Schur's Theorem on the Stability of Networks

Christoph Schwarzweller
Institute of Computer Science
University of Gdańsk
Wita Stwosza 57, 80-952 Gdańsk, Poland
Agnieszka Rowińska-Schwarzweller
Chair of Display Technology
University of Stuttgart
Allmandring 3b, 70569 Stuttgart, Germany

Abstract

Summary. A complex polynomial is called a Hurwitz polynomial if all its roots have a real part smaller than zero. This kind of polynomial plays an all-dominant role in stability checks of electrical networks.

In this article we prove Schur's criterion [17] that allows to decide whether a polynomial $p(x)$ is Hurwitz without explicitly computing its roots: Schur's recursive algorithm successively constructs polynomials $p_{i}(x)$ of lesser degree by division with $x-c, \Re\{c\}<0$, such that $p_{i}(x)$ is Hurwitz if and only if $p(x)$ is.

MML identifier: HURWITZ, version: 7.8.03 4.75.958

The articles [20], [25], [26], [18], [13], [5], [6], [1], [22], [23], [21], [19], [24], [16], [4], [9], [2], [3], [15], [14], [7], [12], [10], [27], [11], and [8] provide the terminology and notation for this paper.

1. Preliminaries

One can prove the following propositions:
(1) Let L be an add-associative right zeroed right complementable associative commutative left unital distributive field-like non empty double loop structure and x be an element of L. If $x \neq 0_{L}$, then $-x^{-1}=(-x)^{-1}$.
(2) Let L be an add-associative right zeroed right complementable associative commutative left unital field-like distributive non degenerated non empty double loop structure and k be an element of \mathbb{N}. Then $\operatorname{power}_{L}\left(-1_{L}\right.$, k) $\neq 0_{L}$.
(3) Let L be an associative right unital non empty multiplicative loop structure, x be an element of L, and k_{1}, k_{2} be elements of \mathbb{N}. Then power $_{L}(x$, $\left.k_{1}\right) \cdot \operatorname{power}_{L}\left(x, k_{2}\right)=\operatorname{power}_{L}\left(x, k_{1}+k_{2}\right)$.
(4) Let L be an add-associative right zeroed right complementable left unital distributive non empty double loop structure and k be an element of \mathbb{N}. Then $^{\operatorname{power}_{L}}\left(-1_{L}, 2 \cdot k\right)=1_{L}$ and power ${ }_{L}\left(-1_{L}, 2 \cdot k+1\right)=-1_{L}$.
(5) For every element z of \mathbb{C}_{F} and for every element k of \mathbb{N} holds $\overline{\operatorname{power}_{\mathbb{C}_{\mathrm{F}}}(z, k)}=$ power $_{\mathbb{C}_{\mathrm{F}}}(\bar{z}, k)$.
(6) Let F, G be finite sequences of elements of \mathbb{C}_{F}. Suppose len $G=\operatorname{len} F$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} G$ holds $G_{i}=\overline{F_{i}}$. Then $\sum G=\overline{\sum F}$.
(7) Let L be an add-associative right zeroed right complementable Abelian non empty loop structure and F_{1}, F_{2} be finite sequences of elements of L. Suppose len $F_{1}=\operatorname{len} F_{2}$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} F_{1}$ holds $\left(F_{1}\right)_{i}=-\left(F_{2}\right)_{i}$. Then $\sum F_{1}=-\sum F_{2}$.
(8) Let L be an add-associative right zeroed right complementable distributive non empty double loop structure, x be an element of L, and F be a finite sequence of elements of L. Then $x \cdot \sum F=\sum(x \cdot F)$.

