Integral of Real-Valued Measurable Function ${ }^{1}$

Yasunari Shidama
Shinshu University
Nagano, Japan

Noboru Endou
Gifu National College of Technology
Gifu, Japan

Abstract

Summary. Based on [16], authors formalized the integral of an extended real valued measurable function in [12] before. However, the integral argued in [12] cannot be applied to real-valued functions unconditionally. Therefore, in this article we have formalized the integral of a real-value function.

MML identifier: MESFUNC6, version: 7.8.03 4.75.958

The papers [25], [11], [26], [1], [23], [24], [17], [18], [8], [27], [10], [2], [19], [7], [20], [6], [9], [3], [4], [5], [13], [14], [15], [22], [21], and [12] provide the terminology and notation for this paper.

1. The Measurability of Real-Valued Functions

For simplicity, we follow the rules: X denotes a non empty set, Y denotes a set, S denotes a σ-field of subsets of X, F denotes a function from \mathbb{N} into S, f, g denote partial functions from X to \mathbb{R}, A, B denote elements of S, r, s denote real numbers, a denotes a real number, and n denotes a natural number.

Let X be a non empty set, let f be a partial function from X to \mathbb{R}, and let a be a real number. The functor $\operatorname{LE}-\operatorname{dom}(f, a)$ yields a subset of X and is defined as follows:
(Def. 1) $\quad \operatorname{LE-dom}(f, a)=\operatorname{LE-dom}(\overline{\mathbb{R}}(f), \overline{\mathbb{R}}(a))$.
The following three propositions are true:
(1) $|\overline{\mathbb{R}}(f)|=\overline{\mathbb{R}}(|f|)$.

[^0](2) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and r be a real number. Suppose $\operatorname{dom} f \in S$ and for every set x such that $x \in \operatorname{dom} f$ holds $f(x)=r$. Then f is simple function in S.
(3) For every set x holds $x \in \operatorname{LE}-\operatorname{dom}(f, a)$ iff $x \in \operatorname{dom} f$ and there exists a real number y such that $y=f(x)$ and $y<a$.
Let us consider X, f, a. The functor LEQ-dom (f, a) yields a subset of X and is defined as follows:
(Def. 2) LEQ-dom $(f, a)=\operatorname{LEQ}-\operatorname{dom}(\overline{\mathbb{R}}(f), \overline{\mathbb{R}}(a))$.
We now state the proposition
(4) For every set x holds $x \in \operatorname{LEQ}-\operatorname{dom}(f, a)$ iff $x \in \operatorname{dom} f$ and there exists a real number y such that $y=f(x)$ and $y \leq a$.
Let us consider X, f, a. The functor GT- $\operatorname{dom}(f, a)$ yielding a subset of X is defined as follows:
(Def. 3) $\quad \operatorname{GT}-\operatorname{dom}(f, a)=\operatorname{GT}-\operatorname{dom}(\overline{\mathbb{R}}(f), \overline{\mathbb{R}}(a))$.
We now state the proposition
(5) For every set x holds $x \in \operatorname{GT}-\operatorname{dom}(f, r)$ iff $x \in \operatorname{dom} f$ and there exists a real number y such that $y=f(x)$ and $r<y$.
Let us consider X, f, a. The functor GTE-dom (f, a) yields a subset of X and is defined as follows:
(Def. 4) $\operatorname{GTE}-\operatorname{dom}(f, a)=\operatorname{GTE}-\operatorname{dom}(\overline{\mathbb{R}}(f), \overline{\mathbb{R}}(a))$.
Next we state the proposition
(6) For every set x holds $x \in \operatorname{GTE}-\operatorname{dom}(f, r)$ iff $x \in \operatorname{dom} f$ and there exists a real number y such that $y=f(x)$ and $r \leq y$.
Let us consider X, f, a. The functor $\mathrm{EQ}-\operatorname{dom}(f, a)$ yielding a subset of X is defined by:
(Def. 5) $\quad \mathrm{EQ}-\operatorname{dom}(f, a)=\mathrm{EQ}-\operatorname{dom}(\overline{\mathbb{R}}(f), \overline{\mathbb{R}}(a))$.
The following propositions are true:
(7) For every set x holds $x \in \operatorname{EQ}-\operatorname{dom}(f, r)$ iff $x \in \operatorname{dom} f$ and there exists a real number y such that $y=f(x)$ and $r=y$.
(8) If for every n holds $F(n)=Y \cap \operatorname{GT}-\operatorname{dom}\left(f, r-\frac{1}{n+1}\right)$, then $Y \cap$ $\operatorname{GTE}-\operatorname{dom}(f, r)=\bigcap \operatorname{rng} F$.
(9) If for every n holds $F(n)=Y \cap \operatorname{LE-dom}\left(f, r+\frac{1}{n+1}\right)$, then $Y \cap$ LEQ-dom $(f, r)=\bigcap \operatorname{rng} F$.
(10) If for every n holds $F(n)=Y \cap \operatorname{LEQ}-\operatorname{dom}\left(f, r-\frac{1}{n+1}\right)$, then $Y \cap$ $\operatorname{LE}-\operatorname{dom}(f, r)=\bigcup \operatorname{rng} F$.
(11) If for every n holds $F(n)=Y \cap \operatorname{GTE}-\operatorname{dom}\left(f, r+\frac{1}{n+1}\right)$, then $Y \cap$ $\operatorname{GT}-\operatorname{dom}(f, r)=\bigcup \operatorname{rng} F$.

