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The terminology and notation used here are introduced in the following articles:

[18], [21], [3], [16], [22], [5], [6], [4], [1], [8], [19], [2], [12], [11], [10], [7], [14], [17],

[20], [15], and [13].

1. Preliminaries

One can prove the following propositions:

(1) For every non zero natural number n holds n − 1 is a natural number

and 1 ≤ n.
(2) For every odd natural number n holds n − 1 is a natural number and

1 ≤ n.
(3) For all odd integers n, m such that n < m holds n ≤ m− 2.

(4) For all odd integers n, m such that m < n holds m+ 2 ≤ n.
(5) For every odd natural number n such that 1 6= n there exists an odd

natural number m such that m+ 2 = n.

(6) For every odd natural number n such that n ≤ 2 holds n = 1.

(7) For every odd natural number n such that n ≤ 4 holds n = 1 or n = 3.

(8) For every odd natural number n such that n ≤ 6 holds n = 1 or n = 3

or n = 5.
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(9) For every odd natural number n such that n ≤ 8 holds n = 1 or n = 3

or n = 5 or n = 7.

(10) For every even natural number n such that n ≤ 1 holds n = 0.

(11) For every even natural number n such that n ≤ 3 holds n = 0 or n = 2.

(12) For every even natural number n such that n ≤ 5 holds n = 0 or n = 2

or n = 4.

(13) For every even natural number n such that n ≤ 7 holds n = 0 or n = 2

or n = 4 or n = 6.

(14) For every finite sequence p and for every non zero natural number n such

that p is one-to-one and n ≤ len p holds p(n)" p = n.

(15) Let p be a non empty finite sequence and T be a non empty subset of

rng p. Then there exists a set x such that x ∈ T and for every set y such

that y ∈ T holds x" p ≤ y " p.

Let p be a finite sequence and let n be a natural number. The functor

p.followSet(n) yields a finite set and is defined as follows:

(Def. 1) p.followSet(n) = rng〈p(n), . . . , p(len p)〉.
The following three propositions are true:

(16) Let p be a finite sequence, x be a set, and n be a natural number. Suppose

x ∈ rng p and n ∈ dom p and p is one-to-one. Then x ∈ p.followSet(n) if

and only if x" p ≥ n.
(17) Let p, q be finite sequences and x be a set. If p = 〈x〉 a q, then for every

non zero natural number n holds p.followSet(n+ 1) = q.followSet(n).

(18) Let X be a set, f be a finite sequence of elements of X, and g be a

FinSubsequence of f . If len Seq g = len f, then Seq g = f.

2. Miscellany on Graphs

Next we state a number of propositions:

(19) Let G be a graph, S be a subset of the vertices of G, H be a subgraph

of G induced by S, and u, v be sets. Suppose u ∈ S and v ∈ S. Let e be

a set. If e joins u and v in G, then e joins u and v in H.

(20) For every graph G and for every walk W of G holds W is trail-like iff

lenW = 2 · card(W.edges()) + 1.

(21) Let G be a graph, S be a subset of the vertices of G, H be a subgraph

of G with vertices S removed, and W be a walk of G. Suppose that for

every odd natural number n such that n ≤ lenW holds W (n) /∈ S. Then

W is a walk of H.
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(22) Let G be a graph and a, b be sets. Suppose a 6= b. Let W be a walk of

G. If W.vertices() = {a, b}, then there exists a set e such that e joins a

and b in G.

(23) Let G be a graph, S be a non empty subset of the vertices of G, H be a

subgraph of G induced by S, and W be a walk of G. If W.vertices() ⊆ S,
then W is a walk of H.

(24) Let G1, G2 be graphs. Suppose G1 =G G2. Let W1 be a walk of G1 and

W2 be a walk of G2. If W1 = W2, then if W1 is cycle-like, then W2 is

cycle-like.

(25) Let G be a graph, P be a path of G, and m, n be odd natural numbers.

Suppose m ≤ lenP and n ≤ lenP and P (m) = P (n). Then m = n or

m = 1 and n = lenP or m = lenP and n = 1.

