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Summary. Formal languages are introduced as subsets of the set of all

0-based finite sequences over a given set (the alphabet). Concatenation, the n-th

power and closure are defined and their properties are shown. Finally, it is shown

that the closure of the alphabet (understood here as the language of words of

length 1) equals to the set of all words over that alphabet, and that the alphabet

is the minimal set with this property. Notation and terminology were taken from

[5] and [13].
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The terminology and notation used here are introduced in the following articles:

[10], [4], [11], [8], [9], [2], [14], [3], [1], [6], [12], and [7].

1. Preliminaries

For simplicity, we follow the rules: E is a set, x is a set, A, B, C, D are

subsets of Eω, a, b, c are elements of Eω, e is an element of E, i, n, n1, n2, m

are natural numbers, and p, q, r1, r2 are real numbers.

Let us consider E, a, b. Then a a b is an element of Eω.

Let us consider E. Then 〈〉E is an element of Eω.

Let E be a non empty set and let e be an element of E. Then 〈e〉 is an

element of Eω.

Let us consider E, a. Then {a} is a subset of Eω.

Let us consider E, let f be a function from N into 2E
ω
, and let us consider

n. Then f(n) is a subset of Eω.

One can prove the following propositions:
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(1) If {x} 6⊆ X, then {x} misses X.

(2) If n1 > 1 or n2 > 1, then n1 + n2 > 1.

(3) n > 0 iff n ≥ 1.

(4) If r1 + p ≤ r2 + q and p ≥ q, then r1 ≤ r2.

(5) If n1 + n ≤ n2 + 1 and n > 0, then n1 ≤ n2.

(6) n1 + n2 = 1 iff n1 = 1 and n2 = 0 or n1 = 0 and n2 = 1.

(7) a a b = 〈x〉 iff a = 〈〉E and b = 〈x〉 or b = 〈〉E and a = 〈x〉.
(8) For all finite 0-sequences p, q such that a = p a q holds p is an element

of Eω and q is an element of Eω.

(9) If 〈x〉 is an element of Eω, then x ∈ E.
(10) If len b = n+ 1, then there exist c, e such that len c = n and b = c a 〈e〉.
(11) If a a a = a, then a = ∅.

2. Concatenation of Languages

Let us consider E, A, B. The functor A _ B yields a subset of Eω and is

defined by:

(Def. 1) x ∈ A _ B iff there exist a, b such that a ∈ A and b ∈ B and x = a a b.
The following propositions are true:

(12) A _ B = ∅ iff A = ∅ or B = ∅.
(13) A _ {〈〉E} = A and {〈〉E}_ A = A.

(14) A _ B = {〈〉E} iff A = {〈〉E} and B = {〈〉E}.
(15) 〈〉E ∈ A_ B iff 〈〉E ∈ A and 〈〉E ∈ B.
(16) If 〈〉E ∈ B, then A ⊆ A _ B and A ⊆ B _ A.

(17) If A ⊆ C and B ⊆ D, then A _ B ⊆ C _ D.

(18) (A _ B) _ C = A_ (B _ C).

(19) A_ (B ∩C) ⊆ (A_B)∩ (A_C) and (B∩C)_A ⊆ (B_A)∩ (C_A).

(20) A _ B ∪A_ C = A_ (B ∪C) and B _ A ∪ C _ A = (B ∪ C) _ A.

(21) A _ B \ A_ C ⊆ A_ (B \ C) and B _ A \ C _ A ⊆ (B \ C) _ A.

(22) A _ B−. A_ C ⊆ A_ (B−. C) and B _ A−. C _ A ⊆ (B−. C) _ A.

3. n-th Power of a Language

Let us consider E, A, n. The functor An yields a subset of Eω and is defined

by:

(Def. 2) There exists a function c1 from N into 2E
ω

such that An = c1(n) and

c1(0) = {〈〉E} and for every i holds c1(i+ 1) = c1(i) _ A.
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Next we state a number of propositions:

(23) An+1 = (An) _ A.

(24) A0 = {〈〉E}.
(25) A1 = A.

(26) A2 = A_ A.

(27) If n ≥ 1, then (∅Eω)n = ∅.
(28) {〈〉E}n = {〈〉E}.
(29) An = {〈〉E} iff n = 0 or A = {〈〉E}.
(30) If 〈〉E ∈ A, then 〈〉E ∈ An.
(31) (An) _ A = A_ An.

(32) Am+n = (Am) _ An.

(33) (Am)n = Am·n.

(34) If 〈〉E ∈ A and n > 0, then A ⊆ An.
(35) If 〈〉E ∈ A and n > 0 and m > n, then An ⊆ Am.
(36) If A ⊆ B, then An ⊆ Bn.

(37) An ∪Bn ⊆ (A ∪B)n.

(38) (A ∩B)n ⊆ An ∩Bn.

(39) If a ∈ Cm and b ∈ Cn, then a a b ∈ Cm+n.

4. Closure of a Language

Let us consider E, A. The functor A∗ yielding a subset of Eω is defined as

follows:

(Def. 3) A∗ =
⋃{B :

∨
n B = An}.

The following propositions are true:

(40) x ∈ A∗ iff there exists n such that x ∈ An.
(41) An ⊆ A∗.
(42) If x ∈ A, then x ∈ A∗.
(43) A ⊆ A∗.
(44) A _ A ⊆ A∗.
(45) If a ∈ C∗ and b ∈ C∗, then a a b ∈ C∗.
(46) If A ⊆ C∗ and B ⊆ C∗, then A_ B ⊆ C∗.
(47) A∗ = {〈〉E} iff A = ∅ or A = {〈〉E}.
(48) 〈〉E ∈ A∗.
(49) If A∗ = {x}, then x = 〈〉E .
(50) If x ∈ Am+1, then x ∈ (A∗) _ A and x ∈ A_ A∗.

(51) If x ∈ (A∗) _ A or x ∈ A_ A∗, then x ∈ A∗.
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(52) If 〈〉E ∈ A, then A∗ = (A∗) _ A and A∗ = A_ A∗.

(53) If 〈〉E ∈ A, then A∗ = (A∗) _ An and A∗ = (An) _ A∗.

(54) A∗ = {〈〉E} ∪A_ A∗ and A∗ = {〈〉E} ∪ (A∗) _ A.

(55) A _ A∗ = (A∗) _ A.

(56) (An) _ A∗ = (A∗) _ An.

(57) If A ⊆ B∗, then An ⊆ B∗.
(58) If A ⊆ B∗, then A∗ ⊆ B∗.
(59) If A ⊆ B, then A∗ ⊆ B∗.
(60) (A∗)∗ = A∗.

(61) (A∗) _ A∗ = A∗.

(62) (An)∗ ⊆ A∗.
(63) (A∗)n ⊆ A∗.
(64) If n > 0, then (A∗)n = A∗.

(65) If A ⊆ B∗, then B∗ = (B ∪A)∗.

(66) If a ∈ A∗, then A∗ = (A ∪ {a})∗.
(67) A∗ = (A \ {〈〉E})∗.
(68) A∗ ∪B∗ ⊆ (A ∪B)∗.

(69) (A ∩B)∗ ⊆ A∗ ∩B∗.
(70) 〈x〉 ∈ A∗ iff 〈x〉 ∈ A.

5. Alphabet as a Language

Let us consider E. The functor LexE yielding a subset of Eω is defined by:

(Def. 4) x ∈ LexE iff there exists e such that e ∈ E and x = 〈e〉.
Next we state three propositions:

(71) a ∈ (LexE)len a.

(72) (LexE)∗ = Eω.

(73) If A∗ = Eω, then LexE ⊆ A.
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