Riemann Indefinite Integral of Functions of Real Variable ${ }^{1}$

Yasunari Shidama
Shinshu University
Nagano, Japan

Noboru Endou
Gifu National College of Technology
Japan

Katsumi Wasaki
Shinshu University
Nagano, Japan

Abstract

Summary. In this article we define the Riemann indefinite integral of functions of real variable and prove the linearity of that [1]. And we give some examples of the indefinite integral of some elementary functions. Furthermore, also the theorem about integral operation and uniform convergent sequence of functions is proved.

The papers [24], [25], [3], [23], [5], [13], [2], [26], [7], [21], [8], [10], [4], [17], [16], [15], [14], [19], [20], [6], [9], [11], [18], [12], [27], and [22] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: a, b, r are real numbers, A is a non empty set, X, x are sets, f, g, F, G are partial functions from \mathbb{R} to \mathbb{R}, and n is an element of \mathbb{N}.

Next we state a number of propositions:

[^0](1) Let f, g be functions from A into \mathbb{R}. Suppose $\operatorname{rng} f$ is upper bounded and $\operatorname{rng} g$ is upper bounded and for every set x such that $x \in A$ holds $|f(x)-g(x)| \leq a$. Then sup rng $f-\sup \operatorname{rng} g \leq a$ and sup rng $g-\sup \operatorname{rng} f \leq$ a.
(2) Let f, g be functions from A into \mathbb{R}. Suppose $\operatorname{rng} f$ is lower bounded and $\operatorname{rng} g$ is lower bounded and for every set x such that $x \in A$ holds $|f(x)-g(x)| \leq a$. Then inf rng $f-\inf \operatorname{rng} g \leq a$ and inf rng $g-\inf \operatorname{rng} f \leq a$.
(3) If $f \upharpoonright X$ is bounded on X, then f is bounded on X.
(4) For every real number x such that $x \in X$ and $f \upharpoonright X$ is differentiable in x holds f is differentiable in x.
(5) If $f \upharpoonright X$ is differentiable on X, then f is differentiable on X.
(6) Suppose f is differentiable on X and g is differentiable on X. Then $f+g$ is differentiable on X and $f-g$ is differentiable on X and $f g$ is differentiable on X.
(7) If f is differentiable on X, then $r f$ is differentiable on X.
(8) Suppose for every set x such that $x \in X$ holds $g(x) \neq 0$ and f is differentiable on X and g is differentiable on X. Then $\frac{f}{g}$ is differentiable on X.
(9) If for every set x such that $x \in X$ holds $f(x) \neq 0$ and f is differentiable on X, then $\frac{1}{f}$ is differentiable on X.
(10) Suppose $a \leq b$ and $\left.{ }^{\prime} a, b^{\prime}\right] \subseteq X$ and F is differentiable on X and $F_{\lceil X}^{\prime}$ is integrable on $\left[{ }^{\prime} a, b^{\prime}\right]$ and $F_{\uparrow X}^{\prime}$ is bounded on $\left[{ }^{\prime} a, b^{\prime}\right]$. Then $F(b)=$ $\int_{a}^{b}\left(F_{\lceil X}^{\prime}\right)(x) d x+F(a)$.

