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Abstract
Aim of this paper is to present the remote sensing-based systems of forest health assessment in the Czech Republic 
and Slovakia, and to analyse both their strengths and weaknesses. Nationwide assessment of forest health in the 
Czech Republic is based on the interpretation of Sentinel–2 satellite data using novel approaches for cloud-free image 
synthesis based on all available satellite observations. A predictive statistical model to yield time series of leaf area 
index (LAI) from satellite observations is developed above extensive in-situ data, including LAI and forest defolia-
tion assessment. Forest health is evaluated for each pixel from yearly changes of forest LAI, while the country-wise 
assessment of the health status is performed at the cadastral level. Methodology developed for Slovakia is based on 
a two-phase regression sampling. The first phase of the procedure provides an initial fast estimate of forest damage 
using only satellite observations (visible and infrared channels from Landsat or Sentinel–2 systems). The second 
phase refines the result of the first phase using data from a ground damage assessment (site-level defoliation from 
ICP Forests database). Resulting forest health assessment over the whole forest area is presented in 10 defoliation 
classes. The Czech Republic shows 1.6% of heavily damaged forests, 12.5% of damaged forests, 79.2% of forests 
with stable conditions, 6.3% of regenerated forests and 0.4% of strongly regenerated forests. In Slovakia, the total 
share of damaged stands (i. e. with defoliation higher than 40%) increased from 6 – 8% in 2003 – 2011 to 13 – 15% 
in 2012 – 2017. Both methodologies conduct nationwide assessment of forest health status in a fast and automatized 
way with high accuracy and minimal costs. The weaknesses are, for example, a high computational demands for 
production cloud free mosaics, inability to identify initial phases of forest health decline, exclusion of stands older 
than 80 years (in the Czech Republic) and inability to differentiate between harvested and severely damaged stands 
(in Slovakia). Finally, the paper outlines future development of both methodologies. 
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1. Introduction

Monitoring of forest health status has gained increas-
ing importance, especially in recent years when influ-
ence of climatic and other stressors adversely affected 
forest conditions in many regions (Lindner 2014; Millar 
& Stephenson 2015; Hlásny et al. 2012). While terres-
trial evaluation of forest health is time consuming and is 
usually conducted on monitoring plots, remote sensing 
(particularly satellite based) allows for cost- and time-
efficient, continuous evaluation of forest conditions over 
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large areas (Franklin et al. 2002; Frolking et al. 2009).
Optical remote sensing of forests is based on the spectral 
response of vegetation. Vegetation spectral character-
istics result from interaction of solar radiation with cell 
structure, chlorophyll and other pigments. The amount 
of pigments relates to damage level and with increasing 
damage level the amount of chlorophyll decreases (Szek-
ielda 1988). Extensive damage causes deterioration of 
chloroplasts, recognised as yellowing of leaves and nee-
dles, while maximal reflectance is shifted from green to 
red spectral band. This principle led to development of 
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several so called vegetation indices used in forest distur-
bance monitoring, e.g. Red-Green Index (RGI, Wulder 
et al. 2008). Rather than calculation of single vegetation 
indices (band ratios) and their classifications, current 
trend in this field lies in applications of time series and 
identification of trajectories or functions in datasets. A 
comprehensive utilisation of eight recently used forest 
change detection algorithms was published by Healey 
et al. (2018).

Landsat satellite scenes are used in forestry for dec-
ades (e.g. Goldberg et al. 1985; Coleman et al. 1990), 
however, their usage increased greatly after deploy-
ment of free data policy in 2008 (Wulder et al. 2012). 
This policy and long-term mission since 1972 enabled 
cheap development of long time-series of satellite prod-
ucts, suitable also for change detection based on trend 
evaluation (Kennedy et al. 2010; Meigs et al. 2011; Zhu 
et al. 2012; Banskota et al. 2014). The same data policy 
was adopted by ESA for Sentinel data within Copernicus 
programme. Sentinel optical and radar data acquired by 
satellites operating in tandem, and with even higher spa-
tial resolution, represent unique data source suitable for 
forest change detection. 

All Landsat satellites scan systematically the Earth’s 
surface roughly once every 16 days in a spatial resolution 
of 30 – 60 m per pixel in several spectral channels in visi-
ble, near infrared and medium infrared wavelengths (Roy 
et al. 2014). Thanks to the relatively wide swath (185 km), 
the data are suitable for large-scale systematic mapping 
of the entire continents. The availability of multispectral 
“Landsat based” satellite sensors have recently signifi-
cantly expanded with the launch of the satellite system 
of the European Space Agency (ESA) called Sentinel–2 
(Drusch et al. 2012). It shares similar features as Landsat 
(10 and 20 m pixel spatial resolution), but its distinctive 
advantage is the remarkable revisit time of 5 days and 
the presence of several bands in the red-edge area for the 
retrieval of vegetation quantitative parameters associated 
with leaf pigments and biomass. Besides Landsat and 
Sentinel–2 satellites, there are numerous commercial 
satellites to capture very high spatial resolution data, or 
scientific satellites to monitor global trends in vegetation, 
but these are beyond the scope of this paper.

