Several Classes of BCI-algebras and their Properties

Yuzhong Ding
Qingdao University of Science
and Technology
China

Abstract

Summary. I have formalized the BCI-algebras closely following the book [6], sections 1.1 to $1.3,1.6,2.1$ to 2.3 , and 2.7. In this article the general theory of BCI-algebras and several classes of BCI-algebras are given.

MML identifier: BCIALG_1, version: 7.8.04 4.81.962

The articles [10], [4], [13], [9], [3], [12], [2], [11], [5], [7], [8], [1], and [14] provide the notation and terminology for this paper.

1. The Basics of General Theory of BCI-algebras

We introduce BCI structures which are extensions of 1-sorted structure and are systems
\langle a carrier, an internal complement \rangle,
where the carrier is a set and the internal complement is a binary operation on the carrier.

Let us note that there exists a BCI structure which is non empty and strict.
Let A be a BCI structure and let x, y be elements of A. The functor $x \backslash y$ yielding an element of A is defined by:
(Def. 1) $x \backslash y=($ the internal complement of $A)(x, y)$.
We introduce BCI structures with 0 which are extensions of BCI structure and zero structure and are systems
\langle a carrier, an internal complement, a zero 〉,
where the carrier is a set, the internal complement is a binary operation on the carrier, and the zero is an element of the carrier.

Let us note that there exists a BCI structure with 0 which is non empty and strict.

Let I_{1} be a non empty BCI structure with 0 and let x be an element of I_{1}. The functor x^{c} yields an element of I_{1} and is defined by:
(Def. 2) $\quad x^{\mathrm{c}}=0_{\left(I_{1}\right)} \backslash x$.
Let I_{1} be a non empty BCI structure with 0 . We say that I_{1} is B if and only if:
(Def. 3) For all elements x, y, z of I_{1} holds $x \backslash y \backslash(z \backslash y) \backslash(x \backslash z)=0_{\left(I_{1}\right)}$.
We say that I_{1} is C if and only if:
(Def. 4) For all elements x, y, z of I_{1} holds $x \backslash y \backslash z \backslash(x \backslash z \backslash y)=0_{\left(I_{1}\right)}$.
We say that I_{1} is I if and only if:
(Def. 5) For every element x of I_{1} holds $x \backslash x=0_{\left(I_{1}\right)}$.
We say that I_{1} is K if and only if:
(Def. 6) For all elements x, y of I_{1} holds $x \backslash y \backslash x=0_{\left(I_{1}\right)}$.
We say that I_{1} is BCI-4 if and only if:
(Def. 7) For all elements x, y of I_{1} such that $x \backslash y=0_{\left(I_{1}\right)}$ and $y \backslash x=0_{\left(I_{1}\right)}$ holds $x=y$.
We say that I_{1} is BCK-5 if and only if:
(Def. 8) For every element x of I_{1} holds $x^{\mathrm{c}}=0_{\left(I_{1}\right)}$.
The BCI structure BCI-EXAMPLE with 0 is defined as follows:
(Def. 9) BCI-EXAMPLE $=\left\langle\{\emptyset\}, \mathrm{op}_{2}, \mathrm{op}_{0}\right\rangle$.
Let us note that BCI-EXAMPLE is strict and non empty.
One can verify that there exists a non empty BCI structure with 0 which is strict, B, C, I, and BCI-4.

A BCI-algebra is B C I BCI-4 non empty BCI structure with 0.
Let X be a BCI-algebra. A BCI-algebra is called a subalgebra of X if it satisfies the conditions (Def. 10).
(Def. 10)(i) $\quad 0_{i t}=0_{X}$,
(ii) the carrier of it \subseteq the carrier of X, and
(iii) the internal complement of it $=($ the internal complement of $X) \upharpoonright($ the carrier of it).
The following proposition is true
(1) Let X be a non empty BCI structure with 0 . Then X is a BCI-algebra if and only if the following conditions are satisfied:
(i) X is I and BCI-4, and
(ii) for all elements x, y, z of X holds $x \backslash y \backslash(x \backslash z) \backslash(z \backslash y)=0_{X}$ and $x \backslash(x \backslash y) \backslash y=0_{X}$.

One can check that there exists a BCI-algebra which is strict and BCK-5.
A BCK-algebra is BCK-5 BCI-algebra.
Let I_{1} be a non empty BCI structure with 0 and let x, y be elements of I_{1}. The predicate $x \leq y$ is defined as follows:
(Def. 11) $x \backslash y=0_{\left(I_{1}\right)}$.
We use the following convention: X denotes a BCI-algebra, x, y, z, u, a, b denote elements of X, and I_{1} denotes a non empty subset of X.

