Basic Properties of Determinants of Square Matrices over a Field¹

Karol Pąk Institute of Computer Science University of Białystok Poland

Summary. In this paper I present basic properties of the determinant of square matrices over a field and selected properties of the sign of a permutation. First, I define the sign of a permutation by the requirement

 $\operatorname{sgn}(p) = \prod_{1 \le i < j \le n} \operatorname{sgn}(p(j) - p(i)),$

where p is any fixed permutation of a set with n elements. I prove that the sign of a product of two permutations is the same as the product of their signs and show the relation between signs and parity of permutations. Then I consider the determinant of a linear combination of lines, the determinant of a matrix with permutated lines and the determinant of a matrix with a repeated line. Finally, at the end I prove that the determinant of a product of two square matrices is equal to the product of their determinants.

MML identifier: MATRIX11, version: 7.8.04 4.81.962

The articles [21], [12], [27], [18], [13], [28], [7], [10], [8], [3], [4], [19], [25], [24], [16], [20], [11], [6], [5], [14], [22], [15], [31], [23], [26], [32], [1], [29], [9], [2], [17], and [30] provide the terminology and notation for this paper.

¹This work has been partially supported by the KBN grant 4 T11C 039 24 and the FP6 IST grant TYPES No. 510996.

KAROL PĄK

1. The Sign of a Permutation

For simplicity, we use the following convention: x, X denote sets, i, j, k, l, n, m denote natural numbers, D denotes a non empty set, K denotes a field, a, b denote elements of K, p_1, p, q denote elements of the permutations of n-element set, P_1, P denote permutations of Seg n, F denotes a function from Seg n into Seg n, p_2, p_3, q_2, p_4 denote elements of the permutations of (n+2)-element set, and P_2 denotes a permutation of Seg(n + 2).

Let X be a set. We introduce 2 Set X as a synonym of TwoElementSets(X). The following three propositions are true:

- (1) $X \in 2$ Set Seg n iff there exist i, j such that $i \in$ Seg n and $j \in$ Seg n and i < j and $X = \{i, j\}$.
- (2) $2\text{Set Seg } 0 = \emptyset \text{ and } 2\text{Set Seg } 1 = \emptyset.$
- (3) For every n such that $n \ge 2$ holds $\{1, 2\} \in 2$ Set Seg n.

Let us consider n. Observe that $2\text{Set}\operatorname{Seg}(n+2)$ is non empty and finite.

Let us consider n, x and let p_1 be an element of the permutations of n-element set. Note that $p_1(x)$ is natural.

Let us consider K. One can verify that the multiplication of K is unital and the multiplication of K is associative.

Let us consider n, K and let p_2 be an element of the permutations of (n+2)element set. The functor Part-sgn (p_2, K) yielding a function from 2Set Seg(n+2)into the carrier of K is defined by the condition (Def. 1).

- (Def. 1) Let i, j be elements of \mathbb{N} such that $i \in \text{Seg}(n+2)$ and $j \in \text{Seg}(n+2)$ and i < j. Then
 - (i) if $p_2(i) < p_2(j)$, then $(Part-sgn(p_2, K))(\{i, j\}) = \mathbf{1}_K$, and
 - (ii) if $p_2(i) > p_2(j)$, then $(Part-sgn(p_2, K))(\{i, j\}) = -\mathbf{1}_K$.

One can prove the following proposition

(4) Let X be an element of Fin 2Set Seg(n+2). Suppose that for every x such that $x \in X$ holds $(\operatorname{Part-sgn}(p_3, K))(x) = \mathbf{1}_K$. Then (the multiplication of K)- $\sum_X \operatorname{Part-sgn}(p_3, K) = \mathbf{1}_K$.

In the sequel s denotes an element of $2\text{Set}\operatorname{Seg}(n+2)$.

