
FORMALIZED MATHEMATICS

2007, Vol. 15, No. 1, Pages 1–9

DOI: 10. 2478/v10037-007-0001-z

Several Classes of BCI-algebras

and their Properties

Yuzhong Ding
Qingdao University of Science

and Technology
China

Summary. I have formalized the BCI-algebras closely following the book

[6], sections 1.1 to 1.3, 1.6, 2.1 to 2.3, and 2.7. In this article the general theory

of BCI-algebras and several classes of BCI-algebras are given.
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The articles [10], [4], [13], [9], [3], [12], [2], [11], [5], [7], [8], [1], and [14] provide

the notation and terminology for this paper.

1. The Basics of General Theory of BCI-algebras

We introduce BCI structures which are extensions of 1-sorted structure and

are systems

〈 a carrier, an internal complement 〉,
where the carrier is a set and the internal complement is a binary operation on

the carrier.

Let us note that there exists a BCI structure which is non empty and strict.

Let A be a BCI structure and let x, y be elements of A. The functor x \ y
yielding an element of A is defined by:

(Def. 1) x \ y = (the internal complement of A)(x, y).

We introduce BCI structures with 0 which are extensions of BCI structure

and zero structure and are systems

〈 a carrier, an internal complement, a zero 〉,
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where the carrier is a set, the internal complement is a binary operation on the

carrier, and the zero is an element of the carrier.

Let us note that there exists a BCI structure with 0 which is non empty and

strict.

Let I1 be a non empty BCI structure with 0 and let x be an element of I1.

The functor xc yields an element of I1 and is defined by:

(Def. 2) xc = 0(I1) \ x.
Let I1 be a non empty BCI structure with 0. We say that I1 is B if and only

if:

(Def. 3) For all elements x, y, z of I1 holds x \ y \ (z \ y) \ (x \ z) = 0(I1).

We say that I1 is C if and only if:

(Def. 4) For all elements x, y, z of I1 holds x \ y \ z \ (x \ z \ y) = 0(I1).

We say that I1 is I if and only if:

(Def. 5) For every element x of I1 holds x \ x = 0(I1).

We say that I1 is K if and only if:

(Def. 6) For all elements x, y of I1 holds x \ y \ x = 0(I1).

We say that I1 is BCI-4 if and only if:

(Def. 7) For all elements x, y of I1 such that x \ y = 0(I1) and y \ x = 0(I1) holds

x = y.

We say that I1 is BCK-5 if and only if:

(Def. 8) For every element x of I1 holds xc = 0(I1).

The BCI structure BCI-EXAMPLE with 0 is defined as follows:

(Def. 9) BCI-EXAMPLE = 〈{∅}, op2, op0〉.
Let us note that BCI-EXAMPLE is strict and non empty.

One can verify that there exists a non empty BCI structure with 0 which is

strict, B, C, I, and BCI-4.

A BCI-algebra is B C I BCI-4 non empty BCI structure with 0.

Let X be a BCI-algebra. A BCI-algebra is called a subalgebra of X if it

satisfies the conditions (Def. 10).

(Def. 10)(i) 0it = 0X ,

(ii) the carrier of it ⊆ the carrier of X, and

(iii) the internal complement of it = (the internal complement of X) � (the

carrier of it).

The following proposition is true

(1) Let X be a non empty BCI structure with 0. Then X is a BCI-algebra

if and only if the following conditions are satisfied:

(i) X is I and BCI-4, and

(ii) for all elements x, y, z of X holds x \ y \ (x \ z) \ (z \ y) = 0X and

x \ (x \ y) \ y = 0X .
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One can check that there exists a BCI-algebra which is strict and BCK-5.

A BCK-algebra is BCK-5 BCI-algebra.

Let I1 be a non empty BCI structure with 0 and let x, y be elements of I1.

The predicate x ≤ y is defined as follows:

(Def. 11) x \ y = 0(I1).

We use the following convention: X denotes a BCI-algebra, x, y, z, u, a, b

denote elements of X, and I1 denotes a non empty subset of X.

We now state a number of propositions:

(2) x \ 0X = x.

(3) If x \ y = 0X and y \ z = 0X , then x \ z = 0X .

(4) If x \ y = 0X , then x \ z \ (y \ z) = 0X and z \ y \ (z \ x) = 0X .

(5) If x ≤ y, then x \ z ≤ y \ z and z \ y ≤ z \ x.
(6) If x \ y = 0X , then (y \ x)c = 0X .

