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Summary. I have formalized the BCI-algebras closely following the book
[6], sections 1.1 to 1.3, 1.6, 2.1 to 2.3, and 2.7. In this article the general theory
of BClI-algebras and several classes of BCI-algebras are given.
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The articles [10], [4], [13], [9], [3], [12], [2], [11], [5], [7], [8], [1], and [14] provide
the notation and terminology for this paper.

1. THE BASICS OF GENERAL THEORY OF BCI-ALGEBRAS

We introduce BCI structures which are extensions of 1-sorted structure and
are systems

( a carrier, an internal complement ),
where the carrier is a set and the internal complement is a binary operation on
the carrier.

Let us note that there exists a BCI structure which is non empty and strict.

Let A be a BCI structure and let =, y be elements of A. The functor = \ y
yielding an element of A is defined by:

(Def. 1) 2\ y = (the internal complement of A)(z, y).
We introduce BCI structures with 0 which are extensions of BCI structure
and zero structure and are systems
( a carrier, an internal complement, a zero ),
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where the carrier is a set, the internal complement is a binary operation on the
carrier, and the zero is an element of the carrier.

Let us note that there exists a BCI structure with 0 which is non empty and
strict.

Let I; be a non empty BCI structure with 0 and let « be an element of I;.
The functor z¢ yields an element of I; and is defined by:

(Def. 2)  2¢ =0y \ .
Let I; be a non empty BCI structure with 0. We say that I; is B if and only
if:
(Def. 3) For all elements z, y, z of I holds z \ y \ (2 \ y) \ (z\ 2) = 0(z,).
We say that I is C if and only if:
(Def. 4) For all elements z, y, z of I; holds x\ y \ z\ (z \ 2\ y) = O(y,)-
We say that I is I if and only if:
(Def. 5) For every element z of I holds x \ z = 0(z,).
We say that I; is K if and only if:
(Def. 6) For all elements z, y of I; holds z \ y \ z = 0(7,).
We say that I is BCI-4 if and only if:
(Def. 7)  For all elements z, y of I such that x \ y = 0(;;) and y \ @ = Oz, holds
T =1y.
We say that I; is BCK-5 if and only if:
(Def. 8)  For every element z of I holds x¢ = 0z,).
The BCI structure BCI-EXAMPLE with 0 is defined as follows:
(Def. 9) BCI-EXAMPLE = ({0}, ops, opg)-
Let us note that BCI-EXAMPLE is strict and non empty.
One can verify that there exists a non empty BCI structure with 0 which is
strict, B, C, I, and BCI-4.
A BCl-algebra is B C I BCI-4 non empty BCI structure with 0.

Let X be a BCl-algebra. A BCl-algebra is called a subalgebra of X if it
satisfies the conditions (Def. 10).
(Def. 10)(i) 0y = Ox,
(ii)  the carrier of it C the carrier of X, and
(iii)  the internal complement of it = (the internal complement of X) | (the
carrier of it).
The following proposition is true
(1) Let X be a non empty BCI structure with 0. Then X is a BCI-algebra
if and only if the following conditions are satisfied:
(i) X is I and BCI-4, and
(ii)  for all elements =z, y, z of X holds z \ y \ (z \ 2) \ (2 \ y) = 0x and
z\ (z\y) \y=0x.
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One can check that there exists a BCl-algebra which is strict and BCK-5.

A BCK-algebra is BCK-5 BCl-algebra.

Let I be a non empty BCI structure with 0 and let z, y be elements of I;.
The predicate x < y is defined as follows:

(Def. 11) 2\ y = 0(7,)-
We use the following convention: X denotes a BCl-algebra, x, vy, z, u, a, b
denote elements of X, and I; denotes a non empty subset of X.
We now state a number of propositions:

(2) z\0x ==x.
(3) Ifz\y=0x andy\z=0x, thenz\z=0x.
(4) Ifx\y=0x,thenz\z\(y\2)=0x and z\y\ (z\z)=0x.
(5) Ifz<y,thenz\z<y\zand z\y <z\uz.
(6) Ifz\y=0x, then (y\x)°=0x.
(1) z\y\z=z\z\y.
@) z\(z\(z\y) =z\y.
9) (@\y)=a\y"
(10) 2\ (z\y) \(w\z)\ (@\ (z\(y\(y\2)))) = 0x.
)