The following propositions are true:

- (5) $(\operatorname{Part-sgn}(p_3, K))(s) = \mathbf{1}_K \text{ or } (\operatorname{Part-sgn}(p_3, K))(s) = -\mathbf{1}_K.$
- (6) For all i, j such that $i \in \text{Seg}(n+2)$ and $j \in \text{Seg}(n+2)$ and i < jand $p_3(i) = q_2(i)$ and $p_3(j) = q_2(j)$ holds $(\text{Part-sgn}(p_3, K))(\{i, j\}) = (\text{Part-sgn}(q_2, K))(\{i, j\}).$
- (7) Let X be an element of Fin 2Set Seg(n + 2), given p_3 , q_2 , and F be a finite set such that $F = \{s : s \in X \land (Part-sgn(p_3, K))(s) \neq (Part-sgn(q_2, K))(s)\}$. Then

- (i) if card $F \mod 2 = 0$, then (the multiplication of K)- $\sum_X \operatorname{Part-sgn}(p_3, K) =$ (the multiplication of K)- $\sum_X \operatorname{Part-sgn}(q_2, K)$, and
- (ii) if card $F \mod 2 = 1$, then (the multiplication of K)- $\sum_X \operatorname{Part-sgn}(p_3, K) = -((\text{the multiplication of } K)-\sum_X \operatorname{Part-sgn}(q_2, K)).$
- (8) Let P be a permutation of Seg n. Suppose P is a transposition. Let given i, j. Suppose i < j. Then P(i) = j if and only if the following conditions are satisfied:
- (i) $i \in \operatorname{dom} P$,
- (ii) $j \in \operatorname{dom} P$,
- (iii) P(i) = j,
- (iv) P(j) = i, and
- (v) for every k such that $k \neq i$ and $k \neq j$ and $k \in \text{dom } P$ holds P(k) = k.
- (9) Let given p_3 , q_2 , p_4 , i, j. Suppose $p_4 = p_3 \cdot q_2$ and q_2 is a transposition and $q_2(i) = j$ and i < j. Let given s. If $(\text{Part-sgn}(p_3, K))(s) \neq (\text{Part-sgn}(p_4, K))(s)$, then $i \in s$ or $j \in s$.
- (10) Let given p_3 , q_2 , p_4 , i, j, K. Suppose $p_4 = p_3 \cdot q_2$ and q_2 is a transposition and $q_2(i) = j$ and i < j and $\mathbf{1}_K \neq -\mathbf{1}_K$. Then
 - (i) $(\operatorname{Part-sgn}(p_3, K))(\{i, j\}) \neq (\operatorname{Part-sgn}(p_4, K))(\{i, j\}), \text{ and }$
 - (ii) for every k such that $k \in \text{Seg}(n + 2)$ and $i \neq k$ and $j \neq k$ holds $(\text{Part-sgn}(p_3, K))(\{i, k\}) \neq (\text{Part-sgn}(p_4, K))(\{i, k\})$ iff $(\text{Part-sgn}(p_3, K))(\{j, k\}) \neq (\text{Part-sgn}(p_4, K))(\{j, k\}).$

Let us consider n, K and let p_2 be an element of the permutations of (n+2)element set. The functor $sgn(p_2, K)$ yielding an element of K is defined by:

(Def. 2) $\operatorname{sgn}(p_2, K) = (\text{the multiplication of } K) - \sum_{\Omega_{2\operatorname{Set Seg}(n+2)}^{\mathrm{f}}} \operatorname{Part-sgn}(p_2, K).$

The following propositions are true:

- (11) $\operatorname{sgn}(p_3, K) = \mathbf{1}_K \text{ or } \operatorname{sgn}(p_3, K) = -\mathbf{1}_K.$
- (12) For every element I_1 of the permutations of (n+2)-element set such that $I_1 = \text{idseq}(n+2)$ holds $\text{sgn}(I_1, K) = \mathbf{1}_K$.
- (13) For all p_3 , q_2 , p_4 such that $p_4 = p_3 \cdot q_2$ and q_2 is a transposition holds $\operatorname{sgn}(p_4, K) = -\operatorname{sgn}(p_3, K)$.
- (14) For every element t_1 of the permutations of (n+2)-element set such that t_1 is a transposition holds $\operatorname{sgn}(t_1, K) = -\mathbf{1}_K$.
- (15) Let P be a finite sequence of elements of A_{n+2} and p_3 be an element of the permutations of (n+2)-element set such that $p_3 = \prod P$ and for every i such that $i \in \text{dom } P$ there exists an element t_2 of the permutations of (n+2)-element set such that $P(i) = t_2$ and t_2 is a transposition. Then
 - (i) if len $P \mod 2 = 0$, then $\operatorname{sgn}(p_3, K) = \mathbf{1}_K$, and
- (ii) if len $P \mod 2 = 1$, then $\operatorname{sgn}(p_3, K) = -\mathbf{1}_K$.
- (16) Let given i, j, n. Suppose i < j and $i \in \text{Seg } n$ and $j \in \text{Seg } n$. Then there exists an element t_1 of the permutations of *n*-element set such that t_1 is a

transposition and $t_1(i) = j$.