2. More on Polynomials

We now state four propositions:
(9) For every add-associative right zeroed right complementable non empty loop structure L holds $-\mathbf{0} . L=\mathbf{0}$. L.
(10) Let L be an add-associative right zeroed right complementable non empty loop structure and p be a polynomial of L. Then $--p=p$.
(11) Let L be an add-associative right zeroed right complementable Abelian distributive non empty double loop structure and p_{1}, p_{2} be polynomials of L. Then $-\left(p_{1}+p_{2}\right)=-p_{1}+-p_{2}$.
(12) Let L be an add-associative right zeroed right complementable distributive Abelian non empty double loop structure and p_{1}, p_{2} be polynomials of L. Then $-p_{1} * p_{2}=\left(-p_{1}\right) * p_{2}$ and $-p_{1} * p_{2}=p_{1} *-p_{2}$.
Let L be an add-associative right zeroed right complementable distributive non empty double loop structure, let F be a finite sequence of elements of Polynom-Ring L, and let i be an element of \mathbb{N}. The functor $\operatorname{Coeff}(F, i)$ yielding a finite sequence of elements of L is defined by the conditions (Def. 1).
(Def. 1)(i) len $\operatorname{Coeff}(F, i)=\operatorname{len} F$, and
(ii) for every element j of \mathbb{N} such that $j \in \operatorname{dom} \operatorname{Coeff}(F, i)$ there exists a polynomial p of L such that $p=F(j)$ and $(\operatorname{Coeff}(F, i))(j)=p(i)$.
One can prove the following propositions:
(13) Let L be an add-associative right zeroed right complementable distributive non empty double loop structure, p be a polynomial of L, and F be a finite sequence of elements of Polynom-Ring L. If $p=\sum F$, then for every element i of \mathbb{N} holds $p(i)=\sum \operatorname{Coeff}(F, i)$.
(14) Let L be an associative non empty double loop structure, p be a polynomial of L, and x_{1}, x_{2} be elements of L. Then $x_{1} \cdot\left(x_{2} \cdot p\right)=\left(x_{1} \cdot x_{2}\right) \cdot p$.
(15) Let L be an add-associative right zeroed right complementable left distributive non empty double loop structure, p be a polynomial of L, and x be an element of L. Then $-x \cdot p=(-x) \cdot p$.
(16) Let L be an add-associative right zeroed right complementable right distributive non empty double loop structure, p be a polynomial of L, and x be an element of L. Then $-x \cdot p=x \cdot-p$.
(17) Let L be a left distributive non empty double loop structure, p be a polynomial of L, and x_{1}, x_{2} be elements of L. Then $\left(x_{1}+x_{2}\right) \cdot p=$ $x_{1} \cdot p+x_{2} \cdot p$.
(18) Let L be a right distributive non empty double loop structure, p_{1}, p_{2} be polynomials of L, and x be an element of L. Then $x \cdot\left(p_{1}+p_{2}\right)=x \cdot p_{1}+x \cdot p_{2}$.
(19) Let L be an add-associative right zeroed right complementable distributive commutative associative non empty double loop structure, p_{1}, p_{2} be polynomials of L, and x be an element of L. Then $p_{1} *\left(x \cdot p_{2}\right)=x \cdot\left(p_{1} * p_{2}\right)$.
Let L be a non empty zero structure and let p be a polynomial of L. The functor degree (p) yields an integer and is defined by:
(Def. 2) $\quad \operatorname{degree}(p)=\operatorname{len} p-1$.
Let L be a non empty zero structure and let p be a polynomial of L. We introduce $\operatorname{deg} p$ as a synonym of degree (p).