We now state a number of propositions:
(2) $x \backslash 0_{X}=x$.
(3) If $x \backslash y=0_{X}$ and $y \backslash z=0_{X}$, then $x \backslash z=0_{X}$.
(4) If $x \backslash y=0_{X}$, then $x \backslash z \backslash(y \backslash z)=0_{X}$ and $z \backslash y \backslash(z \backslash x)=0_{X}$.
(5) If $x \leq y$, then $x \backslash z \leq y \backslash z$ and $z \backslash y \leq z \backslash x$.
(6) If $x \backslash y=0_{X}$, then $(y \backslash x)^{\mathrm{c}}=0_{X}$.
(7) $x \backslash y \backslash z=x \backslash z \backslash y$.
(8) $x \backslash(x \backslash(x \backslash y))=x \backslash y$.
(9) $\quad(x \backslash y)^{\mathrm{c}}=x^{\mathrm{c}} \backslash y^{\mathrm{c}}$.
(10) $x \backslash(x \backslash y) \backslash(y \backslash x) \backslash(x \backslash(x \backslash(y \backslash(y \backslash x))))=0_{X}$.
(11) Let X be a non empty BCI structure with 0 . Then X is a BCI-algebra if and only if the following conditions are satisfied:
(i) X is BCI-4, and
(ii) for all elements x, y, z of X holds $x \backslash y \backslash(x \backslash z) \backslash(z \backslash y)=0_{X}$ and $x \backslash 0_{X}=x$.
(12) If for every BCI-algebra X and for all elements x, y of X holds $x \backslash(x \backslash y)=$ $y \backslash(y \backslash x)$, then X is a BCK-algebra.
(13) If for every BCI-algebra X and for all elements x, y of X holds $x \backslash y \backslash y=$ $x \backslash y$, then X is a BCK-algebra.
(14) If for every BCI-algebra X and for all elements x, y of X holds $x \backslash(y \backslash x)=$ x, then X is a BCK-algebra.
(15) If for every BCI-algebra X and for all elements x, y, z of X holds (x \} $y) \backslash y=x \backslash z \backslash(y \backslash z)$, then X is a BCK-algebra.
(16) If for every BCI-algebra X and for all elements x, y of X holds $x \backslash y \backslash$ $(y \backslash x)=x \backslash y$, then X is a BCK-algebra.
(17) If for every BCI-algebra X and for all elements x, y of X holds $x \backslash y \backslash$ $(x \backslash y \backslash(y \backslash x))=0_{X}$, then X is a BCK-algebra.
(18) For every BCI-algebra X holds X is K iff X is a BCK-algebra.

Let X be a BCI-algebra. The functor BCK-part X yielding a non empty subset of X is defined by:
(Def. 12) BCK-part $X=\left\{x ; x\right.$ ranges over elements of $\left.X: 0_{X} \leq x\right\}$.

Next we state the proposition
(19) $0_{X} \in$ BCK-part X.

Let us consider X. Note that 0_{X}
Next we state three propositions:
(20) For all elements x, y of BCK-part X holds $x \backslash y \in$ BCK-part X.
(21) For every element x of X and for every element y of BCK-part X holds $x \backslash y \leq x$.
(22) X is a subalgebra of X.

Let X be a BCI-algebra and let I_{1} be a subalgebra of X. We say that I_{1} is proper if and only if:
(Def. 13) $\quad I_{1} \neq X$.
Let us consider X. Note that there exists a subalgebra of X which is non proper.