(26) Let G be a graph and P be a path of G. Suppose P is open. Let a, e, b

be sets. Suppose a /∈ P .vertices() and b = P .first() and e joins a and b in

G. Then (G.walkOf(a, e, b)).append(P ) is path-like.

(27) Let G be a graph and P , H be paths of G. Suppose P .edges() misses

H.edges() and P is non trivial and open and H is non trivial and open and

P .vertices() ∩H.vertices() = {P .first(), P .last()} and H.first() = P .last()

and H.last() = P .first(). Then P .append(H) is cycle-like.

(28) For every graph G and for all walks W1, W2 of G such that W1.last() =

W2.first() holds (W1.append(W2)).length() = W1.length() +W2.length().

(29) Let G be a graph and A, B be non empty subsets of the vertices of G.

Suppose B ⊆ A. Let H1 be a subgraph of G induced by A. Then every

subgraph of H1 induced by B is a subgraph of G induced by B.

(30) Let G be a graph and A, B be non empty subsets of the vertices of G.

Suppose B ⊆ A. Let H1 be a subgraph of G induced by A. Then every

subgraph of G induced by B is a subgraph of H1 induced by B.

(31) Let G be a graph and S, T be non empty subsets of the vertices of

G. If T ⊆ S, then for every subgraph G2 of G induced by S holds

G2.edgesBetween(T ) = G.edgesBetween(T ).

The scheme FinGraphOrderCompInd concerns a unary predicate P, and

states that:

For every finite graph G holds P[G]

provided the parameters meet the following condition:

• Let k be a non zero natural number. Suppose that for every finite

graph G3 such that G3.order() < k holds P[G3]. Let G4 be a finite

graph. If G4.order() = k, then P[G4].

We now state two propositions:

(32) For every graph G and for every walk W of G such that W is open and

path-like holds W is vertex-distinct.
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(33) Let G be a graph and P be a path of G. Suppose P is open and lenP > 3.

Let e be a set. If e joins P .last() and P .first() in G, then P .addEdge(e)

is cycle-like.

3. Shortest Topological Path

Let G be a graph and let W be a walk of G. We say that W is minimum

length if and only if:

(Def. 2) For every walk W2 of G such that W2 is walk from W.first() to W.last()

holds lenW2 ≥ lenW.

The following propositions are true:

(34) For every graph G and for every walk W of G and for every subwalk

S of W such that S.first() = W.first() and S.edgeSeq() = W.edgeSeq()

holds S = W.

(35) For every graph G and for every walk W of G and for every subwalk S

of W such that lenS = lenW holds S = W.

(36) For every graph G and for every walk W of G such that W is minimum

length holds W is path-like.

(37) For every graph G and for every walk W of G such that W is minimum

length holds W is path-like.

(38) Let G be a graph and W be a walk of G. Suppose that for every path P

of G such that P is walk from W.first() to W.last() holds lenP ≥ lenW.

Then W is minimum length.

(39) For every graph G and for every walk W of G holds there exists a path

of G which is walk from W.first() to W.last() and minimum length.

(40) Let G be a graph and W be a walk of G. Suppose W is minimum length.

Let m, n be odd natural numbers. Suppose m + 2 < n and n ≤ lenW.

Then it is not true that there exists a set e such that e joins W (m) and

W (n) in G.

(41) Let G be a graph, S be a non empty subset of the vertices of G, H be

a subgraph of G induced by S, and W be a walk of H. Suppose W is

minimum length. Let m, n be odd natural numbers. Suppose m+ 2 < n

and n ≤ lenW. Then it is not true that there exists a set e such that e

joins W (m) and W (n) in G.

(42) Let G be a graph and W be a walk of G. Suppose W is minimum

length. Let m, n be odd natural numbers. If m ≤ n and n ≤ lenW, then

W.cut(m,n) is minimum length.