Let X be a non empty set, let S be a σ-field of subsets of X, let f be a partial function from X to \mathbb{R}, and let A be an element of S. We say that f is measurable on A if and only if:
(Def. 6) $\overline{\mathbb{R}}(f)$ is measurable on A.
The following propositions are true:
(12) f is measurable on A iff for every real number r holds $A \cap \operatorname{LE}-\operatorname{dom}(f, r)$ is measurable on S.
(13) Suppose $A \subseteq \operatorname{dom} f$. Then f is measurable on A if and only if for every real number r holds $A \cap \operatorname{GTE}-\operatorname{dom}(f, r)$ is measurable on S.
(14) f is measurable on A iff for every real number r holds $A \cap \operatorname{LEQ}-\operatorname{dom}(f, r)$ is measurable on S.
(15) Suppose $A \subseteq \operatorname{dom} f$. Then f is measurable on A if and only if for every real number r holds $A \cap$ GT-dom (f, r) is measurable on S.
(16) If $B \subseteq A$ and f is measurable on A, then f is measurable on B.
(17) If f is measurable on A and f is measurable on B, then f is measurable on $A \cup B$.
(18) If f is measurable on A and $A \subseteq \operatorname{dom} f$, then $A \cap \operatorname{GT-dom}(f, r) \cap$ LE-dom (f, s) is measurable on S.
(19) If f is measurable on A and g is measurable on A and $A \subseteq \operatorname{dom} g$, then $A \cap \mathrm{LE}-\operatorname{dom}(f, r) \cap \operatorname{GT}-\operatorname{dom}(g, r)$ is measurable on S.
(20) $\quad \overline{\mathbb{R}}(r f)=r \overline{\mathbb{R}}(f)$.
(21) If f is measurable on A and $A \subseteq \operatorname{dom} f$, then $r f$ is measurable on A.

2. The Measurability of $f+g$ and $f-g$ for Real-Valued Functions f, g

For simplicity, we adopt the following rules: X denotes a non empty set, S denotes a σ-field of subsets of X, f, g denote partial functions from X to \mathbb{R}, A denotes an element of S, r denotes a real number, and p denotes a rational number.

Next we state several propositions:
(22) $\overline{\mathbb{R}}(f)$ is finite.
(23) $\overline{\mathbb{R}}(f+g)=\overline{\mathbb{R}}(f)+\overline{\mathbb{R}}(g)$ and $\overline{\mathbb{R}}(f-g)=\overline{\mathbb{R}}(f)-\overline{\mathbb{R}}(g)$ and dom $\overline{\mathbb{R}}(f+$ $g)=\operatorname{dom} \overline{\mathbb{R}}(f) \cap \operatorname{dom} \overline{\mathbb{R}}(g)$ and $\operatorname{dom} \overline{\mathbb{R}}(f-g)=\operatorname{dom} \overline{\mathbb{R}}(f) \cap \operatorname{dom} \overline{\mathbb{R}}(g)$ and $\operatorname{dom} \overline{\mathbb{R}}(f+g)=\operatorname{dom} f \cap \operatorname{dom} g$ and $\operatorname{dom} \overline{\mathbb{R}}(f-g)=\operatorname{dom} f \cap \operatorname{dom} g$.
(24) For every function F from \mathbb{Q} into S such that for every p holds $F(p)=$ $A \cap \operatorname{LE-dom}(f, p) \cap(A \cap \operatorname{LE-dom}(g, r-p))$ holds $A \cap \operatorname{LE-dom}(f+g, r)=$ $\bigcup \operatorname{rng} F$.
(25) Suppose f is measurable on A and g is measurable on A. Then there exists a function F from \mathbb{Q} into S such that for every rational number p holds $F(p)=A \cap \operatorname{LE}-\operatorname{dom}(f, p) \cap(A \cap \operatorname{LE}-\operatorname{dom}(g, r-p))$.
(26) If f is measurable on A and g is measurable on A, then $f+g$ is measurable on A.
(27) $\overline{\mathbb{R}}(f)-\overline{\mathbb{R}}(g)=\overline{\mathbb{R}}(f)+\overline{\mathbb{R}}(-g)$.
(28) $\quad-\overline{\mathbb{R}}(f)=\overline{\mathbb{R}}((-1) f)$ and $-\overline{\mathbb{R}}(f)=\overline{\mathbb{R}}(-f)$.
(29) If f is measurable on A and g is measurable on A and $A \subseteq \operatorname{dom} g$, then $f-g$ is measurable on A.
3. Basic Properties of Real-Valued Functions, $\max _{+} f$ and max $\max _{-} f$