(11) Let X be a non empty BCI structure with 0. Then X is a BCI-algebra
if and only if the following conditions are satisfied:
(i) X is BCI-4, and
(ii) for all elements =z, y, z of X holds z \y \ (z\ 2) \ (2 \ y) = 0x and
z\ Ox = z.
(12) If for every BCl-algebra X and for all elements z, y of X holds z\ (z\y) =
y\ (v \ z), then X is a BCK-algebra.
(13) 1If for every BCI-algebra X and for all elements z, y of X holds z\y\y =
x \ y, then X is a BCK-algebra.
(14) If for every BCl-algebra X and for all elements z, y of X holds z\ (y\z) =
x, then X is a BCK-algebra.
(15) If for every BCl-algebra X and for all elements z, y, z of X holds (z\
y)\y=z\2z\(y\ 2), then X is a BCK-algebra.
(16) If for every BCI-algebra X and for all elements x, y of X holds = \ y \
(y\z) =z \y, then X is a BCK-algebra.
(17) If for every BCl-algebra X and for all elements x, y of X holds = \ y \
(x\y\ (y\x)) =0x, then X is a BCK-algebra.
(18) For every BCI-algebra X holds X is K iff X is a BCK-algebra.
Let X be a BCl-algebra. The functor BCK-part X yielding a non empty
subset of X is defined by:

(Def. 12) BCK-part X = {z;x ranges over elements of X: 0x < x}.
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Next we state the proposition
(19) 0x € BCK-part X.
Let us consider X. Note that Ox
Next we state three propositions:
(20) For all elements x, y of BCK-part X holds x \ y € BCK-part X.

(21) For every element x of X and for every element y of BCK-part X holds
z\y <.

(22) X is a subalgebra of X.
Let X be a BCl-algebra and let I; be a subalgebra of X. We say that I; is
proper if and only if:
(Def. 13) I # X.

Let us consider X. Note that there exists a subalgebra of X which is non
proper.

Let X be a BCl-algebra and let I; be an element of X. We say that [ is
atom if and only if:

(Def. 14) For every element z of X such that z\ I; = Ox holds z = I;.

Let X be a BCI-algebra. The functor AtomSet X yields a non empty subset
of X and is defined by:

(Def. 15)  AtomSet X = {z;z ranges over elements of X: z is atom}.
One can prove the following propositions:
(23) 0x € AtomSet X.

(24) For every element x of X holds x € AtomSet X iff for every element z
of X holds z\ (z\ ) = =.

(25) For every element = of X holds z € AtomSet X iff for all elements u, z
of X holds z\u\ (z\z) =2\ u.

(26) For every element x of X holds € AtomSet X iff for all elements y, z
of X holds z\ (z\y) <y\ (z\x).

(27) For every element x of X holds = € AtomSet X iff for all elements y, z,
wof X holds (z\uw)\ (z\y) <y\u\(z\x).

(28) For every element x of X holds x € AtomSet X iff for every element z
of X holds z°\ z¢ =z \ z.

(29) For every element x of X holds z € AtomSet X iff (z°)¢ = z.

(30) For every element x of X holds z € AtomSet X iff for every element z
of X holds (z\ z)* =z z.

(31) For every element x of X holds x € AtomSet X iff for every element z
of X holds ((z\ 2)°)° ==z \ 2.

(32) For every element = of X holds z € AtomSet X iff for all elements z, u
of X holds z\ (z\ (z\uw)) =z \ u.
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(33) For every element a of AtomSet X and for every element x of X holds
a\ z € AtomSet X.

Let X be a BCl-algebra and let a, b be elements of AtomSet X. Then a \ b
is an element of AtomSet X.
One can prove the following propositions:

(34) For every element x of X holds z¢ € AtomSet X.

(35) For every element = of X there exists an element a of AtomSet X such
that a < z.

Let X be a BCl-algebra. We say that X is generated by atom if and only if:

(Def. 16) For every element x of X there exists an element a of AtomSet X such
that a < z.

Let X be a BCl-algebra and let a be an element of AtomSet X. The functor
BranchV « yields a non empty subset of X and is defined as follows:
(Def. 17) BranchV a = {x;x ranges over elements of X: a < z}.

We now state several propositions:

(36) Every BCl-algebra is generated by atom.

(37) For all elements a, b of AtomSet X and for every element = of BranchV b

holds a \ x = a\ b.
(38) For every element a of AtomSet X and for every element x of

BCK-part X holds a \ z = a.

