Basic Properties of Determinants of Square Matrices over a Field ${ }^{1}$

Karol Pa̧k
Institute of Computer Science
University of Białystok
Poland

Summary. In this paper I present basic properties of the determinant of square matrices over a field and selected properties of the sign of a permutation. First, I define the sign of a permutation by the requirement

$$
\operatorname{sgn}(p)=\prod_{1 \leq i<j \leq n} \operatorname{sgn}(p(j)-p(i))
$$

where p is any fixed permutation of a set with n elements. I prove that the sign of a product of two permutations is the same as the product of their signs and show the relation between signs and parity of permutations. Then I consider the determinant of a linear combination of lines, the determinant of a matrix with permutated lines and the determinant of a matrix with a repeated line. Finally, at the end I prove that the determinant of a product of two square matrices is equal to the product of their determinants.

MML identifier: MATRIX11, version: 7.8.04 4.81.962

The articles [21], [12], [27], [18], [13], [28], [7], [10], [8], [3], [4], [19], [25], [24], [16], [20], [11], [6], [5], [14], [22], [15], [31], [23], [26], [32], [1], [29], [9], [2], [17], and [30] provide the terminology and notation for this paper.

[^0]
1. The Sign of a Permutation

For simplicity, we use the following convention: x, X denote sets, i, j, k, l, n, m denote natural numbers, D denotes a non empty set, K denotes a field, a, b denote elements of K, p_{1}, p, q denote elements of the permutations of n-element set, P_{1}, P denote permutations of $\operatorname{Seg} n, F$ denotes a function from $\operatorname{Seg} n$ into Seg $n, p_{2}, p_{3}, q_{2}, p_{4}$ denote elements of the permutations of $(n+2)$-element set, and P_{2} denotes a permutation of $\operatorname{Seg}(n+2)$.

Let X be a set. We introduce 2 Set X as a synonym of TwoElementSets (X).
The following three propositions are true:
(1) $\quad X \in 2 \operatorname{Set} \operatorname{Seg} n$ iff there exist i, j such that $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} n$ and $i<j$ and $X=\{i, j\}$.
(2) $2 \operatorname{Set} \operatorname{Seg} 0=\emptyset$ and $2 \operatorname{Set} \operatorname{Seg} 1=\emptyset$.
(3) For every n such that $n \geq 2$ holds $\{1,2\} \in 2 \operatorname{Set} \operatorname{Seg} n$.

Let us consider n. Observe that $2 \operatorname{Set} \operatorname{Seg}(n+2)$ is non empty and finite.
Let us consider n, x and let p_{1} be an element of the permutations of n element set. Note that $p_{1}(x)$ is natural.

Let us consider K. One can verify that the multiplication of K is unital and the multiplication of K is associative.

Let us consider n, K and let p_{2} be an element of the permutations of $(n+2)$ element set. The functor Part-sgn $\left(p_{2}, K\right)$ yielding a function from $2 \operatorname{Set} \operatorname{Seg}(n+2)$ into the carrier of K is defined by the condition (Def. 1).
(Def. 1) Let i, j be elements of \mathbb{N} such that $i \in \operatorname{Seg}(n+2)$ and $j \in \operatorname{Seg}(n+2)$ and $i<j$. Then
(i) if $p_{2}(i)<p_{2}(j)$, then $\left(\operatorname{Part-sgn}\left(p_{2}, K\right)\right)(\{i, j\})=\mathbf{1}_{K}$, and
(ii) if $p_{2}(i)>p_{2}(j)$, then $\left(\operatorname{Part-sgn}\left(p_{2}, K\right)\right)(\{i, j\})=-\mathbf{1}_{K}$.