(7) x \ y \ z = x \ z \ y.
(8) x \ (x \ (x \ y)) = x \ y.
(9) (x \ y)c = xc \ yc.

(10) x \ (x \ y) \ (y \ x) \ (x \ (x \ (y \ (y \ x)))) = 0X .

(11) Let X be a non empty BCI structure with 0. Then X is a BCI-algebra

if and only if the following conditions are satisfied:

(i) X is BCI-4, and

(ii) for all elements x, y, z of X holds x \ y \ (x \ z) \ (z \ y) = 0X and

x \ 0X = x.

(12) If for every BCI-algebra X and for all elements x, y ofX holds x\(x\y) =

y \ (y \ x), then X is a BCK-algebra.

(13) If for every BCI-algebra X and for all elements x, y of X holds x\y\y =

x \ y, then X is a BCK-algebra.

(14) If for every BCI-algebra X and for all elements x, y ofX holds x\(y\x) =

x, then X is a BCK-algebra.

(15) If for every BCI-algebra X and for all elements x, y, z of X holds (x \
y) \ y = x \ z \ (y \ z), then X is a BCK-algebra.

(16) If for every BCI-algebra X and for all elements x, y of X holds x \ y \
(y \ x) = x \ y, then X is a BCK-algebra.

(17) If for every BCI-algebra X and for all elements x, y of X holds x \ y \
(x \ y \ (y \ x)) = 0X , then X is a BCK-algebra.

(18) For every BCI-algebra X holds X is K iff X is a BCK-algebra.

Let X be a BCI-algebra. The functor BCK-partX yielding a non empty

subset of X is defined by:

(Def. 12) BCK-partX = {x;x ranges over elements of X: 0X ≤ x}.
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Next we state the proposition

(19) 0X ∈ BCK-partX.

Let us consider X. Note that 0X
Next we state three propositions:

(20) For all elements x, y of BCK-partX holds x \ y ∈ BCK-partX.

(21) For every element x of X and for every element y of BCK-partX holds

x \ y ≤ x.
(22) X is a subalgebra of X.

Let X be a BCI-algebra and let I1 be a subalgebra of X. We say that I1 is

proper if and only if:

(Def. 13) I1 6= X.

Let us consider X. Note that there exists a subalgebra of X which is non

proper.

Let X be a BCI-algebra and let I1 be an element of X. We say that I1 is

atom if and only if:

(Def. 14) For every element z of X such that z \ I1 = 0X holds z = I1.

Let X be a BCI-algebra. The functor AtomSetX yields a non empty subset

of X and is defined by:

(Def. 15) AtomSetX = {x;x ranges over elements of X: x is atom}.
One can prove the following propositions:

(23) 0X ∈ AtomSetX.

(24) For every element x of X holds x ∈ AtomSetX iff for every element z

of X holds z \ (z \ x) = x.

(25) For every element x of X holds x ∈ AtomSetX iff for all elements u, z

of X holds z \ u \ (z \ x) = x \ u.
(26) For every element x of X holds x ∈ AtomSetX iff for all elements y, z

of X holds x \ (z \ y) ≤ y \ (z \ x).

(27) For every element x of X holds x ∈ AtomSetX iff for all elements y, z,

u of X holds (x \ u) \ (z \ y) ≤ y \ u \ (z \ x).

(28) For every element x of X holds x ∈ AtomSetX iff for every element z

of X holds zc \ xc = x \ z.
(29) For every element x of X holds x ∈ AtomSetX iff (xc)c = x.

(30) For every element x of X holds x ∈ AtomSetX iff for every element z

of X holds (z \ x)c = x \ z.
(31) For every element x of X holds x ∈ AtomSetX iff for every element z

of X holds ((x \ z)c)c = x \ z.
(32) For every element x of X holds x ∈ AtomSetX iff for all elements z, u

of X holds z \ (z \ (x \ u)) = x \ u.
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(33) For every element a of AtomSetX and for every element x of X holds

a \ x ∈ AtomSetX.

Let X be a BCI-algebra and let a, b be elements of AtomSetX. Then a \ b
is an element of AtomSetX.

One can prove the following propositions:

(34) For every element x of X holds xc ∈ AtomSetX.

(35) For every element x of X there exists an element a of AtomSetX such

that a ≤ x.
Let X be a BCI-algebra. We say that X is generated by atom if and only if:

(Def. 16) For every element x of X there exists an element a of AtomSetX such

that a ≤ x.
Let X be a BCI-algebra and let a be an element of AtomSetX. The functor

BranchV a yields a non empty subset of X and is defined as follows:

(Def. 17) BranchV a = {x;x ranges over elements of X: a ≤ x}.
We now state several propositions:

(36) Every BCI-algebra is generated by atom.