We now state several propositions:
(20) For every non empty zero structure L and for every polynomial p of L holds $\operatorname{deg} p=-1$ iff $p=\mathbf{0} . L$.
(21) Let L be an add-associative right zeroed right complementable non empty loop structure and p_{1}, p_{2} be polynomials of L. If $\operatorname{deg} p_{1} \neq \operatorname{deg} p_{2}$, then $\operatorname{deg}\left(p_{1}+p_{2}\right)=\max \left(\operatorname{deg} p_{1}, \operatorname{deg} p_{2}\right)$.
(22) Let L be an add-associative right zeroed right complementable Abelian non empty loop structure and p_{1}, p_{2} be polynomials of L. Then $\operatorname{deg}\left(p_{1}+\right.$ $\left.p_{2}\right) \leq \max \left(\operatorname{deg} p_{1}, \operatorname{deg} p_{2}\right)$.
(23) Let L be an add-associative right zeroed right complementable distributive commutative associative left unital integral domain-like non empty
double loop structure and p_{1}, p_{2} be polynomials of L. If $p_{1} \neq \mathbf{0} . L$ and $p_{2} \neq \mathbf{0}$. L, then $\operatorname{deg}\left(p_{1} * p_{2}\right)=\operatorname{deg} p_{1}+\operatorname{deg} p_{2}$.
(24) Let L be an add-associative right zeroed right complementable unital non empty double loop structure and p be a polynomial of L such that $\operatorname{deg} p=0$. Then p does not have roots.
Let L be a unital non empty double loop structure, let z be an element of L, and let k be an element of \mathbb{N}. The functor rpoly (k, z) yields a polynomial of L and is defined by:
(Def. 3) $\operatorname{rpoly}(k, z)=\mathbf{0} . L+\cdot\left[0 \longmapsto-\operatorname{power}_{L}(z, k), k \longmapsto 1_{L}\right]$.
One can prove the following propositions:
(25) Let L be a unital non empty double loop structure, z be an element of L, and k be an element of \mathbb{N}. If $k \neq 0$, then $(\operatorname{rpoly}(k, z))(0)=-\operatorname{power}_{L}(z, k)$ and $(\operatorname{rpoly}(k, z))(k)=1_{L}$.
(26) Let L be a unital non empty double loop structure, z be an element of L, and i, k be elements of \mathbb{N}. If $i \neq 0$ and $i \neq k$, then $(\operatorname{rpoly}(k, z))(i)=0_{L}$.
(27) Let L be a unital non degenerated non empty double loop structure, z be an element of L, and k be an element of \mathbb{N}. Then $\operatorname{deg} \operatorname{rpoly}(k, z)=k$.
(28) Let L be an add-associative right zeroed right complementable left unital commutative associative distributive field-like non degenerated non empty double loop structure and p be a polynomial of L. Then $\operatorname{deg} p=1$ if and only if there exist elements x, z of L such that $x \neq 0_{L}$ and $p=$ $x \cdot \operatorname{rpoly}(1, z)$.
(29) Let L be an add-associative right zeroed right complementable Abelian unital non degenerated non empty double loop structure and x, z be elements of L. Then $\operatorname{eval}(\operatorname{rpoly}(1, z), x)=x-z$.
(30) Let L be an add-associative right zeroed right complementable unital Abelian non degenerated non empty double loop structure and z be an element of L. Then z is a root of $\operatorname{rpoly}(1, z)$.
Let L be a unital non empty double loop structure, let z be an element of L, and let k be an element of \mathbb{N}. The functor qpoly (k, z) yielding a polynomial of L is defined by the conditions (Def. 4).
(Def. 4)(i) For every element i of \mathbb{N} such that $i<k$ holds $(\operatorname{qpoly}(k, z))(i)=$ $\operatorname{power}_{L}(z, k-i-1)$, and
(ii) for every element i of \mathbb{N} such that $i \geq k$ holds $(\operatorname{qpoly}(k, z))(i)=0_{L}$.

Next we state three propositions:
(31) Let L be a unital non degenerated non empty double loop structure, z be an element of L, and k be an element of \mathbb{N}. If $k \geq 1$, then $\operatorname{deg} \operatorname{qpoly}(k, z)=$ $k-1$.
(32) Let L be an add-associative right zeroed right complementable left distributive unital commutative non empty double loop structure, z be an
element of L, and k be an element of \mathbb{N}. If $k>1$, then $\operatorname{rpoly}(1, z) *$ $\operatorname{qpoly}(k, z)=\operatorname{rpoly}(k, z)$.
(33) Let L be an Abelian add-associative right zeroed right complementable unital associative distributive commutative non empty double loop structure, p be a polynomial of L, and z be an element of L. If z is a root of p, then there exists a polynomial s of L such that $p=\operatorname{rpoly}(1, z) * s$.