One can prove the following proposition
(4) Let X be an element of Fin $2 \operatorname{Set} \operatorname{Seg}(n+2)$. Suppose that for every x such that $x \in X$ holds $\left(\operatorname{Part-\operatorname {sgn}}\left(p_{3}, K\right)\right)(x)=\mathbf{1}_{K}$. Then (the multiplication of $K)-\sum_{X} \operatorname{Part}-\operatorname{sgn}\left(p_{3}, K\right)=\mathbf{1}_{K}$.
In the sequel s denotes an element of $2 \operatorname{Set} \operatorname{Seg}(n+2)$.
The following propositions are true:
(5) $\quad\left(\operatorname{Part-sgn}\left(p_{3}, K\right)\right)(s)=\mathbf{1}_{K}$ or $\left(\operatorname{Part-sgn}\left(p_{3}, K\right)\right)(s)=-\mathbf{1}_{K}$.
(6) For all i, j such that $i \in \operatorname{Seg}(n+2)$ and $j \in \operatorname{Seg}(n+2)$ and $i<j$ and $p_{3}(i)=q_{2}(i)$ and $p_{3}(j)=q_{2}(j)$ holds $\left(\operatorname{Part-sgn}\left(p_{3}, K\right)\right)(\{i, j\})=$ (Part-sgn $\left.\left(q_{2}, K\right)\right)(\{i, j\})$.
(7) Let X be an element of $\operatorname{Fin} 2 \operatorname{Set} \operatorname{Seg}(n+2)$, given p_{3}, q_{2}, and F be a finite set such that $F=\left\{s: s \in X \wedge\left(\operatorname{Part-sgn}\left(p_{3}, K\right)\right)(s) \neq\right.$ $\left.\left(\operatorname{Part-sgn}\left(q_{2}, K\right)\right)(s)\right\}$. Then
(i) if card $F \bmod 2=0$, then (the multiplication of $K)-\sum_{X} \operatorname{Part}-\operatorname{sgn}\left(p_{3}, K\right)=$ (the multiplication of $K)-\sum_{X} \operatorname{Part-\operatorname {sgn}}\left(q_{2}, K\right)$, and
(ii) if card $F \bmod 2=1$, then (the multiplication of $K)-\sum_{X} \operatorname{Part}-\operatorname{sgn}\left(p_{3}, K\right)=$ $-\left((\right.$ the multiplication of $\left.K)-\sum_{X} \operatorname{Part-sgn}\left(q_{2}, K\right)\right)$.
(8) Let P be a permutation of $\operatorname{Seg} n$. Suppose P is a transposition. Let given i, j. Suppose $i<j$. Then $P(i)=j$ if and only if the following conditions are satisfied:
(i) $i \in \operatorname{dom} P$,
(ii) $j \in \operatorname{dom} P$,
(iii) $P(i)=j$,
(iv) $P(j)=i$, and
(v) for every k such that $k \neq i$ and $k \neq j$ and $k \in \operatorname{dom} P$ holds $P(k)=k$.
(9) Let given $p_{3}, q_{2}, p_{4}, i, j$. Suppose $p_{4}=p_{3} \cdot q_{2}$ and q_{2} is a transposition and $q_{2}(i)=j$ and $i<j$. Let given s. If $\left(\operatorname{Part-sgn}\left(p_{3}, K\right)\right)(s) \neq$ $\left(\operatorname{Part}-\operatorname{sgn}\left(p_{4}, K\right)\right)(s)$, then $i \in s$ or $j \in s$.
(10) Let given $p_{3}, q_{2}, p_{4}, i, j, K$. Suppose $p_{4}=p_{3} \cdot q_{2}$ and q_{2} is a transposition and $q_{2}(i)=j$ and $i<j$ and $\mathbf{1}_{K} \neq-\mathbf{1}_{K}$. Then
(i) $\quad\left(\operatorname{Part}-\operatorname{sgn}\left(p_{3}, K\right)\right)(\{i, j\}) \neq\left(\operatorname{Part}-\operatorname{sgn}\left(p_{4}, K\right)\right)(\{i, j\})$, and
(ii) for every k such that $k \in \operatorname{Seg}(n+2)$ and $i \neq k$ and $j \neq k$ holds $\left(\operatorname{Part-sgn}\left(p_{3}, K\right)\right)(\{i, k\}) \neq\left(\operatorname{Part-sgn}\left(p_{4}, K\right)\right)(\{i, k\})$ iff $\left(\operatorname{Part-sgn}\left(p_{3}, K\right)\right)(\{j, k\}) \neq\left(\operatorname{Part-sgn}\left(p_{4}, K\right)\right)(\{j, k\})$.
Let us consider n, K and let p_{2} be an element of the permutations of $(n+2)$ element set. The functor $\operatorname{sgn}\left(p_{2}, K\right)$ yielding an element of K is defined by:

The following propositions are true:
(11) $\operatorname{sgn}\left(p_{3}, K\right)=\mathbf{1}_{K}$ or $\operatorname{sgn}\left(p_{3}, K\right)=-\mathbf{1}_{K}$.
(12) For every element I_{1} of the permutations of $(n+2)$-element set such that $I_{1}=\operatorname{idseq}(n+2)$ holds $\operatorname{sgn}\left(I_{1}, K\right)=\mathbf{1}_{K}$.
(13) For all p_{3}, q_{2}, p_{4} such that $p_{4}=p_{3} \cdot q_{2}$ and q_{2} is a transposition holds $\operatorname{sgn}\left(p_{4}, K\right)=-\operatorname{sgn}\left(p_{3}, K\right)$.
(14) For every element t_{1} of the permutations of $(n+2)$-element set such that t_{1} is a transposition holds $\operatorname{sgn}\left(t_{1}, K\right)=-\mathbf{1}_{K}$.
(15) Let P be a finite sequence of elements of A_{n+2} and p_{3} be an element of the permutations of $(n+2)$-element set such that $p_{3}=\Pi P$ and for every i such that $i \in \operatorname{dom} P$ there exists an element t_{2} of the permutations of $(n+2)$-element set such that $P(i)=t_{2}$ and t_{2} is a transposition. Then
(i) if len $P \bmod 2=0$, then $\operatorname{sgn}\left(p_{3}, K\right)=\mathbf{1}_{K}$, and
(ii) if len $P \bmod 2=1$, then $\operatorname{sgn}\left(p_{3}, K\right)=-\mathbf{1}_{K}$.
(16) Let given i, j, n. Suppose $i<j$ and $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} n$. Then there exists an element t_{1} of the permutations of n-element set such that t_{1} is a
transposition and $t_{1}(i)=j$.
(17) Let p be an element of the permutations of $(k+1)$-element set. Suppose $p(k+1) \neq k+1$. Then there exists an element t_{1} of the permutations of $(k+1)$-element set such that t_{1} is a transposition and $t_{1}(p(k+1))=k+1$ and $\left(t_{1} \cdot p\right)(k+1)=k+1$.
(18) Let given X, x. Suppose $x \notin X$. Let p_{5} be a permutation of $X \cup\{x\}$. If $p_{5}(x)=x$, then there exists a permutation p of X such that $p_{5} \upharpoonright X=p$.
(19) Let p, q be permutations of X and p_{5}, q_{1} be permutations of $X \cup\{x\}$. If $p_{5} \upharpoonright X=p$ and $q_{1} \upharpoonright X=q$ and $p_{5}(x)=x$ and $q_{1}(x)=x$, then $\left(p_{5} \cdot q_{1}\right) \upharpoonright X=$ $p \cdot q$ and $\left(p_{5} \cdot q_{1}\right)(x)=x$.
(20) For every element t_{1} of the permutations of k-element set such that t_{1} is a transposition holds $t_{1} \cdot t_{1}=\operatorname{idseq}(k)$ and $t_{1}=t_{1}{ }^{-1}$.
(21) Let given p_{1}. Then there exists a finite sequence P of elements of A_{n} such that
(i) $p_{1}=\prod P$, and
(ii) for every i such that $i \in \operatorname{dom} P$ there exists an element t_{2} of the permutations of n-element set such that $P(i)=t_{2}$ and t_{2} is a transposition.
(22) K is Fanoian iff $\mathbf{1}_{K} \neq-\mathbf{1}_{K}$.
(23) For every Fanoian field K holds p_{2} is even iff $\operatorname{sgn}\left(p_{2}, K\right)=\mathbf{1}_{K}$ and p_{2} is odd iff $\operatorname{sgn}\left(p_{2}, K\right)=-\mathbf{1}_{K}$.
(24) For all p_{3}, q_{2}, p_{4} such that $p_{4}=p_{3} \cdot q_{2}$ holds $\operatorname{sgn}\left(p_{4}, K\right)=\operatorname{sgn}\left(p_{3}, K\right)$. $\operatorname{sgn}\left(q_{2}, K\right)$.
(25) p is even and q is even or p is odd and q is odd iff $p \cdot q$ is even.
(26) $(-1)^{\operatorname{sgn}\left(p_{2}\right)} a=\operatorname{sgn}\left(p_{2}, K\right) \cdot a$.
(27) For every element t_{1} of the permutations of $(n+2)$-element set such that t_{1} is a transposition holds t_{1} is odd.