The application of modern methods of remote sens-
ing for the study of the health state of forests in the Czech 
Republic was initiated by Rock et al. (1986, 1988). The 
authors used for the first time the moisture stress index 
(MSI) and the blue shift phenomena. These principles 
were further elaborated by Lambert et al. (1995). Using 
logistic regression, field survey and TM1, TM3, TM4 and 
TM7 spectral bands they classified forest health status in 
3 classes with 71 – 75% accuracy. Campbell et al. (2004) 
studied the potential of hyperspectral airborne data and 
were able to distinguish four classes of forest damage by 
means of indexes in the range of 673 – 724 nm. Hais et al. 
(2009) focused on the detection of forest disturbance. By 
studying Landsat’s time series, the authors demonstrated 

the potential of the Tasseled cap analysis and Disturbance 
Index. Mišurec et al. (2012) observed a close relationship 
between several hyperspectral vegetation indices and the 
amount of chlorophyll in leaves. A similar approach was 
used by Malenovský et al. (2013). With the use of hyper-
spectral airborne data, the accuracy of the chlorophyll a + 
b retrieval over 90% was achieved without the use of field 
data for model calibration. Lhotáková et al. (2013) tested 
the use of laboratory methods to measure the reflectance 
of the pine needles by varying the level of stress. To dis-
tinguish the stress level, they recommended studying 
the water content of the tissues, the amount of leaf pig-
ments and phenols as stress indicators. Kopačková et al. 
(2015) demonstrated the relationship between the two 
toxic elements – aluminium (Al) and arsenic (As), which 
were redistributed from soil to needles and affected the 
amount of soluble phenols and the ratio of chlorophylls 
to carotenoids. Ability of Tasseled transformation to pre-
dict the bark beetle attack was demonstrated by Hais et 
al. (2016) using retrospective analysis of Landsat data. 
The wetness components and the slope of its time curve 
had the greatest prediction potential. The combination of 
the Landsat time series and hyperspectral airborne data 
(ASAS and APEX) was studied by Mišurec et al. (2016) 
in order to monitor changes in the physiological state of 
spruce stands. An analysis of the time series of the Distur-
bance index (similar to Hais et al., 2009) demonstrated 
its potential to detect previous crop disturbances. From 
the hyperspectral indices, the highest predictive potential 
for damage identification had the Vogelmann red-edge 
index, which is sensitive to changes in photosynthetic leaf 
pigments. The advantage Sentinel–2 satellite data was 
recently demonstrated by Homolová et al. (2016). Inver-
sion of Discrete Anisotropic Radiative Transfer Model 
(DART) was applied to retrieve three products related to 
forest health – chlorophylls a + b, leaf water and leaf index 
for two types of ecosystem – beech and spruce forests. 

Satellite remote sensing-based assessment of forest 
health in Slovakia was developed in relation with aerial 
forest monitoring (Račko 1996). Scheer (1997) pre-
sented advantages of two-phase regression sampling 
in classification of forest health from satellite scenes in 
a case study from northern part of Slovakia. The same 
methodology was later used and developed in studies 
Barka & Bucha (2010), Bucha & Barka (2014) and 
Barka & Bucha (2017). Since 2009, classifications of for-
est health status (including historical assessments from 
1990 onward) based on Landsat and Sentinel–2 data are 
published via web map applications (http://www.nlcsk.
sk/stales) on a yearly base.