3. Division of Polynomials

Let L be an Abelian add-associative right zeroed right complementable left unital associative commutative distributive field-like non empty double loop structure and let p, s be polynomials of L. Let us assume that $s \neq \mathbf{0}$. L. The functor $p \div s$ yields a polynomial of L and is defined by:
(Def. 5) There exists a polynomial t of L such that $p=(p \div s) * s+t$ and $\operatorname{deg} t<\operatorname{deg} s$.
Let L be an Abelian add-associative right zeroed right complementable left unital associative commutative distributive field-like non empty double loop structure and let p, s be polynomials of L. The functor $p \bmod s$ yielding a polynomial of L is defined by:
(Def. 6) $p \bmod s=p-(p \div s) * s$.
Let L be an Abelian add-associative right zeroed right complementable left unital associative commutative distributive field-like non empty double loop structure and let p, s be polynomials of L. The predicate $s \mid p$ is defined by:
(Def. 7) $p \bmod s=\mathbf{0} . L$.
One can prove the following three propositions:
(34) Let L be an Abelian add-associative right zeroed right complementable left unital associative commutative distributive field-like non empty double loop structure and p, s be polynomials of L. Suppose $s \neq \mathbf{0}$. L. Then $s \mid p$ if and only if there exists a polynomial t of L such that $t * s=p$.
(35) Let L be an Abelian add-associative right zeroed right complementable left unital associative commutative distributive field-like non degenerated non empty double loop structure, p be a polynomial of L, and z be an element of L. If z is a root of p, then $\operatorname{rpoly}(1, z) \mid p$.
(36) Let L be an Abelian add-associative right zeroed right complementable left unital associative commutative distributive field-like non degenerated non empty double loop structure, p be a polynomial of L, and z be an element of L. If $p \neq \mathbf{0} . L$ and z is a root of p, then $\operatorname{deg}(p \div \operatorname{rpoly}(1, z))=$ $\operatorname{deg} p-1$.

4. Schur's Theorem

Let f be a polynomial of \mathbb{C}_{F}. We say that f is Hurwitz if and only if:
(Def. 8) For every element z of \mathbb{C}_{F} such that z is a root of f holds $\Re(z)<0$.
We now state several propositions:
(37) 0. $\left(\mathbb{C}_{F}\right)$ is non Hurwitz.
(38) For every element x of \mathbb{C}_{F} such that $x \neq 0_{\mathbb{C}_{F}}$ holds $x \cdot \mathbf{1} .\left(\mathbb{C}_{F}\right)$ is Hurwitz.
(39) For all elements x, z of \mathbb{C}_{F} such that $x \neq 0_{\mathbb{C}_{\mathrm{F}}}$ holds $x \cdot \operatorname{rpoly}(1, z)$ is Hurwitz iff $\Re(z)<0$.
(40) Let f be a polynomial of \mathbb{C}_{F} and z be an element of \mathbb{C}_{F}. If $z \neq 0_{\mathbb{C}_{\mathrm{F}}}$, then f is Hurwitz iff $z \cdot f$ is Hurwitz.
(41) For all polynomials f, g of \mathbb{C}_{F} holds $f * g$ is Hurwitz iff f is Hurwitz and g is Hurwitz.
Let f be a polynomial of \mathbb{C}_{F}. The functor \bar{f} yielding a polynomial of \mathbb{C}_{F} is defined by:
(Def. 9) For every element i of \mathbb{N} holds $\bar{f}(i)=\operatorname{power}_{\mathbb{C}_{\mathrm{F}}}\left(-1_{\mathbb{C}_{\mathrm{F}}}, i\right) \cdot \overline{f(i)}$.
We now state several propositions:
(42) For every polynomial f of \mathbb{C}_{F} holds $\operatorname{deg} \bar{f}=\operatorname{deg} f$.
(43) For every polynomial f of \mathbb{C}_{F} holds $\overline{\bar{f}}=f$.
(44) For every polynomial f of \mathbb{C}_{F} and for every element z of \mathbb{C}_{F} holds $\overline{z \cdot f}=$ $\bar{z} \cdot \bar{f}$.
(45) For every polynomial f of \mathbb{C}_{F} holds $\overline{-f}=-\bar{f}$.
(46) For all polynomials f, g of \mathbb{C}_{F} holds $\overline{f+g}=\bar{f}+\bar{g}$.
(47) For all polynomials f, g of \mathbb{C}_{F} holds $\overline{f * g}=\bar{f} * \bar{g}$.
(48) For all elements x, z of \mathbb{C}_{F} holds eval $(\overline{\operatorname{rpoly}(1, z)}, x)=-x-\bar{z}$.
(49) For every polynomial f of \mathbb{C}_{F} such that f is Hurwitz and for every element x of \mathbb{C}_{F} such that $\Re(x) \geq 0$ holds $0<|\operatorname{eval}(f, x)|$.
(50) Let f be a polynomial of \mathbb{C}_{F}. Suppose $\operatorname{deg} f \geq 1$ and f is Hurwitz. Let x be an element of \mathbb{C}_{F}. Then
(i) if $\Re(x)<0$, then $|\operatorname{eval}(f, x)|<|\operatorname{eval}(\bar{f}, x)|$,
(ii) if $\Re(x)>0$, then $|\operatorname{eval}(f, x)|>|\operatorname{eval}(\bar{f}, x)|$, and
(iii) if $\Re(x)=0$, then $|\operatorname{eval}(f, x)|=|\operatorname{eval}(\bar{f}, x)|$.

