · ‖〉 such that f = g and x = y and g is partially

differentiable in y w.r.t. i.

Let m, n be non empty elements of N, let i be an element of N, let f be a

partial function from Rm to Rn, and let x be an element of Rm. Let us assume

that f is partially differentiable in x w.r.t. i. The functor partdiff(f, x, i)

yielding an element of Rn is defined as follows:

(Def. 14) There exists a partial function g from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉 and

there exists a point y of 〈Em, ‖ · ‖〉 such that f = g and x = y and

partdiff(f, x, i) = (partdiff(g, y, i))(〈1〉).
One can prove the following four propositions:

(16) Let m, n be non empty elements of N, F be a partial function from

〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, G be a partial function from Rm to Rn, x be a

point of 〈Em, ‖ · ‖〉, and y be an element of Rm. Suppose F = G and

x = y. Then F is partially differentiable in x w.r.t. i if and only if G is

partially differentiable in y w.r.t. i.

(17) Let m, n be non empty elements of N, F be a partial function from

〈Em, ‖·‖〉 to 〈En, ‖·‖〉, G be a partial function fromRm toRn, x be a point

of 〈Em, ‖ · ‖〉, and y be an element of Rm. Suppose F = G and x = y and

F is partially differentiable in x w.r.t. i. Then (partdiff(F, x, i))(〈1〉) =

partdiff(G, y, i).

(18) Let g1 be a partial function fromRn to R1. Suppose g1 = 〈g〉. Then g1 is

partially differentiable in y w.r.t. i if and only if g is partially differentiable

in y w.r.t. i.

(19) Let g1 be a partial function from Rn to R1. Suppose g1 = 〈g〉 and

g1 is partially differentiable in y w.r.t. i. Then partdiff(g1, y, i) =

〈partdiff(g, y, i)〉.

3. Linearity of Partial Differential Operator

For simplicity, we use the following convention: X is a set, r is a real number,

f , f1, f2 are partial functions from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, g, g1, g2 are partial

functions from Rn to R, h is a partial function from Rm to Rn, x is a point of

〈Em, ‖ · ‖〉, y is an element of Rn, and z is an element of Rm.

Let m, n be non empty elements of N, let i, j be elements of N, let f be a

partial function from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and let x be a point of 〈Em, ‖ · ‖〉.
We say that f is partially differentiable in x w.r.t. i and j if and only if:

(Def. 15) Proj(j, n) · f · reproj(i, x) is differentiable in (Proj(i,m))(x).

Let m, n be non empty elements of N, let i, j be elements of N, let f be a

partial function from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and let x be a point of 〈Em, ‖ · ‖〉.
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The functor partdiff(f, x, i, j) yields a point of the real norm space of bounded

linear operators from 〈E1, ‖ · ‖〉 into 〈E1, ‖ · ‖〉 and is defined by:

(Def. 16) partdiff(f, x, i, j) = (Proj(j, n) · f · reproj(i, x))′((Proj(i,m))(x)).

Let m, n be non empty elements of N, let i, j be elements of N, let h be a

partial function from Rm to Rn, and let z be an element of Rm. We say that

h is partially differentiable in z w.r.t. i and j if and only if:

(Def. 17) proj(j, n) · h · reproj(i, z) is differentiable in (proj(i,m))(z).

Let m, n be non empty elements of N, let i, j be elements of N, let h be a

partial function from Rm to Rn, and let z be an element of Rm. The functor

partdiff(h, z, i, j) yielding a real number is defined as follows:

(Def. 18) partdiff(h, z, i, j) = (proj(j, n) · h · reproj(i, z))′((proj(i,m))(z)).

The following propositions are true:

(20) Let m, n be non empty elements of N, F be a partial function from

〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, G be a partial function from Rm to Rn, x be a

point of 〈Em, ‖ · ‖〉, and y be an element of Rm. Suppose F = G and

x = y. Then F is differentiable in x if and only if G is differentiable in y.

(21) Let m, n be non empty elements of N, F be a partial function from

〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, G be a partial function from Rm to Rn, x be a

point of 〈Em, ‖ · ‖〉, and y be an element of Rm. If F = G and x = y and

F is differentiable in x, then F ′(x) = G′(y).

(22) If f = h and x = z, then Proj(j, n) · f · reproj(i, x) = 〈proj(j, n) · h ·
reproj(i, z)〉.

(23) Suppose f = h and x = z. Then f is partially differentiable in x w.r.t. i

and j if and only if h is partially differentiable in z w.r.t. i and j.

(24) If f = h and x = z and f is partially differentiable in x w.r.t. i and j,

then (partdiff(f, x, i, j))(〈1〉) = 〈partdiff(h, z, i, j)〉.
Let m, n be non empty elements of N, let i be an element of N, let f be a

partial function from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and let X be a set. We say that

f is partially differentiable on X w.r.t. i if and only if:

(Def. 19) X ⊆ dom f and for every point x of 〈Em, ‖ · ‖〉 such that x ∈ X holds

f�X is partially differentiable in x w.r.t. i.

We now state the proposition

(25) If f is partially differentiable on X w.r.t. i, then X is a subset of

〈Em, ‖ · ‖〉.
Let m, n be non empty elements of N, let i be an element of N, let f be

a partial function from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and let us consider X. Let

us assume that f is partially differentiable on X w.r.t. i. The functor f�iX
yielding a partial function from 〈Em, ‖ · ‖〉 to the real norm space of bounded

linear operators from 〈E1, ‖ · ‖〉 into 〈En, ‖ · ‖〉 is defined by:
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(Def. 20) dom(f�iX) = X and for every point x of 〈Em, ‖ · ‖〉 such that x ∈ X
holds (f�iX)x = partdiff(f, x, i).

The following propositions are true:

(26) (f1 + f2) · reproj(i, x) = f1 · reproj(i, x) + f2 · reproj(i, x) and (f1 − f2) ·
reproj(i, x) = f1 · reproj(i, x) − f2 · reproj(i, x).

(27) r (f · reproj(i, x)) = (r f) · reproj(i, x).

(28) Suppose f1 is partially differentiable in x w.r.t. i and f2 is partially

differentiable in x w.r.t. i. Then f1 + f2 is partially differentiable in x

w.r.t. i and partdiff(f1 + f2, x, i) = partdiff(f1, x, i) + partdiff(f2, x, i).

(29) Suppose g1 is partially differentiable in y w.r.t. i and g2 is partially

differentiable in y w.r.t. i. Then g1 + g2 is partially differentiable in y

w.r.t. i and partdiff(g1 + g2, y, i) = partdiff(g1, y, i) + partdiff(g2, y, i).

(30) Suppose f1 is partially differentiable in x w.r.t. i and f2 is partially

differentiable in x w.r.t. i. Then f1 − f2 is partially differentiable in x

w.r.t. i and partdiff(f1 − f2, x, i) = partdiff(f1, x, i) − partdiff(f2, x, i).

(31) Suppose g1 is partially differentiable in y w.r.t. i and g2 is partially

differentiable in y w.r.t. i. Then g1 − g2 is partially differentiable in y

w.r.t. i and partdiff(g1 − g2, y, i) = partdiff(g1, y, i) − partdiff(g2, y, i).

(32) Suppose f is partially differentiable in x w.r.t. i. Then r f is partially

differentiable in x w.r.t. i and partdiff(r f, x, i) = r · partdiff(f, x, i).

(33) Suppose g is partially differentiable in y w.r.t. i. Then r g is partially

differentiable in y w.r.t. i and partdiff(r g, y, i) = r · partdiff(g, y, i).
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