In the sequel X denotes a non empty set, f denotes a partial function from X to \mathbb{R}, and r denotes a real number.

Next we state a number of propositions:
(30) $\max _{+}(\overline{\mathbb{R}}(f))=\max _{+}(f)$ and $\max _{-}(\overline{\mathbb{R}}(f))=\max _{-}(f)$.
(31) For every element x of X holds $0 \leq\left(\max _{+}(f)\right)(x)$.
(32) For every element x of X holds $0 \leq\left(\max _{-}(f)\right)(x)$.
(33) $\max _{-}(f)=\max _{+}(-f)$.
(34) For every set x such that $x \in \operatorname{dom} f$ and $0<\left(\max _{+}(f)\right)(x)$ holds $\left(\max _{-}(f)\right)(x)=0$.
(35) For every set x such that $x \in \operatorname{dom} f$ and $0<\left(\max _{-}(f)\right)(x)$ holds $\left(\max _{+}(f)\right)(x)=0$.
(36) $\operatorname{dom} f=\operatorname{dom}\left(\max _{+}(f)-\max _{-}(f)\right)$ and $\operatorname{dom} f=\operatorname{dom}\left(\max _{+}(f)+\right.$ max_(f)).
(37) For every set x such that $x \in \operatorname{dom} f$ holds $\left(\max _{+}(f)\right)(x)=f(x)$ or $\left(\max _{+}(f)\right)(x)=0$ but $\left(\max _{-}(f)\right)(x)=-f(x)$ or $\left(\max _{-}(f)\right)(x)=0$.
(38) For every set x such that $x \in \operatorname{dom} f$ and $\left(\max _{+}(f)\right)(x)=f(x)$ holds $\left(\max _{-}(f)\right)(x)=0$.
(39) For every set x such that $x \in \operatorname{dom} f$ and $\left(\max _{+}(f)\right)(x)=0$ holds $\left(\max _{-}(f)\right)(x)=-f(x)$.
(40) For every set x such that $x \in \operatorname{dom} f$ and $\left(\max _{-}(f)\right)(x)=-f(x)$ holds $\left(\max _{+}(f)\right)(x)=0$.
(41) For every set x such that $x \in \operatorname{dom} f$ and $\left(\max _{-}(f)\right)(x)=0$ holds $\left(\max _{+}(f)\right)(x)=f(x)$.
(42) $f=\max _{+}(f)-\max _{-}(f)$.
(43) $|r|=|\overline{\mathbb{R}}(r)|$.
(44) $\quad \overline{\mathbb{R}}(|f|)=|\overline{\mathbb{R}}(f)|$.

$$
\begin{equation*}
|f|=\max _{+}(f)+\max _{-}(f) . \tag{45}
\end{equation*}
$$

4. The Measurability of $\max _{+} f, \max _{-} f$ and $|f|$

In the sequel X denotes a non empty set, S denotes a σ-field of subsets of X, f denotes a partial function from X to \mathbb{R}, and A denotes an element of S.

The following propositions are true:
(46) If f is measurable on A, then $\max _{+}(f)$ is measurable on A.
(47) If f is measurable on A and $A \subseteq \operatorname{dom} f$, then $\max _{-}(f)$ is measurable on A.
(48) If f is measurable on A and $A \subseteq \operatorname{dom} f$, then $|f|$ is measurable on A.