Let us consider n. Observe that there exists a permutation of $\operatorname{Seg}(n+2)$ which is odd.

2. The Determinant of a Linear Combination of Lines

For simplicity, we follow the rules: p_{6} denotes a finite sequence of elements of D, M denotes a matrix over D of dimension $n \times m, p_{7}, q_{3}$ denote finite sequences of elements of K, and A, B denote matrices over K of dimension n.

Let us consider l, n, m, D, let M be a matrix over D of dimension $n \times m$, and let p_{6} be a finite sequence of elements of D. The functor $\operatorname{ReplaceLine}\left(M, l, p_{6}\right)$ yields a matrix over D of dimension $n \times m$ and is defined as follows:
(Def. 3)(i) len ReplaceLine $\left(M, l, p_{6}\right)=\operatorname{len} M$ and width $\operatorname{ReplaceLine}\left(M, l, p_{6}\right)=$ width M and for all i, j such that $\langle i, j\rangle \in$ the indices of M holds
if $i \neq l$, then $\left(\operatorname{ReplaceLine}\left(M, l, p_{6}\right)\right)_{i, j}=M_{i, j}$ and if $i=l$, then (ReplaceLine $\left.\left(M, l, p_{6}\right)\right)_{l, j}=p_{6}(j)$ if len $p_{6}=\operatorname{width} M$,
(ii) $\operatorname{ReplaceLine}\left(M, l, p_{6}\right)=M$, otherwise.

Let us consider l, n, m, D, let M be a matrix over D of dimension $n \times m$, and let p_{6} be a finite sequence of elements of D. We introduce $\operatorname{RLine}\left(M, l, p_{6}\right)$ as a synonym of ReplaceLine $\left(M, l, p_{6}\right)$.

The following propositions are true:
(28) For all l, M, p_{6}, i such that $i \in \operatorname{Seg} n$ holds if $i=l$ and len $p_{6}=\operatorname{width} M$, then $\operatorname{Line}\left(\operatorname{RLine}\left(M, l, p_{6}\right), i\right)=p_{6}$ and if $i \neq l$, then $\operatorname{Line}\left(\operatorname{RLine}\left(M, l, p_{6}\right), i\right)=\operatorname{Line}(M, i)$.
(29) For all M, p_{6} such that len $p_{6}=$ width M and for every element p^{\prime} of D^{*} such that $p_{6}=p^{\prime}$ holds $\operatorname{RLine}\left(M, l, p_{6}\right)=\operatorname{Replace}\left(M, l, p^{\prime}\right)$.
(30) $\quad M=\operatorname{RLine}(M, l, \operatorname{Line}(M, l))$.
(31) Let given l, p_{7}, q_{3}, p_{1}. Suppose $l \in \operatorname{Seg} n$ and $\operatorname{len} p_{7}=n$ and len $q_{3}=n$. Let M be a matrix over K of dimension n. Then (the multiplication of $K) \circledast\left(p_{1}-\operatorname{Path} \operatorname{RLine}\left(M, l, a \cdot p_{7}+b \cdot q_{3}\right)\right)=a \cdot(($ the multiplication of $\left.K) \circledast\left(p_{1}-\operatorname{Path} \operatorname{RLine}\left(M, l, p_{7}\right)\right)\right)+b \cdot(($ the multiplication of $\left.K) \circledast\left(p_{1}-\operatorname{Path} \operatorname{RLine}\left(M, l, q_{3}\right)\right)\right)$.
(32) Let given l, p_{7}, q_{3}, p_{1}. Suppose $l \in \operatorname{Seg} n$ and len $p_{7}=n$ and len $q_{3}=$ n. Let M be a matrix over K of dimension n. Then (the product on paths of $\left.\operatorname{RLine}\left(M, l, a \cdot p_{7}+b \cdot q_{3}\right)\right)\left(p_{1}\right)=a \cdot$ (the product on paths of $\left.\operatorname{RLine}\left(M, l, p_{7}\right)\right)\left(p_{1}\right)+b \cdot\left(\right.$ the product on paths of $\left.\operatorname{RLine}\left(M, l, q_{3}\right)\right)\left(p_{1}\right)$.
(33) Let given l, p_{7}, q_{3}. Suppose $l \in \operatorname{Seg} n$ and len $p_{7}=n$ and len $q_{3}=n$. Let M be a matrix over K of dimension n. Then $\operatorname{Det} \operatorname{RLine}\left(M, l, a \cdot p_{7}+b \cdot q_{3}\right)=$ $a \cdot \operatorname{Det} \operatorname{RLine}\left(M, l, p_{7}\right)+b \cdot \operatorname{Det} \operatorname{RLine}\left(M, l, q_{3}\right)$.
(34) If $l \in \operatorname{Seg} n$ and $\operatorname{len} p_{7}=n$, then $\operatorname{Det} \operatorname{RLine}\left(A, l, a \cdot p_{7}\right)=a$. $\operatorname{Det} \operatorname{RLine}\left(A, l, p_{7}\right)$.
(35) If $l \in \operatorname{Seg} n$, then $\operatorname{Det} \operatorname{RLine}(A, l, a \cdot \operatorname{Line}(A, l))=a \cdot \operatorname{Det} A$.
(36) If $l \in \operatorname{Seg} n$ and len $p_{7}=n$ and len $q_{3}=n$, then $\operatorname{Det} \operatorname{RLine}\left(A, l, p_{7}+q_{3}\right)=$ $\operatorname{Det} \operatorname{RLine}\left(A, l, p_{7}\right)+\operatorname{Det} \operatorname{RLine}\left(A, l, q_{3}\right)$.

