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Summary. A complex polynomial is called a Hurwitz polynomial if all

its roots have a real part smaller than zero. This kind of polynomial plays an

all-dominant role in stability checks of electrical networks.

In this article we prove Schur’s criterion [17] that allows to decide whether

a polynomial p(x) is Hurwitz without explicitly computing its roots: Schur’s

recursive algorithm successively constructs polynomials pi(x) of lesser degree by

division with x− c, <{c} < 0, such that pi(x) is Hurwitz if and only if p(x) is.
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The articles [20], [25], [26], [18], [13], [5], [6], [1], [22], [23], [21], [19], [24], [16],

[4], [9], [2], [3], [15], [14], [7], [12], [10], [27], [11], and [8] provide the terminology

and notation for this paper.

1. Preliminaries

One can prove the following propositions:

(1) Let L be an add-associative right zeroed right complementable associa-

tive commutative left unital distributive field-like non empty double loop

structure and x be an element of L. If x 6= 0L, then −x−1 = (−x)−1.
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(2) Let L be an add-associative right zeroed right complementable asso-

ciative commutative left unital field-like distributive non degenerated non

empty double loop structure and k be an element of N. Then powerL(−1L,

k) 6= 0L.

(3) Let L be an associative right unital non empty multiplicative loop struc-

ture, x be an element of L, and k1, k2 be elements of N. Then powerL(x,

k1) · powerL(x, k2) = powerL(x, k1 + k2).

(4) Let L be an add-associative right zeroed right complementable left unital

distributive non empty double loop structure and k be an element of N.

Then powerL(−1L, 2 · k) = 1L and powerL(−1L, 2 · k + 1) = −1L.

(5) For every element z of CF and for every element k of N holds

powerCF
(z, k) = powerCF

(z , k).

(6) Let F , G be finite sequences of elements of CF. Suppose lenG = lenF

and for every element i of N such that i ∈ domG holds Gi = Fi . Then∑
G =

∑
F .

(7) Let L be an add-associative right zeroed right complementable Abelian

non empty loop structure and F1, F2 be finite sequences of elements of L.

Suppose lenF1 = lenF2 and for every element i of N such that i ∈ domF1

holds (F1)i = −(F2)i. Then
∑
F1 = −∑F2.

(8) Let L be an add-associative right zeroed right complementable distribu-

tive non empty double loop structure, x be an element of L, and F be a

finite sequence of elements of L. Then x ·∑F =
∑

(x · F ).

2. More on Polynomials

We now state four propositions:

(9) For every add-associative right zeroed right complementable non empty

loop structure L holds −0. L = 0. L.

(10) Let L be an add-associative right zeroed right complementable non

empty loop structure and p be a polynomial of L. Then −−p = p.

(11) Let L be an add-associative right zeroed right complementable Abelian

distributive non empty double loop structure and p1, p2 be polynomials

of L. Then −(p1 + p2) = −p1 +−p2.

(12) Let L be an add-associative right zeroed right complementable distribu-

tive Abelian non empty double loop structure and p1, p2 be polynomials

of L. Then −p1 ∗ p2 = (−p1) ∗ p2 and −p1 ∗ p2 = p1 ∗ −p2.

Let L be an add-associative right zeroed right complementable distributive

non empty double loop structure, let F be a finite sequence of elements of

Polynom-RingL, and let i be an element of N. The functor Coeff(F, i) yielding

a finite sequence of elements of L is defined by the conditions (Def. 1).
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(Def. 1)(i) len Coeff(F, i) = lenF, and

(ii) for every element j of N such that j ∈ dom Coeff(F, i) there exists a

polynomial p of L such that p = F (j) and (Coeff(F, i))(j) = p(i).

One can prove the following propositions:

(13) Let L be an add-associative right zeroed right complementable distribu-

tive non empty double loop structure, p be a polynomial of L, and F be a

finite sequence of elements of Polynom-RingL. If p =
∑
F, then for every

element i of N holds p(i) =
∑

Coeff(F, i).

(14) Let L be an associative non empty double loop structure, p be a poly-

nomial of L, and x1, x2 be elements of L. Then x1 · (x2 · p) = (x1 · x2) · p.
(15) Let L be an add-associative right zeroed right complementable left dis-

tributive non empty double loop structure, p be a polynomial of L, and x

be an element of L. Then −x · p = (−x) · p.
(16) Let L be an add-associative right zeroed right complementable right

distributive non empty double loop structure, p be a polynomial of L, and

x be an element of L. Then −x · p = x · −p.
(17) Let L be a left distributive non empty double loop structure, p be a

polynomial of L, and x1, x2 be elements of L. Then (x1 + x2) · p =

x1 · p+ x2 · p.
(18) Let L be a right distributive non empty double loop structure, p1, p2 be

polynomials of L, and x be an element of L. Then x·(p1+p2) = x·p1+x·p2.