5. The Definition and the Measurability of a Real-Valued Simple Function

For simplicity, we adopt the following rules: X is a non empty set, Y is a set, S is a σ-field of subsets of X, f, g, h are partial functions from X to \mathbb{R}, A is an element of S, and r is a real number.

Let us consider X, S, f. We say that f is simple function in S if and only if the condition (Def. 7) is satisfied.
(Def. 7) There exists a finite sequence F of separated subsets of S such that
(i) $\operatorname{dom} f=\bigcup \operatorname{rng} F$, and
(ii) for every natural number n and for all elements x, y of X such that $n \in \operatorname{dom} F$ and $x \in F(n)$ and $y \in F(n)$ holds $f(x)=f(y)$.
Next we state a number of propositions:
(49) $\quad f$ is simple function in S iff $\overline{\mathbb{R}}(f)$ is simple function in S.
(50) If f is simple function in S, then f is measurable on A.
(51) Let X be a set and f be a partial function from X to \mathbb{R}. Then f is non-negative if and only if for every set x holds $0 \leq f(x)$.
(52) Let X be a set and f be a partial function from X to \mathbb{R}. If for every set x such that $x \in \operatorname{dom} f$ holds $0 \leq f(x)$, then f is non-negative.
(53) Let X be a set and f be a partial function from X to \mathbb{R}. Then f is non-positive if and only if for every set x holds $f(x) \leq 0$.
(54) If for every set x such that $x \in \operatorname{dom} f$ holds $f(x) \leq 0$, then f is nonpositive.
(55) If f is non-negative, then $f\lceil Y$ is non-negative.
(56) If f is non-negative and g is non-negative, then $f+g$ is non-negative.
(57) If f is non-negative, then if $0 \leq r$, then $r f$ is non-negative and if $r \leq 0$, then $r f$ is non-positive.
(58) If for every set x such that $x \in \operatorname{dom} f \cap \operatorname{dom} g$ holds $g(x) \leq f(x)$, then $f-g$ is non-negative.
(59) If f is non-negative and g is non-negative and h is non-negative, then $f+g+h$ is non-negative.
(60) For every set x such that $x \in \operatorname{dom}(f+g+h)$ holds $(f+g+h)(x)=$ $f(x)+g(x)+h(x)$.
(61) $\max _{+}(f)$ is non-negative and $\max _{-}(f)$ is non-negative.
(62)(i) $\quad \operatorname{dom}\left(\max _{+}(f+g)+\max _{-}(f)\right)=\operatorname{dom} f \cap \operatorname{dom} g$,
(ii) $\operatorname{dom}\left(\max _{-}(f+g)+\max _{+}(f)\right)=\operatorname{dom} f \cap \operatorname{dom} g$,
(iii) $\operatorname{dom}\left(\max _{+}(f+g)+\max _{-}(f)+\max _{-}(g)\right)=\operatorname{dom} f \cap \operatorname{dom} g$,
(iv) $\quad \operatorname{dom}\left(\max _{-}(f+g)+\max _{+}(f)+\max _{+}(g)\right)=\operatorname{dom} f \cap \operatorname{dom} g$,
(v) $\max _{+}(f+g)+\max _{-}(f)$ is non-negative, and
(vi) $\quad \max _{-}(f+g)+\max _{+}(f)$ is non-negative.
(63) $\max _{+}(f+g)+\max _{-}(f)+\max _{-}(g)=\max _{-}(f+g)+\max _{+}(f)+\max _{+}(g)$.
(64) If $0 \leq r$, then $\max _{+}(r f)=r \max _{+}(f)$ and $\max _{-}(r f)=r \max _{-}(f)$.
(65) If $0 \leq r$, then $\max _{+}((-r) f)=r$ max- (f) and $\max _{-}((-r) f)=$ $r \max _{+}(f)$.
(66) $\max _{+}(f \upharpoonright Y)=\max _{+}(f) \upharpoonright Y$ and $\max _{-}(f \upharpoonright Y)=\max _{-}(f) \upharpoonright Y$.
(67) If $Y \subseteq \operatorname{dom}(f+g)$, then $\operatorname{dom}((f+g) \upharpoonright Y)=Y$ and $\operatorname{dom}(f \upharpoonright Y+g \upharpoonright Y)=Y$ and $(f+g) \upharpoonright Y=f \upharpoonright Y+g \upharpoonright Y$.
(68) $\mathrm{EQ}-\operatorname{dom}(f, r)=f^{-1}(\{r\})$.