- (17) Let p be an element of the permutations of (k+1)-element set. Suppose $p(k+1) \neq k+1$. Then there exists an element t_1 of the permutations of (k+1)-element set such that t_1 is a transposition and $t_1(p(k+1)) = k+1$ and $(t_1 \cdot p)(k+1) = k+1$.
- (18) Let given X, x. Suppose $x \notin X$. Let p_5 be a permutation of $X \cup \{x\}$. If $p_5(x) = x$, then there exists a permutation p of X such that $p_5 \upharpoonright X = p$.
- (19) Let p, q be permutations of X and p_5, q_1 be permutations of $X \cup \{x\}$. If $p_5 \upharpoonright X = p$ and $q_1 \upharpoonright X = q$ and $p_5(x) = x$ and $q_1(x) = x$, then $(p_5 \cdot q_1) \upharpoonright X = p \cdot q$ and $(p_5 \cdot q_1)(x) = x$.
- (20) For every element t_1 of the permutations of k-element set such that t_1 is a transposition holds $t_1 \cdot t_1 = \text{idseq}(k)$ and $t_1 = t_1^{-1}$.
- (21) Let given p_1 . Then there exists a finite sequence P of elements of A_n such that
 - (i) $p_1 = \prod P$, and
 - (ii) for every i such that $i \in \text{dom } P$ there exists an element t_2 of the permutations of n-element set such that $P(i) = t_2$ and t_2 is a transposition.
- (22) K is Fanoian iff $\mathbf{1}_K \neq -\mathbf{1}_K$.
- (23) For every Fanoian field K holds p_2 is even iff $\operatorname{sgn}(p_2, K) = \mathbf{1}_K$ and p_2 is odd iff $\operatorname{sgn}(p_2, K) = -\mathbf{1}_K$.
- (24) For all p_3 , q_2 , p_4 such that $p_4 = p_3 \cdot q_2$ holds $sgn(p_4, K) = sgn(p_3, K) \cdot sgn(q_2, K)$.
- (25) p is even and q is even or p is odd and q is odd iff $p \cdot q$ is even.
- (26) $(-1)^{\operatorname{sgn}(p_2)}a = \operatorname{sgn}(p_2, K) \cdot a.$
- (27) For every element t_1 of the permutations of (n+2)-element set such that t_1 is a transposition holds t_1 is odd.

Let us consider n. Observe that there exists a permutation of Seg(n+2) which is odd.

2. The Determinant of a Linear Combination of Lines

For simplicity, we follow the rules: p_6 denotes a finite sequence of elements of D, M denotes a matrix over D of dimension $n \times m$, p_7 , q_3 denote finite sequences of elements of K, and A, B denote matrices over K of dimension n.

Let us consider l, n, m, D, let M be a matrix over D of dimension $n \times m$, and let p_6 be a finite sequence of elements of D. The functor ReplaceLine (M, l, p_6) yields a matrix over D of dimension $n \times m$ and is defined as follows:

(Def. 3)(i) len ReplaceLine (M, l, p_6) = len M and width ReplaceLine (M, l, p_6) = width M and for all i, j such that $\langle i, j \rangle \in$ the indices of M holds

if $i \neq l$, then $(\text{ReplaceLine}(M, l, p_6))_{i,j} = M_{i,j}$ and if i = l, then $(\text{ReplaceLine}(M, l, p_6))_{l,j} = p_6(j)$ if $\text{len } p_6 = \text{width } M$,

(ii) ReplaceLine $(M, l, p_6) = M$, otherwise.

Let us consider l, n, m, D, let M be a matrix over D of dimension $n \times m$, and let p_6 be a finite sequence of elements of D. We introduce $\operatorname{RLine}(M, l, p_6)$ as a synonym of ReplaceLine (M, l, p_6) .