3. The Determinant of a Matrix with Permutated Lines and with a Repeated Line

Let us consider n, m, D, let F be a function from $\operatorname{Seg} n \operatorname{into} \operatorname{Seg} n$, and let M be a matrix over D of dimension $n \times m$. Then $M \cdot F$ is a matrix over D of dimension $n \times m$ and it can be characterized by the condition:
(Def. 4) $\operatorname{len}(M \cdot F)=\operatorname{len} M$ and $\operatorname{width}(M \cdot F)=\operatorname{width} M$ and for all i, j, k such that $\langle i, j\rangle \in$ the indices of M and $F(i)=k$ holds $(M \cdot F)_{i, j}=M_{k, j}$.
The following propositions are true:
(37)(i) The indices of $M=$ the indices of $M \cdot F$, and
(ii) for all i, j such that $\langle i, j\rangle \in$ the indices of M there exists k such that $F(i)=k$ and $\langle k, j\rangle \in$ the indices of M and $(M \cdot F)_{i, j}=M_{k, j}$.
(38) For every matrix M over D of dimension $n \times m$ and for every F and for every k such that $k \in \operatorname{Seg} n$ holds $\operatorname{Line}(M \cdot F, k)=M(F(k))$.
(39) $M \cdot \operatorname{idseq}(n)=M$.
(40) For all p, P_{1}, q such that $q=p \cdot P_{1}^{-1}$ holds p-Path $A \cdot P_{1}=(q-\operatorname{Path} A) \cdot P_{1}$.
(41) For all p, P_{1}, q such that $q=p \cdot P_{1}^{-1}$ holds (the multiplication of $K) \circledast\left(p\right.$-Path $\left.A \cdot P_{1}\right)=($ the multiplication of $K) \circledast(q$-Path $A)$.
(42) For all p_{3}, q_{2} such that $q_{2}=p_{3}^{-1} \operatorname{holds} \operatorname{sgn}\left(p_{3}, K\right)=\operatorname{sgn}\left(q_{2}, K\right)$.
(43) Let M be a matrix over K of dimension $n+2$ and given p_{2}, P_{2}. Suppose $p_{2}=P_{2}$. Let given p_{3}, q_{2}. Suppose $q_{2}=p_{3} \cdot P_{2}{ }^{-1}$. Then (the product on paths of $M)\left(q_{2}\right)=\operatorname{sgn}\left(p_{2}, K\right) \cdot\left(\right.$ the product on paths of $\left.M \cdot P_{2}\right)\left(p_{3}\right)$.
(44) Let given p_{1}. Then there exists a permutation P of the permutations of n-element set such that for every element p of the permutations of n-element set holds $P(p)=p \cdot p_{1}$.
(45) For every matrix M over K of dimension $n+2 \times n+2$ and for all p_{2}, P_{2} such that $p_{2}=P_{2}$ holds $\operatorname{Det}\left(M \cdot P_{2}\right)=\operatorname{sgn}\left(p_{2}, K\right) \cdot \operatorname{Det} M$.
(46) For every matrix M over K of dimension n and for all p_{1}, P_{1} such that $p_{1}=P_{1}$ holds $\operatorname{Det}\left(M \cdot P_{1}\right)=(-1)^{\operatorname{sgn}\left(p_{1}\right)} \operatorname{Det} M$.
(47) Let P_{3} be a permutation of the permutations of n-element set and given p_{1}. If p_{1} is odd and for every p holds $P_{3}(p)=p \cdot p_{1}$, then $P_{3}{ }^{\circ}\{p: p$ is even $\}=\{q: q$ is odd $\}$.
(48) Let given n. Suppose $n \geq 2$. Then there exist finite sets O_{1}, E_{1} such that $E_{1}=\{p: p$ is even $\}$ and $O_{1}=\{q: q$ is odd $\}$ and $E_{1} \cap O_{1}=\emptyset$ and $E_{1} \cup O_{1}=$ the permutations of n-element set and card $E_{1}=\operatorname{card} O_{1}$.
(49) Let given i, j. Suppose $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} n$ and $i<j$. Let M be a matrix over K of dimension n. Suppose $\operatorname{Line}(M, i)=\operatorname{Line}(M, j)$. Let p, q, t_{1} be elements of the permutations of n-element set. Suppose $q=p \cdot t_{1}$ and t_{1} is a transposition and $t_{1}(i)=j$. Then (the product on paths of $M)(q)=-($ the product on paths of $M)(p)$.
(50) Let given i, j. Suppose $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} n$ and $i<j$. Let M be a matrix over K of dimension n. If $\operatorname{Line}(M, i)=\operatorname{Line}(M, j)$, then Det $M=0_{K}$.
(51) For all i, j such that $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} n$ and $i \neq j$ holds $\operatorname{Det} \operatorname{RLine}(A, i, \operatorname{Line}(A, j))=0_{K}$.
(52) For all i, j such that $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} n$ and $i \neq j$ holds $\operatorname{Det} \operatorname{RLine}(A, i, a \cdot \operatorname{Line}(A, j))=0_{K}$.
(53) For all i, j such that $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} n$ and $i \neq j$ holds $\operatorname{Det} A=$
$\operatorname{Det} \operatorname{RLine}(A, i, \operatorname{Line}(A, i)+a \cdot \operatorname{Line}(A, j))$.
If $F \notin$ the permutations of n-element set, then $\operatorname{Det}(A \cdot F)=0_{K}$.