(43) Let G be a graph. Suppose G is connected. Let A, B be non empty

subsets of the vertices of G. Suppose A misses B. Then there exists a

path P of G such that
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(i) P is minimum length and non trivial,

(ii) P .first() ∈ A,
(iii) P .last() ∈ B, and

(iv) for every odd natural number n such that 1 < n and n < lenP holds

P (n) /∈ A and P (n) /∈ B.

4. Adjacency and Complete Graphs

Let G be a graph and let a, b be vertices of G. We say that a and b are

adjacent if and only if:

(Def. 3) There exists a set e such that e joins a and b in G.

Let us note that the predicate a and b are adjacent is symmetric.

Next we state several propositions:

(44) Let G1, G2 be graphs. Suppose G1 =G G2. Let u1, v1 be vertices of G1.

Suppose u1 and v1 are adjacent. Let u2, v2 be vertices of G2. If u1 = u2

and v1 = v2, then u2 and v2 are adjacent.

(45) Let G be a graph, S be a non empty subset of the vertices of G, H be a

subgraph of G induced by S, u, v be vertices of G, and t, w be vertices of

H. Suppose u = t and v = w. Then u and v are adjacent if and only if t

and w are adjacent.

(46) For every graph G and for every walk W of G such that W.first() 6=
W.last() and W.first() and W.last() are not adjacent holds W.length() ≥
2.

(47) Let G be a graph and v1, v2, v3 be vertices of G. Suppose v1 6= v2 and

v1 6= v3 and v2 6= v3 and v1 and v2 are adjacent and v2 and v3 are adjacent.

Then there exists a path P of G and there exist sets e1, e2 such that

P is open and lenP = 5 and P .length() = 2 and e1 joins v1 and v2 in G

and e2 joins v2 and v3 in G and P .edges() = {e1, e2} and P .vertices() =

{v1, v2, v3} and P (1) = v1 and P (3) = v2 and P (5) = v3.

(48) Let G be a graph and v1, v2, v3, v4 be vertices of G. Suppose that

v1 6= v2 and v1 6= v3 and v2 6= v3 and v2 6= v4 and v3 6= v4 and v1 and v2

are adjacent and v2 and v3 are adjacent and v3 and v4 are adjacent. Then

there exists a path P of G such that lenP = 7 and P .length() = 3 and

P .vertices() = {v1, v2, v3, v4} and P (1) = v1 and P (3) = v2 and P (5) = v3

and P (7) = v4.

Let G be a graph and let S be a set. The functor G.adjacentSet(S) yields a

subset of the vertices of G and is defined as follows:

(Def. 4) G.adjacentSet(S) = {u;u ranges over vertices of G: u /∈ S ∧∨
v : vertex of G (v ∈ S ∧ u and v are adjacent)}.

One can prove the following propositions:
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(49) For every graph G and for all sets S, x such that x ∈ G.adjacentSet(S)

holds x /∈ S.
(50) Let G be a graph, S be a set, and u be a vertex of G. Then u ∈

G.adjacentSet(S) if and only if the following conditions are satisfied:

(i) u /∈ S, and

(ii) there exists a vertex v of G such that v ∈ S and u and v are adjacent.

(51) For all graphs G1, G2 such that G1 =G G2 and for every set S holds

G1.adjacentSet(S) = G2.adjacentSet(S).

(52) For every graph G and for all vertices u, v of G holds u ∈
G.adjacentSet({v}) iff u 6= v and v and u are adjacent.

(53) For every graph G and for all sets x, y holds x ∈ G.adjacentSet({y}) iff

y ∈ G.adjacentSet({x}).
(54) Let G be a graph and C be a path of G. Suppose C is cycle-like and

C.length() > 3. Let x be a vertex of G. Suppose x ∈ C.vertices(). Then

there exist odd natural numbers m, n such that m+ 2 < n and n ≤ lenC

and m = 1 and n = lenC and m = 1 and n = lenC − 2 and m = 3

and n = lenC and C(m) 6= C(n) and C(m) ∈ G.adjacentSet({x}) and

C(n) ∈ G.adjacentSet({x}).
(55) Let G be a graph and C be a path of G. Suppose C is cycle-like and

C.length() > 3. Let x be a vertex of G. Suppose x ∈ C.vertices(). Then

there exist odd natural numbers m, n such that

(i) m+ 2 < n,

(ii) n ≤ lenC,

(iii) C(m) 6= C(n),

(iv) C(m) ∈ G.adjacentSet({x}),
(v) C(n) ∈ G.adjacentSet({x}), and

(vi) for every set e such that e ∈ C.edges() holds e does not join C(m) and

C(n) in G.