(37) For all elements a, b of AtomSetX and for every element x of BranchV b

holds a \ x = a \ b.
(38) For every element a of AtomSetX and for every element x of

BCK-partX holds a \ x = a.

(39) For all elements a, b of AtomSetX and for every element x of BranchV a

and for every element y of BranchV b holds x \ y ∈ BranchV(a \ b).
(40) For every element a of AtomSetX and for all elements x, y of BranchV a

holds x \ y ∈ BCK-partX.

(41) For all elements a, b of AtomSetX and for every element x of BranchV a

and for every element y of BranchV b such that a 6= b holds x \ y /∈
BCK-partX.

(42) For all elements a, b of AtomSetX such that a 6= b holds BranchV a ∩
BranchV b = ∅.

Let X be a BCI-algebra. A non empty subset of X is said to be an ideal of

X if:

(Def. 18) 0X ∈ it and for all elements x, y of X such that x \ y ∈ it and y ∈ it

holds x ∈ it.

Let X be a BCI-algebra and let I1 be an ideal of X. We say that I1 is closed

if and only if:

(Def. 19) For every element x of I1 holds xc ∈ I1.

Let us consider X. Note that there exists an ideal of X which is closed.

Next we state four propositions:

(43) {0X} is a closed ideal of X.
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(44) The carrier of X is a closed ideal of X.

(45) BCK-partX is a closed ideal of X.

(46) If I1 is an ideal of X, then for all elements x, y of X such that x ∈ I1

and y ≤ x holds y ∈ I1.

2. Associative BCI-algebras

Let I1 be a BCI-algebra. We say that I1 is associative if and only if:

(Def. 20) For all elements x, y, z of I1 holds (x \ y) \ z = x \ (y \ z).
We say that I1 is quasi-associative if and only if:

(Def. 21) For every element x of I1 holds (xc)c = xc.

We say that I1 is positive-implicative if and only if:

(Def. 22) For all elements x, y of I1 holds (x\(x\y))\(y\x) = x\(x\(y\(y\x))).

We say that I1 is weakly-positive-implicative if and only if:

(Def. 23) For all elements x, y, z of I1 holds (x \ y) \ z = x \ z \ z \ (y \ z).
We say that I1 is implicative if and only if:

(Def. 24) For all elements x, y of I1 holds (x \ (x \ y)) \ (y \ x) = y \ (y \ x).

We say that I1 is weakly-implicative if and only if:

(Def. 25) For all elements x, y of I1 holds x \ (y \ x) \ (y \ x)c = x.

We say that I1 is p-semisimple if and only if:

(Def. 26) For all elements x, y of I1 holds x \ (x \ y) = y.

We say that I1 is alternative if and only if:

(Def. 27) For all elements x, y of I1 holds x \ (x \ y) = (x \ x) \ y and (x \ y) \ y =

x \ (y \ y).

One can check that there exists a BCI-algebra which is implicative, positive-

implicative, p-semisimple, associative, weakly-implicative, and weakly-positive-

implicative.

Next we state several propositions:

(47) X is associative iff for every element x of X holds xc = x.

(48) For all elements x, y of X holds y \ x = x \ y iff X is associative.

(49) Let X be a non empty BCI structure with 0. Then X is an associative

BCI-algebra if and only if for all elements x, y, z of X holds y\x\(z\x) =

z \ y and x \ 0X = x.

(50) Let X be a non empty BCI structure with 0. Then X is an associative

BCI-algebra if and only if for all elements x, y, z of X holds x\y\(x\z) =

z \ y and xc = x.
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(51) Let X be a non empty BCI structure with 0. Then X is an associative

BCI-algebra if and only if for all elements x, y, z of X holds x\y\(x\z) =

y \ z and x \ 0X = x.

3. p-semisimple BCI-algebras

One can prove the following propositions:

(52) X is p-semisimple iff every element of X is atom.

(53) If X is p-semisimple, then BCK-partX = {0X}.
(54) X is p-semisimple iff for every element x of X holds (xc)c = x.

(55) X is p-semisimple iff for all x, y holds y \ (y \ x) = x.

(56) X is p-semisimple iff for all x, y, z holds z \ y \ (z \ x) = x \ y.
(57) X is p-semisimple iff for all x, y, z holds x \ (z \ y) = y \ (z \ x).