Let f be a polynomial of \mathbb{C}_{F} and let z be an element of \mathbb{C}_{F}. The functor $F *(f, z)$ yields a polynomial of \mathbb{C}_{F} and is defined as follows:
(Def. 10) $\quad F *(f, z)=\operatorname{eval}(\bar{f}, z) \cdot f-\operatorname{eval}(f, z) \cdot \bar{f}$.
We now state four propositions:
(51) Let a, b be elements of \mathbb{C}_{F}. Suppose $|a|>|b|$. Let f be a polynomial of \mathbb{C}_{F}. If $\operatorname{deg} f \geq 1$, then f is Hurwitz iff $a \cdot f-b \cdot \bar{f}$ is Hurwitz.
(52) Let f be a polynomial of \mathbb{C}_{F}. Suppose $\operatorname{deg} f \geq 1$. Let r_{1} be an element of \mathbb{C}_{F}. If $\Re\left(r_{1}\right)<0$, then if f is Hurwitz, then $F *\left(f, r_{1}\right) \div \operatorname{rpoly}\left(1, r_{1}\right)$ is Hurwitz.
(53) Let f be a polynomial of \mathbb{C}_{F}. Suppose $\operatorname{deg} f \geq 1$. Given an element r_{1} of \mathbb{C}_{F} such that $\Re\left(r_{1}\right)<0$ and $\left|\operatorname{eval}\left(f, r_{1}\right)\right| \geq\left|\operatorname{eval}\left(\bar{f}, r_{1}\right)\right|$. Then f is non Hurwitz.
(54) Let f be a polynomial of \mathbb{C}_{F}. Suppose $\operatorname{deg} f \geq 1$. Let r_{1} be an element of \mathbb{C}_{F}. Suppose $\Re\left(r_{1}\right)<0$ and $\left|\operatorname{eval}\left(f, r_{1}\right)\right|<\left|\operatorname{eval}\left(\bar{f}, r_{1}\right)\right|$. Then f is Hurwitz if and only if $F *\left(f, r_{1}\right) \div \operatorname{rpoly}\left(1, r_{1}\right)$ is Hurwitz.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[9] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2):265-269, 2001.
[10] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391-395, 2001.
[11] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461470, 2001.
[12] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.
[13] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[14] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.
[15] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[16] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95-110, 2001.
[17] J. Schur. Über algebraische Gleichungen, die nur Wurzeln mit negativen Realteilen besitzen. Zeitschrift für angewandte Mathematik und Mechanik, 1:307-311, 1921.
[18] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[21] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[22] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[23] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[24] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, $1(\mathbf{1}): 73-83,1990$.
[27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received October 19, 2006