4. The Determinant of a Product of Two Square Matrices

Let K be a non empty loop structure. The functor addFinS K yielding a binary operation on (the carrier of $K)^{*}$ is defined as follows:
(Def. 5) For all elements p_{5}, p_{3} of (the carrier of $\left.K\right)^{*}$ holds (addFinS $\left.K\right)\left(p_{5}\right.$, $\left.p_{3}\right)=p_{5}+p_{3}$.
Let K be an Abelian non empty loop structure. One can verify that addFinS K is commutative.

Let K be an add-associative non empty loop structure. Note that addFinS K is associative.

The following propositions are true:
(55) Let A, B be matrices over K. Suppose width $A=\operatorname{len} B$ and len $B>0$. Let given i. Suppose $i \in \operatorname{Seg}$ len A. Then there exists a finite sequence P of elements of (the carrier of $K)^{*}$ such that len $P=\operatorname{len} B$ and $\operatorname{Line}(A$. $B, i)=\operatorname{addFinS} K \odot P$ and for every j such that $j \in \operatorname{Seg}$ len B holds $P(j)=A_{i, j} \cdot \operatorname{Line}(B, j)$.
(56) Let A, B, C be matrices over K of dimension n and given i. Suppose $i \in \operatorname{Seg} n$. Then there exists a finite sequence P of elements of K such that len $P=n$ and $\operatorname{Det} \operatorname{RLine}(C, i, \operatorname{Line}(A \cdot B, i))=$ the addition of $K \odot P$ and for every j such that $j \in \operatorname{Seg} n$ holds $P(j)=$ $A_{i, j} \cdot \operatorname{Det} \operatorname{RLine}(C, i, \operatorname{Line}(B, j))$.
(57) Let X be a set, Y be a non empty set, and given x. Suppose $x \notin X$. Then there exists a function B_{1} from : : Y^{X}, Y : into $Y^{X \cup\{x\}}$ such that
(i) $\quad B_{1}$ is bijective, and
(ii) for every function f from X into Y and for every function F from $X \cup\{x\}$ into Y such that $F \upharpoonright X=f$ holds $B_{1}(\langle f, F(x)\rangle)=F$.
(58) Let X be a finite set, Y be a non empty finite set, and given x. Suppose $x \notin X$. Let F be a binary operation on D. Suppose F is commutative and associative and has a unity and an inverse operation. Let f be a function from Y^{X} into D and g be a function from $Y^{X \cup\{x\}}$ into D. Suppose that for every function H from X into Y and for every element S_{1} of $\operatorname{Fin}\left(Y^{X \cup\{x\}}\right)$ such that $S_{1}=\{h ; h$ ranges over functions from $X \cup\{x\}$ into $Y: h \upharpoonright X=H\}$ holds $F-\sum_{S_{1}} g=f(H)$. Then $F-\sum_{\Omega_{Y X}^{\mathrm{f}}} f=F-\sum_{\Omega_{Y}^{\mathrm{f}}} f \cup\{x\}$.
(59) Let A, B be matrices over D of dimension $n \times m$ and given i. Suppose $i \leq n$ and $0<n$. Let F be a function from $\operatorname{Seg} i$ into $\operatorname{Seg} n$. Then there exists a matrix M over D of dimension $n \times m$ such that $M=A+\cdot(B$.
(idseq $(n)+\cdot F)) \upharpoonright \operatorname{Seg} i$ and for every j holds if $j \in \operatorname{Seg} i$, then $M(j)=$ $B(F(j))$ and if $j \notin \operatorname{Seg} i$, then $M(j)=A(j)$.