(56) For every loopless graph G and for every vertex u of G holds

G.adjacentSet({u}) = ∅ iff u is isolated.

(57) Let G be a graph, G0 be a subgraph of G, S be a non empty subset of

the vertices of G, x be a vertex of G, G1 be a subgraph of G induced by

S, and G2 be a subgraph of G induced by S ∪ {x}. If G1 is connected and

x ∈ G.adjacentSet(the vertices of G1), then G2 is connected.

(58) Let G be a graph, S be a non empty subset of the vertices of G, H be

a subgraph of G induced by S, and u be a vertex of G. Suppose u ∈ S
and G.adjacentSet({u}) ⊆ S. Let v be a vertex of H. If u = v, then

G.adjacentSet({u}) = H.adjacentSet({v}).
Let G be a graph and let S be a set. A subgraph of G is called an adjacency

graph of S in G if:
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(Def. 5) It is a subgraph of G induced by G.adjacentSet(S) if S is a subset of the

vertices of G.

Next we state two propositions:

(59) Let G1, G2 be graphs. Suppose G1 =G G2. Let u1 be a vertex of G1 and

u2 be a vertex of G2. Suppose u1 = u2. Let H1 be an adjacency graph of

{u1} in G1 and H2 be an adjacency graph of {u2} in G2. Then H1 =G H2.

(60) Let G be a graph, S be a non empty subset of the vertices of G, H be a

subgraph of G induced by S, and u be a vertex of G. Suppose u ∈ S and

G.adjacentSet({u}) ⊆ S and G.adjacentSet({u}) 6= ∅. Let v be a vertex of

H. Suppose u = v. Let G5 be an adjacency graph of {u} in G and H3 be

an adjacency graph of {v} in H. Then G5 =G H3.

Let G be a graph. We say that G is complete if and only if:

(Def. 6) For all vertices u, v of G such that u 6= v holds u and v are adjacent.

We now state the proposition

(61) For every graph G such that G is trivial holds G is complete.

One can check that every graph which is trivial is also complete.

Let us note that there exists a graph which is trivial, simple, and complete

and there exists a graph which is non trivial, finite, simple, and complete.

The following propositions are true:

(62) For all graphs G1, G2 such that G1 =G G2 holds if G1 is complete, then

G2 is complete.

(63) For every complete graph G and for every subset S of the vertices of G

holds every subgraph of G induced by S is complete.

5. Simplicial Vertex

Let G be a graph and let v be a vertex of G. We say that v is simplicial if

and only if:

(Def. 7) If G.adjacentSet({v}) 6= ∅, then every adjacency graph of {v} in G is

complete.

The following propositions are true:

(64) For every complete graph G holds every vertex of G is simplicial.

(65) For every trivial graph G holds every vertex of G is simplicial.

(66) Let G1, G2 be graphs. Suppose G1 =G G2. Let u1 be a vertex of G1 and

u2 be a vertex of G2. If u1 = u2 and u1 is simplicial, then u2 is simplicial.

(67) Let G be a graph, S be a non empty subset of the vertices of G, H be

a subgraph of G induced by S, and u be a vertex of G. Suppose u ∈ S
and G.adjacentSet({u}) ⊆ S. Let v be a vertex of H. If u = v, then u is

simplicial iff v is simplicial.
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(68) Let G be a graph and v be a vertex of G. Suppose v is simplicial.

Let a, b be sets. Suppose a 6= b and a ∈ G.adjacentSet({v}) and b ∈
G.adjacentSet({v}). Then there exists a set e such that e joins a and b in

G.

(69) Let G be a graph and v be a vertex of G. Suppose v is not simplicial.