Let X be a BCI-algebra and let I_{1} be an element of X. We say that I_{1} is atom if and only if:
(Def. 14) For every element z of X such that $z \backslash I_{1}=0_{X}$ holds $z=I_{1}$.
Let X be a BCI-algebra. The functor AtomSet X yields a non empty subset of X and is defined by:
(Def. 15) AtomSet $X=\{x ; x$ ranges over elements of $X: x$ is atom $\}$.
One can prove the following propositions:
(23) $0_{X} \in$ AtomSet X.
(24) For every element x of X holds $x \in$ AtomSet X iff for every element z of X holds $z \backslash(z \backslash x)=x$.
(25) For every element x of X holds $x \in$ AtomSet X iff for all elements u, z of X holds $z \backslash u \backslash(z \backslash x)=x \backslash u$.
(26) For every element x of X holds $x \in$ AtomSet X iff for all elements y, z of X holds $x \backslash(z \backslash y) \leq y \backslash(z \backslash x)$.
(27) For every element x of X holds $x \in$ AtomSet X iff for all elements y, z, u of X holds $(x \backslash u) \backslash(z \backslash y) \leq y \backslash u \backslash(z \backslash x)$.
(28) For every element x of X holds $x \in$ AtomSet X iff for every element z of X holds $z^{\mathrm{c}} \backslash x^{\mathrm{c}}=x \backslash z$.
(29) For every element x of X holds $x \in$ AtomSet X iff $\left(x^{\mathrm{c}}\right)^{\mathrm{c}}=x$.
(30) For every element x of X holds $x \in$ AtomSet X iff for every element z of X holds $(z \backslash x)^{\mathrm{c}}=x \backslash z$.
(31) For every element x of X holds $x \in$ AtomSet X iff for every element z of X holds $\left((x \backslash z)^{\mathrm{c}}\right)^{\mathrm{c}}=x \backslash z$.
(32) For every element x of X holds $x \in$ AtomSet X iff for all elements z, u of X holds $z \backslash(z \backslash(x \backslash u))=x \backslash u$.
(33) For every element a of AtomSet X and for every element x of X holds $a \backslash x \in$ AtomSet X.
Let X be a BCI-algebra and let a, b be elements of AtomSet X. Then $a \backslash b$ is an element of AtomSet X.

One can prove the following propositions:
(34) For every element x of X holds $x^{\mathrm{c}} \in$ AtomSet X.
(35) For every element x of X there exists an element a of AtomSet X such that $a \leq x$.
Let X be a BCI-algebra. We say that X is generated by atom if and only if:
(Def. 16) For every element x of X there exists an element a of AtomSet X such that $a \leq x$.
Let X be a BCI-algebra and let a be an element of AtomSet X. The functor BranchV a yields a non empty subset of X and is defined as follows:
(Def. 17) BranchV $a=\{x ; x$ ranges over elements of $X: a \leq x\}$.
We now state several propositions:
(36) Every BCI-algebra is generated by atom.
(37) For all elements a, b of AtomSet X and for every element x of BranchV b holds $a \backslash x=a \backslash b$.
(38) For every element a of AtomSet X and for every element x of BCK-part X holds $a \backslash x=a$.
(39) For all elements a, b of AtomSet X and for every element x of $\operatorname{BranchV} a$ and for every element y of $\operatorname{BranchV} b$ holds $x \backslash y \in \operatorname{BranchV}(a \backslash b)$.
(40) For every element a of AtomSet X and for all elements x, y of BranchV a holds $x \backslash y \in$ BCK-part X.
(41) For all elements a, b of AtomSet X and for every element x of BranchV a and for every element y of BranchV b such that $a \neq b$ holds $x \backslash y \notin$ BCK-part X.
(42) For all elements a, b of AtomSet X such that $a \neq b$ holds BranchV $a \cap$ BranchV $b=\emptyset$.
Let X be a BCI-algebra. A non empty subset of X is said to be an ideal of X if:
(Def. 18) $0_{X} \in$ it and for all elements x, y of X such that $x \backslash y \in$ it and $y \in$ it holds $x \in$ it.
Let X be a BCI-algebra and let I_{1} be an ideal of X. We say that I_{1} is closed if and only if:
(Def. 19) For every element x of I_{1} holds $x^{\mathrm{c}} \in I_{1}$.
Let us consider X. Note that there exists an ideal of X which is closed.
Next we state four propositions:
(43) $\left\{0_{X}\right\}$ is a closed ideal of X.
(44) The carrier of X is a closed ideal of X.
(45) BCK-part X is a closed ideal of X.
(46) If I_{1} is an ideal of X, then for all elements x, y of X such that $x \in I_{1}$ and $y \leq x$ holds $y \in I_{1}$.