6. Lemmas for a Real-Valued Measurable Function and a Simple Function

For simplicity, we use the following convention: X is a non empty set, S is a σ-field of subsets of X, f, g are partial functions from X to \mathbb{R}, A, B are elements of S, and r, s are real numbers.

We now state a number of propositions:
(69) If f is measurable on A and $A \subseteq \operatorname{dom} f$, then $A \cap \operatorname{GTE}-\operatorname{dom}(f, r) \cap$ LE-dom (f, s) is measurable on S.
(70) If f is simple function in S, then $f \upharpoonright A$ is simple function in S.
(71) If f is simple function in S, then $\operatorname{dom} f$ is an element of S.
(72) If f is simple function in S and g is simple function in S, then $f+g$ is simple function in S.
(73) If f is simple function in S, then $r f$ is simple function in S.
(74) If for every set x such that $x \in \operatorname{dom}(f-g)$ holds $g(x) \leq f(x)$, then $f-g$ is non-negative.
(75) There exists a partial function f from X to \mathbb{R} such that f is simple function in S and $\operatorname{dom} f=A$ and for every set x such that $x \in A$ holds $f(x)=r$.
(76) If f is measurable on B and $A=\operatorname{dom} f \cap B$, then $f \upharpoonright B$ is measurable on A.
(77) If $A \subseteq \operatorname{dom} f$ and f is measurable on A and g is measurable on A, then $\max _{+}(f+g)+\max _{-}(f)$ is measurable on A.
(78) If $A \subseteq \operatorname{dom} f \cap \operatorname{dom} g$ and f is measurable on A and g is measurable on A, then $\max _{-}(f+g)+\max _{+}(f)$ is measurable on A.
(79) If $\operatorname{dom} f \in S$ and $\operatorname{dom} g \in S$, then $\operatorname{dom}(f+g) \in S$.
(80) If $\operatorname{dom} f=A$, then f is measurable on B iff f is measurable on $A \cap B$.
(81) Given an element A of S such that $\operatorname{dom} f=A$. Let c be a real number and B be an element of S. If f is measurable on B, then $c f$ is measurable on B.