The following propositions are true:

- (28) For all l, M, p_6 , i such that $i \in \text{Seg } n$ holds if i = l and $\text{len } p_6 = \text{width } M$, then $\text{Line}(\text{RLine}(M, l, p_6), i) = p_6$ and if $i \neq l$, then $\text{Line}(\text{RLine}(M, l, p_6), i) = \text{Line}(M, i)$.
- (29) For all M, p_6 such that len p_6 = width M and for every element p' of D^* such that $p_6 = p'$ holds $\operatorname{RLine}(M, l, p_6) = \operatorname{Replace}(M, l, p')$.
- (30) $M = \operatorname{RLine}(M, l, \operatorname{Line}(M, l)).$
- (31) Let given l, p_7, q_3, p_1 . Suppose $l \in \text{Seg } n$ and $\text{len } p_7 = n$ and $\text{len } q_3 = n$. Let M be a matrix over K of dimension n. Then (the multiplication of K) \circledast $(p_1$ -Path RLine $(M, l, a \cdot p_7 + b \cdot q_3)) = a \cdot ((\text{the multiplication of } K) \circledast (p_1$ -Path RLine $(M, l, p_7))) + b \cdot ((\text{the multiplication of } K) \circledast (p_1$ -Path RLine $(M, l, p_3)))$.
- (32) Let given l, p_7, q_3, p_1 . Suppose $l \in \text{Seg } n$ and $\text{len } p_7 = n$ and $\text{len } q_3 = n$. Let M be a matrix over K of dimension n. Then (the product on paths of $\text{RLine}(M, l, a \cdot p_7 + b \cdot q_3))(p_1) = a \cdot (\text{the product on paths of RLine}(M, l, p_7))(p_1) + b \cdot (\text{the product on paths of RLine}(M, l, q_3))(p_1).$
- (33) Let given l, p_7, q_3 . Suppose $l \in \text{Seg } n$ and $\text{len } p_7 = n$ and $\text{len } q_3 = n$. Let M be a matrix over K of dimension n. Then $\text{Det RLine}(M, l, a \cdot p_7 + b \cdot q_3) = a \cdot \text{Det RLine}(M, l, p_7) + b \cdot \text{Det RLine}(M, l, q_3)$.
- (34) If $l \in \text{Seg } n$ and $\text{len } p_7 = n$, then $\text{Det RLine}(A, l, a \cdot p_7) = a \cdot \text{Det RLine}(A, l, p_7)$.
- (35) If $l \in \text{Seg } n$, then $\text{Det RLine}(A, l, a \cdot \text{Line}(A, l)) = a \cdot \text{Det } A$.
- (36) If $l \in \text{Seg } n$ and $\text{len } p_7 = n$ and $\text{len } q_3 = n$, then $\text{Det RLine}(A, l, p_7 + q_3) = \text{Det RLine}(A, l, p_7) + \text{Det RLine}(A, l, q_3).$

3. The Determinant of a Matrix with Permutated Lines and with a Repeated Line

Let us consider n, m, D, let F be a function from Seg n into Seg n, and let M be a matrix over D of dimension $n \times m$. Then $M \cdot F$ is a matrix over D of dimension $n \times m$ and it can be characterized by the condition:

(Def. 4) $\operatorname{len}(M \cdot F) = \operatorname{len} M$ and $\operatorname{width}(M \cdot F) = \operatorname{width} M$ and for all i, j, k such that $\langle i, j \rangle \in$ the indices of M and F(i) = k holds $(M \cdot F)_{i,j} = M_{k,j}$. The following propositions are true:

KAROL PĄK

- (37)(i) The indices of M = the indices of $M \cdot F$, and
 - (ii) for all i, j such that $\langle i, j \rangle \in$ the indices of M there exists k such that F(i) = k and $\langle k, j \rangle \in$ the indices of M and $(M \cdot F)_{i,j} = M_{k,j}$.
- (38) For every matrix M over D of dimension $n \times m$ and for every F and for every k such that $k \in \text{Seg } n$ holds $\text{Line}(M \cdot F, k) = M(F(k))$.
- (39) $M \cdot \operatorname{idseq}(n) = M.$
- (40) For all p, P_1, q such that $q = p \cdot P_1^{-1}$ holds p-Path $A \cdot P_1 = (q$ -Path $A) \cdot P_1$.
- (41) For all p, P_1 , q such that $q = p \cdot P_1^{-1}$ holds (the multiplication of K) \circledast (p-Path $A \cdot P_1$) = (the multiplication of K) \circledast (q-Path A).
- (42) For all p_3 , q_2 such that $q_2 = p_3^{-1}$ holds $sgn(p_3, K) = sgn(q_2, K)$.
- (43) Let M be a matrix over K of dimension n+2 and given p_2 , P_2 . Suppose $p_2 = P_2$. Let given p_3 , q_2 . Suppose $q_2 = p_3 \cdot P_2^{-1}$. Then (the product on paths of $M)(q_2) = \operatorname{sgn}(p_2, K) \cdot (\text{the product on paths of } M \cdot P_2)(p_3)$.
- (44) Let given p_1 . Then there exists a permutation P of the permutations of *n*-element set such that for every element p of the permutations of *n*-element set holds $P(p) = p \cdot p_1$.
- (45) For every matrix M over K of dimension $n + 2 \times n + 2$ and for all p_2 , P_2 such that $p_2 = P_2$ holds $\text{Det}(M \cdot P_2) = \text{sgn}(p_2, K) \cdot \text{Det} M$.
- (46) For every matrix M over K of dimension n and for all p_1 , P_1 such that $p_1 = P_1$ holds $\text{Det}(M \cdot P_1) = (-1)^{\text{sgn}(p_1)} \text{Det } M$.
- (47) Let P_3 be a permutation of the permutations of *n*-element set and given p_1 . If p_1 is odd and for every *p* holds $P_3(p) = p \cdot p_1$, then $P_3^{\circ}\{p : p \text{ is even}\} = \{q : q \text{ is odd}\}.$
- (48) Let given n. Suppose $n \ge 2$. Then there exist finite sets O_1 , E_1 such that $E_1 = \{p : p \text{ is even}\}$ and $O_1 = \{q : q \text{ is odd}\}$ and $E_1 \cap O_1 = \emptyset$ and $E_1 \cup O_1 =$ the permutations of n-element set and card $E_1 = \text{card } O_1$.
- (49) Let given i, j. Suppose $i \in \text{Seg } n$ and $j \in \text{Seg } n$ and i < j. Let M be a matrix over K of dimension n. Suppose Line(M, i) = Line(M, j). Let p, q, t_1 be elements of the permutations of n-element set. Suppose $q = p \cdot t_1$ and t_1 is a transposition and $t_1(i) = j$. Then (the product on paths of M)(q) = -(the product on paths of M)(p).
- (50) Let given i, j. Suppose $i \in \text{Seg } n$ and $j \in \text{Seg } n$ and i < j. Let M be a matrix over K of dimension n. If Line(M, i) = Line(M, j), then $\text{Det } M = 0_K$.
- (51) For all i, j such that $i \in \text{Seg } n$ and $j \in \text{Seg } n$ and $i \neq j$ holds $\text{Det RLine}(A, i, \text{Line}(A, j)) = 0_K.$
- (52) For all i, j such that $i \in \text{Seg } n$ and $j \in \text{Seg } n$ and $i \neq j$ holds Det $\text{RLine}(A, i, a \cdot \text{Line}(A, j)) = 0_K$.
- (53) For all i, j such that $i \in \text{Seg } n$ and $j \in \text{Seg } n$ and $i \neq j$ holds Det A =

22

Det RLine $(A, i, \text{Line}(A, i) + a \cdot \text{Line}(A, j))$.

(54) If $F \notin$ the permutations of *n*-element set, then $\text{Det}(A \cdot F) = 0_K$.

4. The Determinant of a Product of Two Square Matrices

Let K be a non empty loop structure. The functor addFinSK yielding a binary operation on (the carrier of K)^{*} is defined as follows:

(Def. 5) For all elements p_5 , p_3 of (the carrier of K)^{*} holds (addFinS K) $(p_5, p_3) = p_5 + p_3$.

Let K be an Abelian non empty loop structure. One can verify that addFinS K is commutative.

Let K be an add-associative non empty loop structure. Note that addFinS K is associative.