Then there exist vertices a, b of G such that a 6= b and v 6= a and v 6= b

and v and a are adjacent and v and b are adjacent and a and b are not

adjacent.

6. Vertex Separator

Let G be a graph and let a, b be vertices of G. Let us assume that a 6= b and

a and b are not adjacent. A subset of the vertices of G is said to be a vertex

separator of a and b if:

(Def. 8) a /∈ it and b /∈ it and for every subgraph G2 of G with vertices it removed

holds there exists no walk of G2 which is walk from a to b.

Next we state several propositions:

(70) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and

b are not adjacent. Then every vertex separator of a and b is a vertex

separator of b and a.

(71) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and

b are not adjacent. Let S be a subset of the vertices of G. Then S is a

vertex separator of a and b if and only if a /∈ S and b /∈ S and for every

walk W of G such that W is walk from a to b there exists a vertex x of G

such that x ∈ S and x ∈W.vertices().

(72) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and b

are not adjacent. Let S be a vertex separator of a and b and W be a walk

of G. Suppose W is walk from a to b. Then there exists an odd natural

number k such that 1 < k and k < lenW and W (k) ∈ S.
(73) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and b

are not adjacent. Let S be a vertex separator of a and b. If S = ∅, then

there exists no walk of G which is walk from a to b.

(74) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and b

are not adjacent and there exists no walk of G which is walk from a to b.

Then ∅ is a vertex separator of a and b.

(75) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and b

are not adjacent. Let S be a vertex separator of a and b, G2 be a subgraph

of G with vertices S removed, and a2 be a vertex of G2. If a2 = a, then

(G2.reachableFrom(a2)) ∩ S = ∅.
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(76) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and b

are not adjacent. Let S be a vertex separator of a and b, G2 be a subgraph

of G with vertices S removed, and a2, b2 be vertices of G2. If a2 = a and

b2 = b, then (G2.reachableFrom(a2)) ∩ (G2.reachableFrom(b2)) = ∅.
(77) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and

b are not adjacent. Let S be a vertex separator of a and b and G2 be a

subgraph of G with vertices S removed. Then a is a vertex of G2 and b is

a vertex of G2.

Let G be a graph, let a, b be vertices of G, and let S be a vertex separator

of a and b. We say that S is minimal if and only if:

(Def. 9) For every subset T of S such that T 6= S holds T is not a vertex separator

of a and b.

Next we state several propositions:

(78) Let G be a graph, a, b be vertices of G, and S be a vertex separator of

a and b. If S = ∅, then S is minimal.

(79) For every finite graph G and for all vertices a, b of G holds there exists

a vertex separator of a and b which is minimal.

(80) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and

b are not adjacent. Let S be a vertex separator of a and b. Suppose S

is minimal. Let T be a vertex separator of b and a. If S = T, then T is

minimal.

(81) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and

b are not adjacent. Let S be a vertex separator of a and b. Suppose S is

minimal. Let x be a vertex of G. If x ∈ S, then there exists a walk W of

G such that W is walk from a to b and x ∈W.vertices().

(82) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and

b are not adjacent. Let S be a vertex separator of a and b. Suppose S is

minimal. Let H be a subgraph of G with vertices S removed and a1 be

a vertex of H. Suppose a1 = a. Let x be a vertex of G. Suppose x ∈ S.
Then there exists a vertex y of G such that y ∈ H.reachableFrom(a1) and

x and y are adjacent.

(83) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and

b are not adjacent. Let S be a vertex separator of a and b. Suppose S is

minimal. Let H be a subgraph of G with vertices S removed and a1 be

a vertex of H. Suppose a1 = b. Let x be a vertex of G. Suppose x ∈ S.
Then there exists a vertex y of G such that y ∈ H.reachableFrom(a1) and

x and y are adjacent.
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7. Chordal Graphs

Let G be a graph and let W be a walk of G. We say that W is chordal if

and only if the condition (Def. 10) is satisfied.