2. Associative BCI-Algebras

Let I_{1} be a BCI-algebra. We say that I_{1} is associative if and only if:
(Def. 20) For all elements x, y, z of I_{1} holds $(x \backslash y) \backslash z=x \backslash(y \backslash z)$.
We say that I_{1} is quasi-associative if and only if:
(Def. 21) For every element x of I_{1} holds $\left(x^{\mathrm{c}}\right)^{\mathrm{c}}=x^{\mathrm{c}}$.
We say that I_{1} is positive-implicative if and only if:
(Def. 22) For all elements x, y of I_{1} holds $(x \backslash(x \backslash y)) \backslash(y \backslash x)=x \backslash(x \backslash(y \backslash(y \backslash x)))$.
We say that I_{1} is weakly-positive-implicative if and only if:
(Def. 23) For all elements x, y, z of I_{1} holds $(x \backslash y) \backslash z=x \backslash z \backslash z \backslash(y \backslash z)$.
We say that I_{1} is implicative if and only if:
(Def. 24) For all elements x, y of I_{1} holds $(x \backslash(x \backslash y)) \backslash(y \backslash x)=y \backslash(y \backslash x)$.
We say that I_{1} is weakly-implicative if and only if:
(Def. 25) For all elements x, y of I_{1} holds $x \backslash(y \backslash x) \backslash(y \backslash x)^{\mathrm{c}}=x$.
We say that I_{1} is p-semisimple if and only if:
(Def. 26) For all elements x, y of I_{1} holds $x \backslash(x \backslash y)=y$.
We say that I_{1} is alternative if and only if:
(Def. 27) For all elements x, y of I_{1} holds $x \backslash(x \backslash y)=(x \backslash x) \backslash y$ and $(x \backslash y) \backslash y=$ $x \backslash(y \backslash y)$.
One can check that there exists a BCI-algebra which is implicative, positiveimplicative, p-semisimple, associative, weakly-implicative, and weakly-positiveimplicative.

Next we state several propositions:
(47) X is associative iff for every element x of X holds $x^{\mathrm{c}}=x$.
(48) For all elements x, y of X holds $y \backslash x=x \backslash y$ iff X is associative.
(49) Let X be a non empty BCI structure with 0 . Then X is an associative BCI-algebra if and only if for all elements x, y, z of X holds $y \backslash x \backslash(z \backslash x)=$ $z \backslash y$ and $x \backslash 0_{X}=x$.
(50) Let X be a non empty BCI structure with 0 . Then X is an associative BCI-algebra if and only if for all elements x, y, z of X holds $x \backslash y \backslash(x \backslash z)=$ $z \backslash y$ and $x^{\mathrm{c}}=x$.
(51) Let X be a non empty BCI structure with 0 . Then X is an associative BCI-algebra if and only if for all elements x, y, z of X holds $x \backslash y \backslash(x \backslash z)=$ $y \backslash z$ and $x \backslash 0_{X}=x$.

3. p-SEMISIMPLE BCI-ALGEBRAS

One can prove the following propositions:
(52) $\quad X$ is p-semisimple iff every element of X is atom.
(53) If X is p-semisimple, then BCK-part $X=\left\{0_{X}\right\}$.
(54) $\quad X$ is p-semisimple iff for every element x of X holds $\left(x^{\mathrm{c}}\right)^{\mathrm{c}}=x$.
(55) $\quad X$ is p-semisimple iff for all x, y holds $y \backslash(y \backslash x)=x$.
(56) $\quad X$ is p-semisimple iff for all x, y, z holds $z \backslash y \backslash(z \backslash x)=x \backslash y$.
(57) $\quad X$ is p-semisimple iff for all x, y, z holds $x \backslash(z \backslash y)=y \backslash(z \backslash x)$.
(58) $\quad X$ is p-semisimple iff for all x, y, z, u holds $(x \backslash u) \backslash(z \backslash y)=y \backslash u \backslash(z \backslash x)$.
(59) $\quad X$ is p-semisimple iff for all x, z holds $z^{\mathrm{c}} \backslash x^{\mathrm{c}}=x \backslash z$.
(60) X is p-semisimple iff for all x, z holds $\left((x \backslash z)^{\mathrm{c}}\right)^{\mathrm{c}}=x \backslash z$.
(61) X is p-semisimple iff for all x, u, z holds $z \backslash(z \backslash(x \backslash u))=x \backslash u$.
(62) $\quad X$ is p-semisimple iff for every x such that $x^{\mathrm{c}}=0_{X}$ holds $x=0_{X}$.
(63) $\quad X$ is p-semisimple iff for all x, y holds $x \backslash y^{\mathrm{c}}=y \backslash x^{\mathrm{c}}$.
(64) $\quad X$ is p-semisimple iff for all x, y, z, u holds $(x \backslash y) \backslash(z \backslash u)=x \backslash z \backslash(y \backslash u)$.
(65) $\quad X$ is p-semisimple iff for all x, y, z holds $x \backslash y \backslash(z \backslash y)=x \backslash z$.
(66) X is p-semisimple iff for all x, y, z holds $x \backslash(y \backslash z)=(z \backslash y) \backslash x^{\mathrm{c}}$.
(67) $\quad X$ is p-semisimple iff for all x, y, z such that $y \backslash x=z \backslash x$ holds $y=z$.
(68) $\quad X$ is p-semisimple iff for all x, y, z such that $x \backslash y=x \backslash z$ holds $y=z$.
(69) Let X be a non empty BCI structure with 0 . Then X is a p-semisimple BCI-algebra if and only if for all elements x, y, z of X holds $x \backslash y \backslash(x \backslash z)=$ $z \backslash y$ and $x \backslash 0_{X}=x$.
(70) Let X be a non empty BCI structure with 0 . Then X is a p-semisimple BCI-algebra if and only if X is I and for all elements x, y, z of X holds $x \backslash(y \backslash z)=z \backslash(y \backslash x)$ and $x \backslash 0_{X}=x$.