(60) Let A, B be matrices over K of dimension n. Suppose $0<n$. Then there exists a function P from $(\operatorname{Seg} n)^{\operatorname{Seg} n}$ into the carrier of K such that
(i) for every function F from $\operatorname{Seg} n$ into $\operatorname{Seg} n$ there exists a finite sequence P_{4} of elements of K such that len $P_{4}=n$ and for all natural numbers F_{1}, j such that $j \in \operatorname{Seg} n$ and $F_{1}=F(j)$ holds $P_{4}(j)=A_{j, F_{1}}$ and $P(F)=(($ the multiplication of $\left.K) \circledast\left(P_{4}\right)\right) \cdot \operatorname{Det}(B \cdot F)$, and
(ii) $\operatorname{Det}(A \cdot B)=($ the addition of $K)-\sum_{\Omega_{(\operatorname{Seg} n)}^{\mathrm{f} \operatorname{Seg} n}} P$.
(61) Let A, B be matrices over K of dimension n. Suppose $0<n$. Then there exists a function P from the permutations of n-element set into the carrier of K such that
(i) $\operatorname{Det}(A \cdot B)=($ the addition of $K)-\sum_{\Omega_{\text {the permutations of } n \text {-element set }}^{\mathrm{f}}} P$, and
(ii) for every element p_{1} of the permutations of n-element set holds $P\left(p_{1}\right)=$ $\left((\right.$ the multiplication of $K) \circledast\left(p_{1}\right.$-Path $\left.\left.A\right)\right) \cdot(-1)^{\operatorname{sgn}\left(p_{1}\right)} \operatorname{Det} B$.
(62) For all matrices A, B over K of dimension n such that $0<n$ holds $\operatorname{Det}(A \cdot B)=\operatorname{Det} A \cdot \operatorname{Det} B$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[8] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[11] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.
[12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[15] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[16] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[17] Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137-144, 1996.
[18] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[20] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[22] Andrzej Trybulec and Agata Darmochwal. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[23] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.
[24] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[25] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[26] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
[27] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[29] Hiroshi Yamazaki, Yoshinori Fujisawa, and Yatsuka Nakamura. On replace function and swap function for finite sequences. Formalized Mathematics, 9(3):471-474, 2001.
[30] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541-547, 2005.
[31] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.
[32] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

[^0]: ${ }^{1}$ This work has been partially supported by the KBN grant 4 T11C 03924 and the FP6 IST grant TYPES No. 510996.