(Def. 10) There exist odd natural numbers m, n such that

(i) m+ 2 < n,

(ii) n ≤ lenW,

(iii) W (m) 6= W (n),

(iv) there exists a set e such that e joins W (m) and W (n) in G, and

(v) for every set f such that f ∈ W.edges() holds f does not join W (m)

and W (n) in G.

Let G be a graph and let W be a walk of G. We introduce W is chordless

as an antonym of W is chordal.

Next we state a number of propositions:

(84) Let G be a graph and W be a walk of G. Suppose W is chordal. Then

there exist odd natural numbers m, n such that

(i) m+ 2 < n,

(ii) n ≤ lenW,

(iii) W (m) 6= W (n),

(iv) there exists a set e such that e joins W (m) and W (n) in G, and

(v) if W is cycle-like, then m = 1 and n = lenW and m = 1 and n =

lenW − 2 and m = 3 and n = lenW.

(85) Let G be a graph and P be a path of G. Given odd natural numbers m,

n such that

(i) m+ 2 < n,

(ii) n ≤ lenP,

(iii) there exists a set e such that e joins P (m) and P (n) in G, and

(iv) if P is cycle-like, then m = 1 and n = lenP andm = 1 and n = lenP−2

and m = 3 and n = lenP.

Then P is chordal.

(86) Let G1, G2 be graphs. Suppose G1 =G G2. Let W1 be a walk of G1

and W2 be a walk of G2. If W1 = W2, then if W1 is chordal, then W2 is

chordal.

(87) Let G be a graph, S be a non empty subset of the vertices of G, H be a

subgraph of G induced by S, W1 be a walk of G, and W2 be a walk of H.

If W1 = W2, then W2 is chordal iff W1 is chordal.

(88) Let G be a graph and W be a walk of G. Suppose W is cycle-like and

chordal and W.length() = 4. Then there exists a set e such that e joins

W (1) and W (5) in G or e joins W (3) and W (7) in G.

(89) For every graph G and for every walk W of G such that W is minimum

length holds W is chordless.
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(90) Let G be a graph andW be a walk of G. SupposeW is open and lenW =

5 and W.first() and W.last() are not adjacent. Then W is chordless.

(91) For every graph G and for every walk W of G holds W is chordal iff

W.reverse() is chordal.

(92) Let G be a graph and P be a path of G. Suppose P is open and chordless.

Let m, n be odd natural numbers. Suppose m < n and n ≤ lenP. Then

there exists a set e such that e joins P (m) and P (n) in G if and only if

m+ 2 = n.

(93) Let G be a graph and P be a path of G. Suppose P is open and chord-

less. Let m, n be odd natural numbers. If m < n and n ≤ lenP, then

P .cut(m,n) is chordless and P .cut(m,n) is open.

(94) Let G be a graph, S be a non empty subset of the vertices of G, H be a

subgraph of G induced by S, W be a walk of G, and V be a walk of H.

If W = V, then W is chordless iff V is chordless.

Let G be a graph. We say that G is chordal if and only if:

(Def. 11) For every walk P of G such that P .length() > 3 and P is cycle-like holds

P is chordal.

Next we state two propositions:

(95) For all graphs G1, G2 such that G1 =G G2 holds if G1 is chordal, then

G2 is chordal.

(96) For every finite graph G such that card (the vertices of G) ≤ 3 holds G

is chordal.

One can verify the following observations:

∗ there exists a graph which is trivial, finite, and chordal,

∗ there exists a graph which is non trivial, finite, simple, and chordal, and

∗ every graph which is complete is also chordal.

Let G be a chordal graph and let V be a set. One can check that every

subgraph of G induced by V is chordal.

Next we state several propositions:

(97) Let G be a chordal graph and P be a path of G. Suppose P is open

and chordless. Let x, e be sets. Suppose x /∈ P .vertices() and e joins

P .last() and x in G and it is not true that there exists a set f such that

f joins P (lenP − 2) and x in G. Then P .addEdge(e) is path-like and

P .addEdge(e) is open and P .addEdge(e) is chordless.