(19) Let L be an add-associative right zeroed right complementable distribu-

tive commutative associative non empty double loop structure, p1, p2 be

polynomials of L, and x be an element of L. Then p1∗(x ·p2) = x ·(p1∗p2).

Let L be a non empty zero structure and let p be a polynomial of L. The

functor degree(p) yields an integer and is defined by:

(Def. 2) degree(p) = len p− 1.

Let L be a non empty zero structure and let p be a polynomial of L. We

introduce deg p as a synonym of degree(p).

We now state several propositions:

(20) For every non empty zero structure L and for every polynomial p of L

holds deg p = −1 iff p = 0. L.

(21) Let L be an add-associative right zeroed right complementable non

empty loop structure and p1, p2 be polynomials of L. If deg p1 6= deg p2,

then deg(p1 + p2) = max(deg p1,deg p2).

(22) Let L be an add-associative right zeroed right complementable Abelian

non empty loop structure and p1, p2 be polynomials of L. Then deg(p1 +

p2) ≤ max(deg p1,deg p2).

(23) Let L be an add-associative right zeroed right complementable distribu-

tive commutative associative left unital integral domain-like non empty
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double loop structure and p1, p2 be polynomials of L. If p1 6= 0. L and

p2 6= 0. L, then deg(p1 ∗ p2) = deg p1 + deg p2.

(24) Let L be an add-associative right zeroed right complementable unital

non empty double loop structure and p be a polynomial of L such that

deg p = 0. Then p does not have roots.

Let L be a unital non empty double loop structure, let z be an element of

L, and let k be an element of N. The functor rpoly(k, z) yields a polynomial of

L and is defined by:

(Def. 3) rpoly(k, z) = 0. L+·[0 7−→ −powerL(z, k), k 7−→ 1L].

One can prove the following propositions:

(25) Let L be a unital non empty double loop structure, z be an element of L,

and k be an element of N. If k 6= 0, then (rpoly(k, z))(0) = −powerL(z, k)

and (rpoly(k, z))(k) = 1L.

(26) Let L be a unital non empty double loop structure, z be an element of L,

and i, k be elements of N. If i 6= 0 and i 6= k, then (rpoly(k, z))(i) = 0L.

(27) Let L be a unital non degenerated non empty double loop structure, z

be an element of L, and k be an element of N. Then deg rpoly(k, z) = k.

(28) Let L be an add-associative right zeroed right complementable left unital

commutative associative distributive field-like non degenerated non empty

double loop structure and p be a polynomial of L. Then deg p = 1 if

and only if there exist elements x, z of L such that x 6= 0L and p =

x · rpoly(1, z).

(29) Let L be an add-associative right zeroed right complementable Abelian

unital non degenerated non empty double loop structure and x, z be ele-

ments of L. Then eval(rpoly(1, z), x) = x− z.
(30) Let L be an add-associative right zeroed right complementable unital

Abelian non degenerated non empty double loop structure and z be an

element of L. Then z is a root of rpoly(1, z).

Let L be a unital non empty double loop structure, let z be an element of

L, and let k be an element of N. The functor qpoly(k, z) yielding a polynomial

of L is defined by the conditions (Def. 4).

(Def. 4)(i) For every element i of N such that i < k holds (qpoly(k, z))(i) =

powerL(z, k − i− 1), and

(ii) for every element i of N such that i ≥ k holds (qpoly(k, z))(i) = 0L.

Next we state three propositions:

(31) Let L be a unital non degenerated non empty double loop structure, z be

an element of L, and k be an element of N. If k ≥ 1, then deg qpoly(k, z) =

k − 1.

(32) Let L be an add-associative right zeroed right complementable left dis-

tributive unital commutative non empty double loop structure, z be an
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element of L, and k be an element of N. If k > 1, then rpoly(1, z) ∗
qpoly(k, z) = rpoly(k, z).

(33) Let L be an Abelian add-associative right zeroed right complementable

unital associative distributive commutative non empty double loop struc-

ture, p be a polynomial of L, and z be an element of L. If z is a root of

p, then there exists a polynomial s of L such that p = rpoly(1, z) ∗ s.

3. Division of Polynomials

Let L be an Abelian add-associative right zeroed right complementable left

unital associative commutative distributive field-like non empty double loop

structure and let p, s be polynomials of L. Let us assume that s 6= 0. L. The

functor p÷ s yields a polynomial of L and is defined by:

(Def. 5) There exists a polynomial t of L such that p = (p ÷ s) ∗ s + t and

deg t < deg s.