The following propositions are true:

- (55) Let A, B be matrices over K. Suppose width A = len B and len B > 0. Let given i. Suppose $i \in \text{Seg len } A$. Then there exists a finite sequence P of elements of (the carrier of K)^{*} such that len P = len B and $\text{Line}(A \cdot B, i) = \text{addFinS } K \odot P$ and for every j such that $j \in \text{Seg len } B$ holds $P(j) = A_{i,j} \cdot \text{Line}(B, j)$.
- (56) Let A, B, C be matrices over K of dimension n and given i. Suppose $i \in \text{Seg } n$. Then there exists a finite sequence P of elements of K such that len P = n and Det $\text{RLine}(C, i, \text{Line}(A \cdot B, i)) =$ the addition of $K \odot P$ and for every j such that $j \in \text{Seg } n$ holds $P(j) = A_{i,j} \cdot \text{Det RLine}(C, i, \text{Line}(B, j)).$
- (57) Let X be a set, Y be a non empty set, and given x. Suppose $x \notin X$. Then there exists a function B_1 from $[Y^X, Y]$ into $Y^{X \cup \{x\}}$ such that
 - (i) B_1 is bijective, and
 - (ii) for every function f from X into Y and for every function F from $X \cup \{x\}$ into Y such that $F \upharpoonright X = f$ holds $B_1(\langle f, F(x) \rangle) = F$.
- (58) Let X be a finite set, Y be a non empty finite set, and given x. Suppose $x \notin X$. Let F be a binary operation on D. Suppose F is commutative and associative and has a unity and an inverse operation. Let f be a function from Y^X into D and g be a function from $Y^{X \cup \{x\}}$ into D. Suppose that for every function H from X into Y and for every element S_1 of $Fin(Y^{X \cup \{x\}})$ such that $S_1 = \{h; h \text{ ranges over functions from } X \cup \{x\} \text{ into } Y: h \upharpoonright X = H\}$ holds $F \cdot \sum_{S_1} g = f(H)$. Then $F \cdot \sum_{\Omega_{VX}^f} f = F \cdot \sum_{\Omega_{VX}^f \setminus \{x\}} g$.
- (59) Let A, B be matrices over D of dimension $n \times m$ and given i. Suppose $i \leq n$ and 0 < n. Let F be a function from Seg i into Seg n. Then there exists a matrix M over D of dimension $n \times m$ such that $M = A + \cdot (B \cdot M)$

KAROL PĄK

 $(idseq(n)+\cdot F))$ Seg i and for every j holds if $j \in Seg i$, then M(j) =B(F(j)) and if $j \notin \text{Seg } i$, then M(j) = A(j).

- (60) Let A, B be matrices over K of dimension n. Suppose 0 < n. Then there exists a function P from $(\text{Seg } n)^{\text{Seg } n}$ into the carrier of K such that
 - for every function F from Seg n into Seg n there exists a finite sequence (i) P_4 of elements of K such that len $P_4 = n$ and for all natural numbers F_1 , j such that $j \in \text{Seg } n$ and $F_1 = F(j)$ holds $P_4(j) = A_{j,F_1}$ and $P(F) = ((\text{the } j) = A_{j,F_1})$ multiplication of K) \circledast (P_4)) \cdot Det $(B \cdot F)$, and
 - $Det(A \cdot B) = (the addition of K) \sum_{\substack{\Omega_{(\text{Seg } n)}^{\text{Seg } n}}} P.$ (ii)
- (61) Let A, B be matrices over K of dimension n. Suppose 0 < n. Then there exists a function P from the permutations of n-element set into the carrier of K such that
 - (i)
 - $Det(A \cdot B) = (the addition of K) \sum_{\Omega_{the permutations of n-element set}} P$, and for every element p_1 of the permutations of n-element set holds $P(p_1) =$ (ii) ((the multiplication of K) \circledast $(p_1 \operatorname{-Path} A)) \cdot (-1)^{\operatorname{sgn}(p_1)} \operatorname{Det} B$.
- (62) For all matrices A, B over K of dimension n such that 0 < n holds $Det(A \cdot B) = Det A \cdot Det B.$

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite [3] sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7]Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990
- [9] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
- [10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [11] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.
- [12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
- [15] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Math*ematics*, 2(**5**):711–717, 1991.
- [16] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
- Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137-144, [17]1996.
- [18] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.

- [19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
- [20] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369–376, 1990.
- [21] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [22] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187–190, 1990.
- [23] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979–981, 1990.
- [24] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [25] Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(2):291–296, 1990.
- [26] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41–47, 1991.
- [27] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [29] Hiroshi Yamazaki, Yoshinori Fujisawa, and Yatsuka Nakamura. On replace function and swap function for finite sequences. Formalized Mathematics, 9(3):471–474, 2001.
- [30] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541–547, 2005.
- [31] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.
- [32] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1–8, 1993.

Received March 21, 2007