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Summary. In this paper, we showed the linearity of the indefinite integralR b
a
fdx, the form of which was introduced in [11]. In addition, we proved some

theorems about the integral calculus on the subinterval of [a, b]. As a result, we

described the fundamental theorem of calculus, that we developed in [11], by a

more general expression.
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The articles [23], [25], [26], [2], [22], [4], [14], [1], [24], [5], [27], [7], [6], [21],

[9], [3], [17], [16], [15], [18], [20], [8], [10], [13], [19], [12], and [11] provide the

notation and terminology for this paper.

1. Preliminaries

We use the following convention: a, b, c, d, e, x are real numbers, A is a

closed-interval subset of R, and f , g are partial functions from R to R.

We now state several propositions:

(1) If a ≤ b and c ≤ d and a+ c = b+ d, then a = b and c = d.

(2) If a ≤ b, then ]x− a, x+ a[ ⊆ ]x− b, x+ b[.
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(3) For every binary relation R and for all sets A, B, C such that A ⊆ B

and A ⊆ C holds R�B�A = R�C�A.
(4) For all sets A, B, C such that A ⊆ B and A ⊆ C holds χB,B�A =

χC,C�A.
(5) If a ≤ b, then vol([′a, b′]) = b− a.
(6) vol([′min(a, b),max(a, b)′]) = |b− a|.

2. Integrability and the Integral of Partial Functions

The following propositions are true:

(7) If A ⊆ dom f and f is integrable on A and f is bounded on A, then |f |
is integrable on A and |

∫

A

f(x)dx| ≤
∫

A

|f |(x)dx.

(8) If a ≤ b and [′a, b′] ⊆ dom f and f is integrable on [′a, b′] and f is

bounded on [′a, b′], then |
b∫

a

f(x)dx| ≤
b∫

a

|f |(x)dx.

(9) Let r be a real number. Suppose A ⊆ dom f and f is integrable on A

and f is bounded on A. Then r f is integrable on A and

∫

A

(r f)(x)dx =

r ·
∫

A

f(x)dx.

(10) If a ≤ b and [′a, b′] ⊆ dom f and f is integrable on [′a, b′] and f is

bounded on [′a, b′], then

b∫

a

(c f)(x)dx = c ·
b∫

a

f(x)dx.

(11) Suppose A ⊆ dom f and A ⊆ dom g and f is integrable on A and f is

bounded on A and g is integrable on A and g is bounded on A. Then

f+g is integrable on A and f−g is integrable on A and

∫

A

(f + g)(x)dx =

∫

A

f(x)dx+

∫

A

g(x)dx and

∫

A

(f − g)(x)dx =

∫

A

f(x)dx−
∫

A

g(x)dx.

(12) Suppose that a ≤ b and [′a, b′] ⊆ dom f and [′a, b′] ⊆ dom g and f is

integrable on [′a, b′] and g is integrable on [′a, b′] and f is bounded on [′a, b′]

and g is bounded on [′a, b′]. Then

b∫

a

(f + g)(x)dx =

b∫

a

f(x)dx+

b∫

a

g(x)dx



integrability and the integral . . . 209

and

b∫

a

(f − g)(x)dx =

b∫

a

f(x)dx−
b∫

a

g(x)dx.

(13) If f is bounded on A and g is bounded on A, then f g is bounded on A.

(14) Suppose A ⊆ dom f and A ⊆ dom g and f is integrable on A and f is

bounded on A and g is integrable on A and g is bounded on A. Then f g

is integrable on A.

(15) Let n be an element of N. Suppose n > 0 and vol(A) > 0. Then there

exists an element D of divsA such that lenD = n and for every element

i of N such that i ∈ domD holds D(i) = inf A+ vol(A)
n · i.

3. Integrability on a Subinterval

The following propositions are true:

(16) Suppose vol(A) > 0. Then there exists a DivSequence T of A such that

(i) δT is convergent,

(ii) lim(δT ) = 0, and

(iii) for every element n of N there exists an element T1 of divsA such that

T1 divides into equal n+ 1 and T (n) = T1.

(17) Suppose a ≤ b and f is integrable on [′a, b′] and f is bounded on [′a, b′]
and [′a, b′] ⊆ dom f and c ∈ [′a, b′]. Then f is integrable on [′a, c′] and f is

integrable on [′c, b′] and

b∫

a

f(x)dx =

c∫

a

f(x)dx+

b∫

c

f(x)dx.

(18) Suppose a ≤ c and c ≤ d and d ≤ b and f is integrable on [′a, b′] and f

is bounded on [′a, b′] and [′a, b′] ⊆ dom f. Then f is integrable on [′c, d′]
and f is bounded on [′c, d′] and [′c, d′] ⊆ dom f.