Let L be an Abelian add-associative right zeroed right complementable left

unital associative commutative distributive field-like non empty double loop

structure and let p, s be polynomials of L. The functor p mod s yielding a

polynomial of L is defined by:

(Def. 6) pmod s = p− (p÷ s) ∗ s.
Let L be an Abelian add-associative right zeroed right complementable left

unital associative commutative distributive field-like non empty double loop

structure and let p, s be polynomials of L. The predicate s | p is defined by:

(Def. 7) pmod s = 0. L.

One can prove the following three propositions:

(34) Let L be an Abelian add-associative right zeroed right complementable

left unital associative commutative distributive field-like non empty double

loop structure and p, s be polynomials of L. Suppose s 6= 0. L. Then s | p
if and only if there exists a polynomial t of L such that t ∗ s = p.

(35) Let L be an Abelian add-associative right zeroed right complementable

left unital associative commutative distributive field-like non degenerated

non empty double loop structure, p be a polynomial of L, and z be an

element of L. If z is a root of p, then rpoly(1, z) | p.
(36) Let L be an Abelian add-associative right zeroed right complementable

left unital associative commutative distributive field-like non degenerated

non empty double loop structure, p be a polynomial of L, and z be an

element of L. If p 6= 0. L and z is a root of p, then deg(p÷ rpoly(1, z)) =

deg p− 1.
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4. Schur’s Theorem

Let f be a polynomial of CF. We say that f is Hurwitz if and only if:

(Def. 8) For every element z of CF such that z is a root of f holds <(z) < 0.

We now state several propositions:

(37) 0.(CF) is non Hurwitz.

(38) For every element x of CF such that x 6= 0CF
holds x ·1.(CF) is Hurwitz.

(39) For all elements x, z of CF such that x 6= 0CF
holds x · rpoly(1, z) is

Hurwitz iff <(z) < 0.

(40) Let f be a polynomial of CF and z be an element of CF. If z 6= 0CF
,

then f is Hurwitz iff z · f is Hurwitz.

(41) For all polynomials f , g of CF holds f ∗ g is Hurwitz iff f is Hurwitz and

g is Hurwitz.

Let f be a polynomial of CF. The functor f yielding a polynomial of CF is

defined by:

(Def. 9) For every element i of N holds f (i) = powerCF
(−1CF

, i) · f(i) .

We now state several propositions:

(42) For every polynomial f of CF holds deg f = deg f.

(43) For every polynomial f of CF holds f = f.

(44) For every polynomial f of CF and for every element z of CF holds z · f =

z · f .
(45) For every polynomial f of CF holds −f = −f .
(46) For all polynomials f , g of CF holds f + g = f + g .

(47) For all polynomials f , g of CF holds f ∗ g = f ∗ g .
(48) For all elements x, z of CF holds eval(rpoly(1, z) , x) = −x− z .

(49) For every polynomial f of CF such that f is Hurwitz and for every

element x of CF such that <(x) ≥ 0 holds 0 < | eval(f, x)|.
(50) Let f be a polynomial of CF. Suppose deg f ≥ 1 and f is Hurwitz. Let

x be an element of CF. Then

(i) if <(x) < 0, then | eval(f, x)| < | eval(f , x)|,
(ii) if <(x) > 0, then | eval(f, x)| > | eval(f , x)|, and

(iii) if <(x) = 0, then | eval(f, x)| = | eval(f , x)|.
Let f be a polynomial of CF and let z be an element of CF. The functor

F ∗ (f, z) yields a polynomial of CF and is defined as follows:

(Def. 10) F ∗ (f, z) = eval(f , z) · f − eval(f, z) · f .
We now state four propositions:

(51) Let a, b be elements of CF. Suppose |a| > |b|. Let f be a polynomial of

CF. If deg f ≥ 1, then f is Hurwitz iff a · f − b · f is Hurwitz.
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(52) Let f be a polynomial of CF. Suppose deg f ≥ 1. Let r1 be an element

of CF. If <(r1) < 0, then if f is Hurwitz, then F ∗ (f, r1)÷ rpoly(1, r1) is

Hurwitz.

(53) Let f be a polynomial of CF. Suppose deg f ≥ 1. Given an element r1

of CF such that <(r1) < 0 and | eval(f, r1)| ≥ | eval(f , r1)|. Then f is non

Hurwitz.

(54) Let f be a polynomial of CF. Suppose deg f ≥ 1. Let r1 be an element

of CF. Suppose <(r1) < 0 and | eval(f, r1)| < | eval(f , r1)|. Then f is

Hurwitz if and only if F ∗ (f, r1)÷ rpoly(1, r1) is Hurwitz.
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