4. Quasi-Associative BCI-ALGEBRAS

Next we state several propositions:
(71) X is quasi-associative iff for every element x of X holds $x^{\mathrm{c}} \leq x$.
(72) $\quad X$ is quasi-associative iff for all elements x, y of X holds $(x \backslash y)^{\mathrm{c}}=(y \backslash x)^{\mathrm{c}}$.
(73) $\quad X$ is quasi-associative iff for all elements x, y of X holds $x^{\mathrm{c}} \backslash y=(x \backslash y)^{\mathrm{c}}$.
(74) $\quad X$ is quasi-associative iff for all elements x, y of X holds $x \backslash y \backslash(y \backslash x) \in$ BCK-part X.
(75) $\quad X$ is quasi-associative iff for all elements x, y, z of X holds $(x \backslash y) \backslash z \leq$ $x \backslash(y \backslash z)$.

5. Alternative BCI-Algebras

We now state several propositions:
(76) If X is alternative, then $x^{\mathrm{c}}=x$ and $x \backslash(x \backslash y)=y$ and $x \backslash y \backslash y=x$.
(77) If X is alternative and $x \backslash a=x \backslash b$, then $a=b$.
(78) If X is alternative and $a \backslash x=b \backslash x$, then $a=b$.
(79) If X is alternative and $x \backslash y=0_{X}$, then $x=y$.
(80) If X is alternative and $x \backslash a \backslash b=0_{X}$, then $a=x \backslash b$ and $b=x \backslash a$.

One can check the following observations:

* every BCI-algebra which is alternative is also associative,
* every BCI-algebra which is associative is also alternative, and
* every BCI-algebra which is alternative is also implicative.

The following two propositions are true:
(81) If X is alternative, then $x \backslash(x \backslash y) \backslash(y \backslash x)=x$.
(82) If X is alternative, then $y \backslash(y \backslash(x \backslash(x \backslash y)))=y$.

6. Implicative, Positive-Implicative, and Weakly-Positive-Implicative BCI-Algebras

Let us observe that every BCI-algebra which is associative is also weakly-positive-implicative and every BCI-algebra which is p-semisimple is also weakly-positive-implicative.

We now state two propositions:
(83) Let X be a non empty BCI structure with 0 . Then X is an implicative BCI-algebra if and only if for all elements x, y, z of X holds $x \backslash y \backslash(x \backslash$ $z) \backslash(z \backslash y)=0_{X}$ and $x \backslash 0_{X}=x$ and $(x \backslash(x \backslash y)) \backslash(y \backslash x)=y \backslash(y \backslash x)$.
(84) X is weakly-positive-implicative iff for all elements x, y of X holds $x \backslash y=$ $x \backslash y \backslash y \backslash y^{\mathrm{c}}$.
One can verify that every BCI-algebra which is positive-implicative is also weakly-positive-implicative and every BCI-algebra which is alternative is also weakly-positive-implicative.

One can prove the following two propositions:
(85) Suppose X is a weakly-positive-implicative BCI-algebra. Let x, y be elements of X. Then $(x \backslash(x \backslash y)) \backslash(y \backslash x)=y \backslash(y \backslash x) \backslash(y \backslash x) \backslash(x \backslash y)$.
(86) Let X be a non empty BCI structure with 0 . Then X is a positiveimplicative BCI-algebra if and only if for all elements x, y, z of X holds $x \backslash y \backslash(x \backslash z) \backslash(z \backslash y)=0_{X}$ and $x \backslash 0_{X}=x$ and $x \backslash y=x \backslash y \backslash y \backslash y^{\mathrm{c}}$ and $(x \backslash(x \backslash y)) \backslash(y \backslash x)=y \backslash(y \backslash x) \backslash(y \backslash x) \backslash(x \backslash y)$.

References

[1] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[5] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[6] Jie Meng and YoungLin Liu. An Introduction to BCI-algebras. Shaanxi Scientific and Technological Press, 2001.
Michał Muzalewski. Midpoint algebras. Formalized Mathematics, 1(3):483-488, 1990.
[8] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[9] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[11] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[12] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