(19) Suppose that a ≤ c and c ≤ d and d ≤ b and f is integrable on [′a, b′]
and g is integrable on [′a, b′] and f is bounded on [′a, b′] and g is bounded

on [′a, b′] and [′a, b′] ⊆ dom f and [′a, b′] ⊆ dom g. Then f + g is integrable

on [′c, d′] and f + g is bounded on [′c, d′].

(20) Suppose a ≤ b and f is integrable on [′a, b′] and f is bounded on [′a, b′]

and [′a, b′] ⊆ dom f and c ∈ [′a, b′] and d ∈ [′a, b′]. Then

d∫

a

f(x)dx =

c∫

a

f(x)dx+

d∫

c

f(x)dx.

(21) Suppose a ≤ b and f is integrable on [′a, b′] and f is bounded

on [′a, b′] and [′a, b′] ⊆ dom f and c ∈ [′a, b′] and d ∈ [′a, b′].
Then [′min(c, d),max(c, d)′] ⊆ dom|f | and |f | is integrable on
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[′min(c, d),max(c, d)′] and |f | is bounded on [′min(c, d),max(c, d)′] and

|
d∫

c

f(x)dx| ≤
max(c,d)∫

min(c,d)

|f |(x)dx.

(22) Suppose a ≤ b and c ≤ d and f is integrable on [′a, b′] and f is bounded

on [′a, b′] and [′a, b′] ⊆ dom f and c ∈ [′a, b′] and d ∈ [′a, b′]. Then [′c, d′] ⊆
dom|f | and |f | is integrable on [′c, d′] and |f | is bounded on [′c, d′] and

|
d∫

c

f(x)dx| ≤
d∫

c

|f |(x)dx and |
c∫

d

f(x)dx| ≤
d∫

c

|f |(x)dx.

(23) Suppose that a ≤ b and c ≤ d and f is integrable on [′a, b′] and f is

bounded on [′a, b′] and [′a, b′] ⊆ dom f and c ∈ [′a, b′] and d ∈ [′a, b′]
and for every real number x such that x ∈ [′c, d′] holds |f(x)| ≤ e. Then

|
d∫

c

f(x)dx| ≤ e · (d− c) and |
c∫

d

f(x)dx| ≤ e · (d− c).

(24) Suppose that a ≤ b and f is integrable on [′a, b′] and g is integrable

on [′a, b′] and f is bounded on [′a, b′] and g is bounded on [′a, b′] and

[′a, b′] ⊆ dom f and [′a, b′] ⊆ dom g and c ∈ [′a, b′] and d ∈ [′a, b′]. Then
d∫

c

(f + g)(x)dx =

d∫

c

f(x)dx+

d∫

c

g(x)dx and

d∫

c

(f − g)(x)dx =

d∫

c

f(x)dx−

d∫

c

g(x)dx.

(25) Suppose a ≤ b and f is integrable on [′a, b′] and f is bounded on [′a, b′]

and [′a, b′] ⊆ dom f and c ∈ [′a, b′] and d ∈ [′a, b′]. Then

d∫

c

(e f)(x)dx =

e ·
d∫

c

f(x)dx.

(26) Suppose a ≤ b and [′a, b′] ⊆ dom f and for every real number x such

that x ∈ [′a, b′] holds f(x) = e. Then f is integrable on [′a, b′] and f is

bounded on [′a, b′] and

b∫

a

f(x)dx = e · (b− a).

(27) Suppose a ≤ b and for every real number x such that x ∈ [′a, b′] holds

f(x) = e and [′a, b′] ⊆ dom f and c ∈ [′a, b′] and d ∈ [′a, b′]. Then
d∫

c

f(x)dx = e · (d− c).
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4. Fundamental Theorem of Calculus

Next we state two propositions:

(28) Let x0 be a real number and F be a partial function from R to R.

Suppose that a ≤ b and f is integrable on [′a, b′] and f is bounded on

[′a, b′] and [′a, b′] ⊆ dom f and ]a, b[ ⊆ domF and for every real number

x such that x ∈ ]a, b[ holds F (x) =

x∫

a

f(x)dx and x0 ∈ ]a, b[ and f is

continuous in x0. Then F is differentiable in x0 and F ′(x0) = f(x0).

(29) Let x0 be a real number. Suppose a ≤ b and f is integrable on [′a, b′]
and f is bounded on [′a, b′] and [′a, b′] ⊆ dom f and x0 ∈ ]a, b[ and f is

continuous in x0. Then there exists a partial function F from R to R such

that ]a, b[ ⊆ domF and for every real number x such that x ∈ ]a, b[ holds

F (x) =

x∫

a

f(x)dx and F is differentiable in x0 and F ′(x0) = f(x0).
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