(98) Let G be a chordal graph and a, b be vertices of G. Suppose a 6= b

and a and b are not adjacent. Let S be a vertex separator of a and b. If

S is minimal and non empty, then every subgraph of G induced by S is

complete.

(99) Let G be a finite graph. Suppose that for all vertices a, b of G such that
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a 6= b and a and b are not adjacent and for every vertex separator S of a

and b such that S is minimal and non empty holds every subgraph of G

induced by S is complete. Then G is chordal.

(100) Let G be a finite chordal graph and a, b be vertices of G. Suppose a 6= b

and a and b are not adjacent. Let S be a vertex separator of a and b.

Suppose S is minimal. Let H be a subgraph of G with vertices S removed

and a3 be a vertex of H. Suppose a = a3. Then there exists a vertex c

of G such that c ∈ H.reachableFrom(a3) and for every vertex x of G such

that x ∈ S holds c and x are adjacent.

(101) Let G be a finite chordal graph and a, b be vertices of G. Suppose

a 6= b and a and b are not adjacent. Let S be a vertex separator of a

and b. Suppose S is minimal. Let H be a subgraph of G with vertices S

removed and a3 be a vertex of H. Suppose a = a3. Let x, y be vertices

of G. Suppose x ∈ S and y ∈ S. Then there exists a vertex c of G such

that c ∈ H.reachableFrom(a3) and c and x are adjacent and c and y are

adjacent.

(102) Let G be a non trivial finite chordal graph. Suppose G is not complete.

Then there exist vertices a, b of G such that a 6= b and a and b are not

adjacent and a is simplicial and b is simplicial.

(103) For every finite chordal graph G holds there exists a vertex of G which

is simplicial.

8. Vertex Elimination Scheme

Let G be a finite graph. A finite sequence of elements of the vertices of G is

said to be a vertex scheme of G if:

(Def. 12) It is one-to-one and rng it = the vertices of G.

Let G be a finite graph. Note that every vertex scheme of G is non empty.

The following three propositions are true:

(104) For every finite graphG and for every vertex scheme S of G holds lenS =

card (the vertices of G).

(105) For every finite graph G and for every vertex scheme S of G holds 1 ≤
lenS.

(106) For all finite graphs G, H and for every vertex scheme g of G such that

G =G H holds g is a vertex scheme of H.

Let G be a finite graph, let S be a vertex scheme of G, and let x be a vertex

of G. Then x" S is a non zero element of N.

Let G be a finite graph, let S be a vertex scheme of G, and let n be a natural

number. Then S.followSet(n) is a subset of the vertices of G.

Next we state the proposition
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(107) Let G be a finite graph, S be a vertex scheme of G, and n be a non zero

natural number. If n ≤ lenS, then S.followSet(n) is non empty.

Let G be a finite graph and let S be a vertex scheme of G. We say that S

is perfect if and only if the condition (Def. 13) is satisfied.

(Def. 13) Let n be a non zero natural number. Suppose n ≤ lenS. Let G6 be

a subgraph of G induced by S.followSet(n) and v be a vertex of G6. If

v = S(n), then v is simplicial.

One can prove the following propositions:

(108) Let G be a finite trivial graph and v be a vertex of G. Then there exists

a vertex scheme S of G such that S = 〈v〉 and S is perfect.

(109) Let G be a finite graph and V be a vertex scheme of G. Then V is

perfect if and only if for all vertices a, b, c of G such that b 6= c and a and

b are adjacent and a and c are adjacent and for all natural numbers v5, v6,

v7 such that v5 ∈ domV and v6 ∈ domV and v7 ∈ domV and V (v5) = a

and V (v6) = b and V (v7) = c and v5 < v6 and v5 < v7 holds b and c are

adjacent.

Let G be a finite chordal graph. One can check that there exists a vertex

scheme of G which is perfect.

The following propositions are true:

(110) Let G, H be finite chordal graphs and g be a perfect vertex scheme of

G. If G =G H, then g is a perfect vertex scheme of H.

(111) For every finite graph G such that there exists a vertex scheme of G

which is perfect holds G is chordal.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
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