(58) X is p-semisimple iff for all x, y, z, u holds (x\u)\(z \y) = y\u\(z \x).

(59) X is p-semisimple iff for all x, z holds zc \ xc = x \ z.
(60) X is p-semisimple iff for all x, z holds ((x \ z)c)c = x \ z.
(61) X is p-semisimple iff for all x, u, z holds z \ (z \ (x \ u)) = x \ u.
(62) X is p-semisimple iff for every x such that xc = 0X holds x = 0X .

(63) X is p-semisimple iff for all x, y holds x \ yc = y \ xc.

(64) X is p-semisimple iff for all x, y, z, u holds (x\y)\(z \u) = x\z \(y\u).

(65) X is p-semisimple iff for all x, y, z holds x \ y \ (z \ y) = x \ z.
(66) X is p-semisimple iff for all x, y, z holds x \ (y \ z) = (z \ y) \ xc.

(67) X is p-semisimple iff for all x, y, z such that y \ x = z \ x holds y = z.

(68) X is p-semisimple iff for all x, y, z such that x \ y = x \ z holds y = z.

(69) Let X be a non empty BCI structure with 0. Then X is a p-semisimple

BCI-algebra if and only if for all elements x, y, z of X holds x\y\(x\z) =

z \ y and x \ 0X = x.

(70) Let X be a non empty BCI structure with 0. Then X is a p-semisimple

BCI-algebra if and only if X is I and for all elements x, y, z of X holds

x \ (y \ z) = z \ (y \ x) and x \ 0X = x.

4. Quasi-associative BCI-algebras

Next we state several propositions:

(71) X is quasi-associative iff for every element x of X holds xc ≤ x.
(72) X is quasi-associative iff for all elements x, y of X holds (x\y)c = (y\x)c.

(73) X is quasi-associative iff for all elements x, y of X holds xc \y = (x\y)c.
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(74) X is quasi-associative iff for all elements x, y of X holds x \ y \ (y \ x) ∈
BCK-partX.

(75) X is quasi-associative iff for all elements x, y, z of X holds (x \ y) \ z ≤
x \ (y \ z).

5. Alternative BCI-algebras

We now state several propositions:

(76) If X is alternative, then xc = x and x \ (x \ y) = y and x \ y \ y = x.

(77) If X is alternative and x \ a = x \ b, then a = b.

(78) If X is alternative and a \ x = b \ x, then a = b.

(79) If X is alternative and x \ y = 0X , then x = y.

(80) If X is alternative and x \ a \ b = 0X , then a = x \ b and b = x \ a.
One can check the following observations:

∗ every BCI-algebra which is alternative is also associative,

∗ every BCI-algebra which is associative is also alternative, and

∗ every BCI-algebra which is alternative is also implicative.

The following two propositions are true:

(81) If X is alternative, then x \ (x \ y) \ (y \ x) = x.

(82) If X is alternative, then y \ (y \ (x \ (x \ y))) = y.

6. Implicative, Positive-Implicative, and

Weakly-Positive-Implicative BCI-algebras

Let us observe that every BCI-algebra which is associative is also weakly-

positive-implicative and every BCI-algebra which is p-semisimple is also weakly-

positive-implicative.

We now state two propositions:

(83) Let X be a non empty BCI structure with 0. Then X is an implicative

BCI-algebra if and only if for all elements x, y, z of X holds x \ y \ (x \
z) \ (z \ y) = 0X and x \ 0X = x and (x \ (x \ y)) \ (y \ x) = y \ (y \ x).

(84) X is weakly-positive-implicative iff for all elements x, y of X holds x\y =

x \ y \ y \ yc.

One can verify that every BCI-algebra which is positive-implicative is also

weakly-positive-implicative and every BCI-algebra which is alternative is also

weakly-positive-implicative.

One can prove the following two propositions:

(85) Suppose X is a weakly-positive-implicative BCI-algebra. Let x, y be

elements of X. Then (x \ (x \ y)) \ (y \ x) = y \ (y \ x) \ (y \ x) \ (x \ y).
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(86) Let X be a non empty BCI structure with 0. Then X is a positive-

implicative BCI-algebra if and only if for all elements x, y, z of X holds

x \ y \ (x \ z) \ (z \ y) = 0X and x \ 0X = x and x \ y = x \ y \ y \ yc and

(x \ (x \ y)) \ (y \ x) = y \ (y \ x) \ (y \ x) \ (x \ y).
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