2. The Definition of Indefinite Integral

Let X be a set and let f be a partial function from \mathbb{R} to \mathbb{R}. The functor IntegralFuncs (f, X) yields a set and is defined by the condition (Def. 1).
(Def. 1) $x \in \operatorname{IntegralFuncs}(f, X)$ if and only if there exists a partial function F from \mathbb{R} to \mathbb{R} such that $x=F$ and F is differentiable on X and $F_{\lceil X}^{\prime}=f \upharpoonright X$.
Let X be a set and let F, f be partial functions from \mathbb{R} to \mathbb{R}. We say that F is an integral of f on X if and only if:
(Def. 2) $\quad F \in \operatorname{IntegralFuncs}(f, X)$.
The following propositions are true:
(11) If F is an integral of f on X, then $X \subseteq \operatorname{dom} F$.
(12) Suppose F is an integral of f on X and G is an integral of g on X. Then $F+G$ is an integral of $f+g$ on X and $F-G$ is an integral of $f-g$ on X.
(13) If F is an integral of f on X, then $r F$ is an integral of $r f$ on X.
(14) If F is an integral of f on X and G is an integral of g on X, then $F G$ is an integral of $f G+F g$ on X.
(15) Suppose for every set x such that $x \in X$ holds $G(x) \neq 0$ and F is an integral of f on X and G is an integral of g on X. Then $\frac{F}{G}$ is an integral of $\frac{f G-F g}{G G}$ on X.
(16) Suppose that
(i) $a \leq b$,
(ii) $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq \operatorname{dom} f$,
(iii) f is continuous on $\left[{ }^{\prime} a, b^{\prime}\right]$,
(iv) $] a, b[\subseteq \operatorname{dom} F$, and
(v) for every real number x such that $x \in] a, b\left[\right.$ holds $F(x)=\int_{a}^{x} f(x) d x+$ $F(a)$.
Then F is an integral of f on $] a, b[$.
(17) Let x, x_{0} be real numbers. Suppose f is continuous on $[a, b]$ and $\left.x \in\right] a, b[$ and $\left.x_{0} \in\right] a, b[$ and F is an integral of f on $] a, b\left[\right.$. Then $F(x)=\int_{x_{0}}^{x} f(x) d x+$ $F\left(x_{0}\right)$.
(18) Suppose $a \leq b$ and $\left[{ }^{\prime} a, b^{\prime}\right] \subseteq X$ and F is an integral of f on X and f is integrable on [' $\left.a, b^{\prime}\right]$ and f is bounded on $\left[{ }^{\prime} a, b^{\prime}\right]$. Then $F(b)=\int_{a}^{b} f(x) d x+$ $F(a)$.
(19) Suppose $a \leq b$ and $[a, b] \subseteq X$ and f is continuous on X. Then f is continuous on [' $\left.a, b^{\prime}\right]$ and f is integrable on $\left[{ }^{\prime} a, b^{\prime}\right]$ and f is bounded on [' $\left.a, b^{\prime}\right]$.
(20) If $a \leq b$ and $[a, b] \subseteq X$ and f is continuous on X and F is an integral of f on X, then $F(b)=\int_{a}^{b} f(x) d x+F(a)$.
(21) Suppose that $b \leq a$ and $\left[{ }^{\prime} b, a^{\prime}\right] \subseteq X$ and f is integrable on $\left[{ }^{\prime} b, a^{\prime}\right]$ and g is integrable on $\left[' b, a^{\prime}\right]$ and f is bounded on $\left[' b, a^{\prime}\right]$ and g is bounded on $\left[{ }^{\prime} b, a^{\prime}\right]$ and $X \subseteq \operatorname{dom} f$ and $X \subseteq \operatorname{dom} g$ and F is an integral of f on X and G is an integral of g on X. Then $F(a) \cdot G(a)-F(b) \cdot G(b)=$ $\int_{b}^{a}(f G)(x) d x+\int_{b}^{a}(F g)(x) d x$.
(22) Suppose that $b \leq a$ and $[b, a] \subseteq X$ and $X \subseteq \operatorname{dom} f$ and $X \subseteq \operatorname{dom} g$ and
f is continuous on X and g is continuous on X and F is an integral of f on X and G is an integral of g on X. Then $F(a) \cdot G(a)-F(b) \cdot G(b)=$ $\int_{b}^{a}(f G)(x) d x+\int_{b}^{a}(F g)(x) d x$.

3. Examples of Indefinite Integral

We now state several propositions:
(23) The function \sin is an integral of the function \cos on \mathbb{R}.
(24) (The function $\sin)(b)-($ the function $\sin)(a)=\int_{a}^{b}($ the function $\cos)(x) d x$.
(25) (-1) (the function cos) is an integral of the function sin on \mathbb{R}.
(26) (The function $\cos)(a)-($ the function $\cos)(b)=\int_{a}^{b}($ the function $\sin)(x) d x$.
(27) The function exp is an integral of the function exp on \mathbb{R}.
(28) (The function $\exp)(b)-($ the function $\exp)(a)=\int_{a}^{b}$ (the function $\left.\exp \right)(x) d x$.
(29) ${\underset{\mathbb{Z}}{ }}_{n+1}^{\text {is an integral of }(n+1)}{ }_{\mathbb{Z}}^{n}$ on \mathbb{R}.
(30)
$\left({\underset{\mathbb{Z}}{ }}_{n+1}^{)}(b)-\left({ }_{\mathbb{Z}}^{n+1}\right)(a)=\int_{a}^{b}\left((n+1)_{\mathbb{Z}}^{n}\right)(x) d x\right.$

4. Uniform Convergent Functional Sequence

We now state the proposition
(31) Let H be a sequence of partial functions from \mathbb{R} into \mathbb{R} and r_{1} be a sequence of real numbers. Suppose that
(i) $a<b$,
(ii) for every element n of \mathbb{N} holds $H(n)$ is integrable on [' $\left.a, b^{\prime}\right]$ and $H(n)$ is bounded on $\left[{ }^{\prime} a, b^{\prime}\right]$ and $r_{1}(n)=\int_{a}^{b} H(n)(x) d x$, and
(iii) $\quad H$ is uniform-convergent on $\left[{ }^{\prime} a, b^{\prime}\right]$.

Then $\lim _{\left[{ }^{\prime} a, b^{\prime}\right]} H$ is bounded on $\left[{ }^{\prime} a, b^{\prime}\right]$ and $\lim _{\left[{ }^{\prime} a, b^{\prime}\right]} H$ is integrable on $\left[{ }^{\prime} a, b^{\prime}\right]$ and r_{1} is convergent and $\lim r_{1}=\int_{a}^{b} \lim _{\left[{ }^{\prime} a, b^{\prime}\right]} H(x) d x$.

References

[1] Tom M. Apostol. Mathematical Analysis. Addison-Wesley, 1969.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[10] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[11] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.
[12] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from \mathbb{R} to \mathbb{R} and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.
[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[14] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[15] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[16] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[17] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[18] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.
[19] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[20] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[21] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[22] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
[23] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[24] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[26] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[27] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received June 6, 2007

[^0]: ${ }^{1}$ This work has been partially supported by the MEXT grant Grant-in-Aid for Young Scientists (B) 16700156.