(39) For all elements a, b of AtomSet X and for every element z of BranchV a
and for every element y of BranchV b holds z \ y € BranchV(a \ b).

(40) For every element a of AtomSet X and for all elements z, y of BranchV a
holds z \ y € BCK-part X.

(41) For all elements a, b of AtomSet X and for every element z of BranchV a
and for every element y of BranchV b such that a # b holds = \ y ¢
BCK-part X.

(42) For all elements a, b of AtomSet X such that a # b holds BranchV a N
BranchV b = ().

Let X be a BCl-algebra. A non empty subset of X is said to be an ideal of
X if:
(Def. 18) 0x € it and for all elements z, y of X such that x \ y € it and y € it
holds z € it.
Let X be a BCl-algebra and let I; be an ideal of X. We say that I is closed
if and only if:
(Def. 19) For every element x of I; holds z¢ € I;.
Let us consider X. Note that there exists an ideal of X which is closed.
Next we state four propositions:
(43) {0x} is a closed ideal of X.
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(44) The carrier of X is a closed ideal of X.
(45) BCK-part X is a closed ideal of X.

(46) If I is an ideal of X, then for all elements z, y of X such that x € I;
and y < z holds y € I;.

2. AssocIATIVE BCI-ALGEBRAS

Let I be a BCl-algebra. We say that I is associative if and only if:
(Def. 20) For all elements z, y, z of I; holds (z\y)\z=2z\ (v 2).
We say that I is quasi-associative if and only if:
(Def. 21) For every element x of I; holds (z€)¢ = x°.
We say that Iy is positive-implicative if and only if:
(Def. 22) For all elements x, y of I; holds (z\ (z\y))\ (v\z) = z\(z\(y\ (y\z))).
We say that [ is weakly-positive-implicative if and only if:
(Def. 23) For all elements z, y, z of I; holds (z\y)\z=2\2z\ 2\ (v\ 2).
We say that I is implicative if and only if:
(Def. 24) For all elements x, y of I; holds (x \ (z\y)\ (y\z) =y \ (y \ ).
We say that I is weakly-implicative if and only if:
(Def. 25) For all elements z, y of I; holds z \ (y \ z) \ (v \ )¢ = =.
We say that I is p-semisimple if and only if:
(Def. 26) For all elements z, y of I1 holds z \ (z \ y) = v.
We say that I is alternative if and only if:

(Def. 27) For all elements x, y of I; holds z\ (z\y) = (z\z)\y and (z\y)\y =
z\ (y\y).

One can check that there exists a BCl-algebra which is implicative, positive-
implicative, p-semisimple, associative, weakly-implicative, and weakly-positive-
implicative.

Next we state several propositions:

(47) X is associative iff for every element x of X holds z¢ = x.

(48) For all elements x, y of X holds y \ z =z \ y iff X is associative.

(49) Let X be a non empty BCI structure with 0. Then X is an associative
BCl-algebra if and only if for all elements z, y, z of X holds y\z\ (z\z) =
z\yand z\Ox = x.

(50) Let X be a non empty BCI structure with 0. Then X is an associative
BClI-algebra if and only if for all elements z, y, z of X holds z\y\ (z\2) =
z\y and z¢ = x.
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(51) Let X be a non empty BCI structure with 0. Then X is an associative
BCl-algebra if and only if for all elements z, y, z of X holds z\y\ (z\z2) =
y\zand z\ Ox = z.

3. p-SEMISIMPLE BCI-ALGEBRAS

One can prove the following propositions:

(@)
[\)

X is p-semisimple iff every element of X is atom.
If X is p-semisimple, then BCK-part X = {Ox}.

X is p-semisimple iff for every element x of X holds (z¢)¢ = z.

[ B2 SN
Ot = W

X is p-semisimple iff for all x, y holds y \ (y \ z) = =.

ot
(=]

X is p-semisimple iff for all z, y, z holds z\ y \ (z \ z) =z \ y.

ot
|

X is p-semisimple iff for all z, y, z holds z \ (z\y) =y \ (2 \ z).
X is p-semisimple iff for all z, y, z, u holds (z\u)\ (z\y) = y\u\(z\x).

X is p-semisimple iff for all z, z holds 2¢\ 2 =z \ z.

S v Ot
S © oo

X is p-semisimple iff for all z, z holds ((x \ 2)¢)° =z \ 2.

—_
N2 NN N N NN NN s N N N NN N

X is p-semisimple iff for all x, u, z holds z \ (2 \ (z\ u)) =z \ u.

