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Summary. In this article we define the Riemann indefinite integral of

functions of real variable and prove the linearity of that [1]. And we give some

examples of the indefinite integral of some elementary functions. Furthermore,

also the theorem about integral operation and uniform convergent sequence of

functions is proved.
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The papers [24], [25], [3], [23], [5], [13], [2], [26], [7], [21], [8], [10], [4], [17], [16],

[15], [14], [19], [20], [6], [9], [11], [18], [12], [27], and [22] provide the terminology

and notation for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: a, b, r are real numbers, A is a

non empty set, X, x are sets, f , g, F , G are partial functions from R to R, and

n is an element of N.

Next we state a number of propositions:

1This work has been partially supported by the MEXT grant Grant-in-Aid for Young

Scientists (B)16700156.
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(1) Let f , g be functions from A into R. Suppose rng f is upper bounded

and rng g is upper bounded and for every set x such that x ∈ A holds

|f(x)−g(x)| ≤ a. Then sup rng f−suprng g ≤ a and sup rng g−sup rng f ≤
a.

(2) Let f , g be functions from A into R. Suppose rng f is lower bounded

and rng g is lower bounded and for every set x such that x ∈ A holds

|f(x)−g(x)| ≤ a. Then inf rng f−inf rng g ≤ a and inf rng g−inf rng f ≤ a.
(3) If f�X is bounded on X, then f is bounded on X.

(4) For every real number x such that x ∈ X and f�X is differentiable in x

holds f is differentiable in x.

(5) If f�X is differentiable on X, then f is differentiable on X.

(6) Suppose f is differentiable on X and g is differentiable on X. Then

f + g is differentiable on X and f − g is differentiable on X and f g is

differentiable on X.

(7) If f is differentiable on X, then r f is differentiable on X.

(8) Suppose for every set x such that x ∈ X holds g(x) 6= 0 and f is

differentiable on X and g is differentiable on X. Then f
g is differentiable

on X.

(9) If for every set x such that x ∈ X holds f(x) 6= 0 and f is differentiable

on X, then 1
f is differentiable on X.

(10) Suppose a ≤ b and [′a, b′] ⊆ X and F is differentiable on X and F ′�X
is integrable on [′a, b′] and F ′�X is bounded on [′a, b′]. Then F (b) =
b∫

a

(F ′�X )(x)dx+ F (a).

2. The Definition of Indefinite Integral

Let X be a set and let f be a partial function from R to R. The functor

IntegralFuncs(f,X) yields a set and is defined by the condition (Def. 1).

(Def. 1) x ∈ IntegralFuncs(f,X) if and only if there exists a partial function F

from R to R such that x = F and F is differentiable on X and F ′�X = f�X.
Let X be a set and let F , f be partial functions from R to R. We say that

F is an integral of f on X if and only if:

(Def. 2) F ∈ IntegralFuncs(f,X).

The following propositions are true:

(11) If F is an integral of f on X, then X ⊆ domF.

(12) Suppose F is an integral of f on X and G is an integral of g on X. Then

F +G is an integral of f + g on X and F −G is an integral of f − g on X.
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(13) If F is an integral of f on X, then r F is an integral of r f on X.

(14) If F is an integral of f on X and G is an integral of g on X, then F G

is an integral of f G+ F g on X.

(15) Suppose for every set x such that x ∈ X holds G(x) 6= 0 and F is an

integral of f on X and G is an integral of g on X. Then F
G is an integral

of f G−F g
G G on X.

(16) Suppose that

(i) a ≤ b,
(ii) [′a, b′] ⊆ dom f,

(iii) f is continuous on [′a, b′],
(iv) ]a, b[ ⊆ domF, and

(v) for every real number x such that x ∈ ]a, b[ holds F (x) =

x∫

a

f(x)dx+

F (a).

Then F is an integral of f on ]a, b[.

(17) Let x, x0 be real numbers. Suppose f is continuous on [a, b] and x ∈ ]a, b[

and x0 ∈ ]a, b[ and F is an integral of f on ]a, b[. Then F (x) =

x∫

x0

f(x)dx+

F (x0).

(18) Suppose a ≤ b and [′a, b′] ⊆ X and F is an integral of f on X and f is

integrable on [′a, b′] and f is bounded on [′a, b′]. Then F (b) =

b∫

a

f(x)dx+

F (a).

(19) Suppose a ≤ b and [a, b] ⊆ X and f is continuous on X. Then f is

continuous on [′a, b′] and f is integrable on [′a, b′] and f is bounded on

[′a, b′].

(20) If a ≤ b and [a, b] ⊆ X and f is continuous on X and F is an integral of

f on X, then F (b) =

b∫

a

f(x)dx+ F (a).

(21) Suppose that b ≤ a and [′b, a′] ⊆ X and f is integrable on [′b, a′] and

g is integrable on [′b, a′] and f is bounded on [′b, a′] and g is bounded

on [′b, a′] and X ⊆ dom f and X ⊆ dom g and F is an integral of f on

X and G is an integral of g on X. Then F (a) · G(a) − F (b) · G(b) =
a∫

b

(f G)(x)dx +

a∫

b

(F g)(x)dx.

(22) Suppose that b ≤ a and [b, a] ⊆ X and X ⊆ dom f and X ⊆ dom g and
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f is continuous on X and g is continuous on X and F is an integral of f

on X and G is an integral of g on X. Then F (a) · G(a) − F (b) · G(b) =
a∫

b

(f G)(x)dx +

a∫

b

(F g)(x)dx.

3. Examples of Indefinite Integral

We now state several propositions:

(23) The function sin is an integral of the function cos on R.

(24) (The function sin)(b)−(the function sin)(a) =

b∫

a

(the function cos)(x)dx.

(25) (−1) (the function cos) is an integral of the function sin on R.

(26) (The function cos)(a)−(the function cos)(b) =

b∫

a

(the function sin)(x)dx.

(27) The function exp is an integral of the function exp on R.

(28) (The function exp)(b)−(the function exp)(a) =

b∫

a

(the function exp)(x)dx.

(29) n+1
Z is an integral of (n+ 1) nZ on R.

(30) (n+1
Z )(b)− (n+1

Z )(a) =

b∫

a

((n+ 1) nZ)(x)dx.

4. Uniform Convergent Functional Sequence

We now state the proposition

(31) Let H be a sequence of partial functions from R into R and r1 be a

sequence of real numbers. Suppose that

(i) a < b,

(ii) for every element n of N holds H(n) is integrable on [′a, b′] and H(n)

is bounded on [′a, b′] and r1(n) =

b∫

a

H(n)(x)dx, and

(iii) H is uniform-convergent on [′a, b′].
Then lim[′a,b′]H is bounded on [′a, b′] and lim[′a,b′]H is integrable on [′a, b′]

and r1 is convergent and lim r1 =

b∫

a

lim
[′a,b′]

H(x)dx.
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