7. The Integral of a Real-Valued Function

For simplicity, we follow the rules: X is a non empty set, S is a σ-field of subsets of X, M is a σ-measure on S, f, g are partial functions from X to \mathbb{R}, r is a real number, and E, A, B are elements of S.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-measure on S, and let f be a partial function from X to \mathbb{R}. The functor $\int f \mathrm{~d} M$ yields an element of $\overline{\mathbb{R}}$ and is defined by:
(Def. 8) $\quad \int f \mathrm{~d} M=\int \overline{\mathbb{R}}(f) \mathrm{d} M$.
The following propositions are true:
(82) If there exists an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A and f is non-negative, then $\int f \mathrm{~d} M=\int^{+} \overline{\mathbb{R}}(f) \mathrm{d} M$.
(83) If f is simple function in S and f is non-negative, then $\int f \mathrm{~d} M=$ $\int^{+} \overline{\mathbb{R}}(f) \mathrm{d} M$ and $\int f \mathrm{~d} M=\int^{\prime} \overline{\mathbb{R}}(f) \mathrm{d} M$.
(84) If there exists an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A and f is non-negative, then $0 \leq \int f \mathrm{~d} M$.
(85) Suppose there exists an element E of S such that $E=\operatorname{dom} f$ and f is measurable on E and f is non-negative and A misses B. Then $\int f \upharpoonright(A \cup$ $B) \mathrm{d} M=\int f \upharpoonright A \mathrm{~d} M+\int f\lceil B \mathrm{~d} M$.
(86) If there exists an element E of S such that $E=\operatorname{dom} f$ and f is measurable on E and f is non-negative, then $0 \leq \int f\lceil A \mathrm{~d} M$.
(87) Suppose there exists an element E of S such that $E=\operatorname{dom} f$ and f is measurable on E and f is non-negative and $A \subseteq B$. Then $\int f \upharpoonright A \mathrm{~d} M \leq$ $\int f \upharpoonright B \mathrm{~d} M$.
(88) If there exists an element E of S such that $E=\operatorname{dom} f$ and f is measurable on E and $M(A)=0$, then $\int f\lceil A \mathrm{~d} M=0$.
(89) If $E=\operatorname{dom} f$ and f is measurable on E and $M(A)=0$, then $\int f \upharpoonright(E \backslash$ A) $\mathrm{d} M=\int f \mathrm{~d} M$.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-measure on S, and let f be a partial function from X to \mathbb{R}. We say that f is integrable on M if and only if:
(Def. 9) $\overline{\mathbb{R}}(f)$ is integrable on M.
We now state a number of propositions:
(90) If f is integrable on M, then $-\infty<\int f \mathrm{~d} M$ and $\int f \mathrm{~d} M<+\infty$.
(91) If f is integrable on M, then $f \upharpoonright A$ is integrable on M.
(92) If f is integrable on M and A misses B, then $\int f \upharpoonright(A \cup B) \mathrm{d} M=$ $\int f \upharpoonright A \mathrm{~d} M+\int f \upharpoonright B \mathrm{~d} M$.
(93) If f is integrable on M and $B=\operatorname{dom} f \backslash A$, then $f \upharpoonright A$ is integrable on M and $\int f \mathrm{~d} M=\int f\left\lceil A \mathrm{~d} M+\int f \upharpoonright B \mathrm{~d} M\right.$.
(94) Given an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A. Then f is integrable on M if and only if $|f|$ is integrable on M.
(95) If f is integrable on M, then $\left|\int f \mathrm{~d} M\right| \leq \int|f| \mathrm{d} M$.
(96) Suppose that
(i) there exists an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A,
(ii) $\operatorname{dom} f=\operatorname{dom} g$,
(iii) g is integrable on M, and
(iv) for every element x of X such that $x \in \operatorname{dom} f$ holds $|f(x)| \leq g(x)$. Then f is integrable on M and $\int|f| \mathrm{d} M \leq \int g \mathrm{~d} M$.
(97) If $\operatorname{dom} f \in S$ and $0 \leq r$ and for every set x such that $x \in \operatorname{dom} f$ holds $f(x)=r$, then $\int f \mathrm{~d} M=\overline{\mathbb{R}}(r) \cdot M(\operatorname{dom} f)$.
(98) Suppose f is integrable on M and g is integrable on M and f is nonnegative and g is non-negative. Then $f+g$ is integrable on M.
(99) If f is integrable on M and g is integrable on M, then $\operatorname{dom}(f+g) \in S$.
(100) If f is integrable on M and g is integrable on M, then $f+g$ is integrable on M.
(101) Suppose f is integrable on M and g is integrable on M. Then there exists an element E of S such that $E=\operatorname{dom} f \cap \operatorname{dom} g$ and $\int f+g \mathrm{~d} M=$ $\int f \upharpoonright E \mathrm{~d} M+\int g \upharpoonright E \mathrm{~d} M$.
(102) If f is integrable on M, then $r f$ is integrable on M and $\int r f \mathrm{~d} M=$ $\overline{\mathbb{R}}(r) \cdot \int f \mathrm{~d} M$.
Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-measure on S, let f be a partial function from X to \mathbb{R}, and let B be an
element of S. The functor $\int_{B} f \mathrm{~d} M$ yielding an element of $\overline{\mathbb{R}}$ is defined by:

$$
\begin{equation*}
\int_{B} f \mathrm{~d} M=\int f \upharpoonright B \mathrm{~d} M . \tag{Def.10}
\end{equation*}
$$

Next we state two propositions:
(103) Suppose f is integrable on M and g is integrable on M and $B \subseteq \operatorname{dom}(f+$ $g)$. Then $f+g$ is integrable on M and $\int_{B} f+g \mathrm{~d} M=\int_{B} f \mathrm{~d} M+\int_{B} g \mathrm{~d} M$.
(104) If f is integrable on M and f is measurable on B, then $f \upharpoonright B$ is integrable on M and $\int_{B} r f \mathrm{~d} M=\overline{\mathbb{R}}(r) \cdot \int_{B} f \mathrm{~d} M$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
[4] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
[5] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
[6] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21-26, 1996.
[7] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[12] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006.
[13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.
[14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.
[15] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. Formalized Mathematics, 9(3):525-529, 2001.
[16] P. R. Halmos. Measure Theory. Springer-Verlag, 1987.
[17] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[18] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.
[19] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[20] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. Formalized Mathematics, 3(2):279-288, 1992.
[21] Andrzej Nȩdzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[22] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[23] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[24] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[25] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received October 27, 2006

[^0]: ${ }^{1}$ This work has been partially supported by the MEXT grant Grant-in-Aid for Young Scientists (B) 16700156.