=2
\V)

X is p-semisimple iff for every x such that ¢ = 0x holds z = 0x.

(o))
w

X is p-semisimple iff for all z, y holds z \ y¢ =y \ z°.

(@)
g

X is p-semisimple iff for all z, y, z, u holds (z\y)\ (z\u) = z\ 2\ (y\u).

D
ot

X is p-semisimple iff for all z, y, z holds z\ y \ (z\y) =z \ 2.

=)
(@)

X is p-semisimple iff for all z, y, z holds 2\ (y \ 2) = (2 \ y) \ z°.

=
3

X is p-semisimple iff for all x, y, z such that y \ x = z \ z holds y = z.

(=)
0¢)

X is p-semisimple iff for all z, y, z such that x \ y =« \ z holds y = z.

(=)
Ne)

Let X be a non empty BCI structure with 0. Then X is a p-semisimple
BClI-algebra if and only if for all elements z, y, z of X holds z\y\ (z\z) =
z\yand z\0x = x.

o~~~ o~ o~ o~ o~ o~ o~ o~~~ o~~~ o~~~

(70) Let X be a non empty BCI structure with 0. Then X is a p-semisimple
BClI-algebra if and only if X is I and for all elements z, y, z of X holds

2\ (y\2) =2\ (y\z)and 2\ 0x = z.

4. QUASI-ASSOCIATIVE BCI-ALGEBRAS

Next we state several propositions:
(71) X is quasi-associative iff for every element x of X holds z¢ < z.
(72) X is quasi-associative iff for all elements x, y of X holds (z\y)¢ = (y\z)°.
(73) X is quasi-associative iff for all elements x, y of X holds z¢\y = (z\y)°.
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(74) X is quasi-associative iff for all elements x, y of X holds z\ y\ (y\ ) €
BCK-part X.

(75) X is quasi-associative iff for all elements z, y, z of X holds (z\ y) \ z <

z\ (y\2).

5. ALTERNATIVE BCI-ALGEBRAS

We now state several propositions:

N
D
=

If X is alternative, then 2 =z and x \ (z\y) =y and z \y \y = =.
If X is alternative and z \ @ = z \ b, then a = b.

If X is alternative and a \ x = b\ =, then a = b.

If X is alternative and z \ y = Ox, then z = y.

If X is alternative and z \ a\ b =0x, thena=xz\band b=z a.

ne can check the following observations:

-
J
N~—

A~ N /SN /N /S
© ©o
~— —

&
* O\_/

every BCl-algebra which is alternative is also associative,
* every BCl-algebra which is associative is also alternative, and
x every BCl-algebra which is alternative is also implicative.
The following two propositions are true:

(81) If X is alternative, then z \ (z\ y) \ (v \ z)

(82) If X is alternative, then y \ (v \ (z \ (z \ v)))

Y.

6. IMPLICATIVE, POSITIVE-IMPLICATIVE, AND
WEAKLY-POSITIVE-IMPLICATIVE BCI-ALGEBRAS

Let us observe that every BCl-algebra which is associative is also weakly-
positive-implicative and every BCI-algebra which is p-semisimple is also weakly-
positive-implicative.

We now state two propositions:

(83) Let X be a non empty BCI structure with 0. Then X is an implicative
BCl-algebra if and only if for all elements x, y, z of X holds = \ y \ (z \
2\ (z\y) =0x and 2\ Ox =z and (z\ (z\y))\ (y\z) =y \ (y \ z).

(84) X is weakly-positive-implicative iff for all elements x, y of X holds z\y =
z\y\y\y".

One can verify that every BCl-algebra which is positive-implicative is also
weakly-positive-implicative and every BCl-algebra which is alternative is also
weakly-positive-implicative.

One can prove the following two propositions:

(85) Suppose X is a weakly-positive-implicative BCI-algebra. Let z, y be
elements of X. Then (z\ (z\y)) \ (y\z) =y \ (y\2)\ (y\2)\ (z \y).
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(86) Let X be a non empty BCI structure with 0. Then X is a positive-

(1]
(3]
(4]
(5]
(6]
[7
[9
10

[11
12

13
14

implicative BCI-algebra if and only if for all elements z, y, z of X holds
z\y\(z\2)\(2\y) =0x and z\Ox =z and z \y ==z \y\y\y° and
@\ (@\y) N \2) =y \(w\z)\ (y\2)\(z\y)
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