In both Slovakia and the Czech Republic, the main 
motivation to conduct and improve satellite-based 
remote sensing of forests is the need to monitor forest 
health trends, particularly in Norway spruce (Picea abies) 
forests suffering from a compound of stressors, including 
windstorms and biotic agents. Large area of managed 
forests with relatively high share of spruce stands in both 
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countries (2.02 mill. ha with 23% of spruce in Slovakia 
and 2.67 mill. ha with 44% of spruce in the Czech Repub-
lic) requires efficient monitoring of forest health status 
capable to evaluate the whole territory at least once a 
year. Secondary Norway spruce stands started to show 
worsening of health status in late 1990s. In Slovakia, the 
process accelerated rapidly after a windstorm in the High 
Tatra Mts. in November 2004 as well as numerous smaller 
events, leading to subsequent bark beetle outbreaks and 
an increase of sanitary fellings up to 65% of the total 
annual harvest. In the Czech Republic, the most severe 
large-scale dieback of spruce stands occurred between 
1992 and 2010 in Šumava National park and from 2012 
up to now in two regions – North Moravia and Olomouc. 
In 2016, almost 2 mil. m3 of spruce wood infested by bark-
beetle was harvested in this two regions from the total of 
3 mil. m3 of total volume of spruce wood. This trend fur-
ther accelerated in 2017 and 2018 with expected sanitary 
loggings reaching unprecedented volume of 20 mil. m3. 
Similar remote sensing based monitoring systems are 
developed in the neighbouring countries (Bartold 2016; 
Somogyi et al. 2018).

Objective of this study is to provide systematic 
description of remote sensing-based forest health moni-
toring systems in both countries, which is the information 
that has been so far available in numerous fragmented 
sources and often in national languages only. Assessment 
of strengths and weaknesses of the two systems might 
support their further development as well as their broader 
use in forest management and research.

2. Material and methods

2.1. Czechia

2.1.1 In – situ data
The assessment of forest health status in Czechia relies 
primarily on two in-situ datasets: 1) leaf area index (LAI) 
assessment on the plots of National Forest Inventory, 2) 
plot-level defoliation assessment as performed within 
ICP Forests initiative. Sampling scheme in both datasets 
is well suited for satellite data interpretation, having plot 
size of 30 × 30 m for LAI plots and 50 × 50 m (2 500 m2) 
respectively for ICP Forests plots.

In total 189 plots were sampled for LAI using method 
of digital hemispherical photography (DHP), from which 
79 stands were dominated by coniferous trees (42% of 
plots) and 110 by deciduous trees (58%). Details on 
DHP data analysis can be found in Leblanc et al. (2005). 
Sampling of DHP was designed to meet the Sentinel–2 
spatial resolution of 20 m per pixel as square with side of 
20 m, while the number of photos and their position was 
selected according to Majasalmi et al. (2012) as cross-
shape with 13 sampling locations in 3 m distance.

Site-level defoliation from ICP Forests database
ICP Forests is a pan-European project of long-term 
systematic monitoring of the health status using in-
situ observation of defoliation levels (Ferretti 1997). 
In the Czech Republic, Forest Management and Game 
Research Institute (VÚLHM) collects the data annually 
on 306 experimental sites (Level I – systematic moni-
toring of tree level defoliation) and performs a detailed 
assessment of health status and environmental factors 
(Level II – 16 sites for detailed assessment of crown and 
forest soils status, deposition, foliage analysis, litter, 
growth assessment, understory vegetation, meteorol-
ogy, phenology and air pollution). Defoliation surveys 
are performed visually according to established protocols 
(ICP FORESTS, 2010).

VÚLHM provided an ICP Forests Level I survey (defo-
liation of individual trees for each plot) between 2000 and 
2014 for all 306 plots established in Czech Republic. To 
compare these in-situ data against satellite observations 
of Sentinel–2, we calculated average, median, and stand-
ard deviation for each year and for each area (see Fig. 1 
for distribution of average defoliation values).

Fig. 1. Average plot-level defoliation for ICP Forests plots in 
2014 (% of plots).

2.1.2 Satellite data used for interpretation
The key to assessing the health status of forests from 
remote sensing data is the availability of high quality (i.e. 
cloud-free) mosaic generated from all-available Senti-
nel–2 data. This is a basic pre-requisite for any remote 
sensing data interpretation. Czech methodology for 
forest health assessment proposed a novel processing 
chain for automated cloud-free image synthesis based 
on the analysis of all available Sentinel–2 satellite data for 
selected sensing period (e.g. the vegetation season from 
June to August). The processing chain is implemented 
in three follow-up processes – 1) batch downloading, 
2) atmospheric corrections of raw images (so-called L2 
process) and 3) automated synthetic mosaic generation 
(so-called L3 process, or spatio-temporal image synthesis 
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Fig. 2. Pre-processing workflow of Sentinel-2 satellite data from L1C to L3 product.
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(Fig. 2). Due to its high computational and data storage 
requirements, the processing chain is implemented on 
IT4innovations supercomputer facility (© 2018 VŠB-TU 
Ostrava), which enables for distributed computing on 
many computational nodes.

In the first step, Sentinel–2 scenes are automatically 
downloaded from Copernicus Open Access Hub (global 
Copernicus data access point) and CESNET (Collabo-
rative ground segment of Copernicus implemented in 
Czech Republic). Next, the atmospheric and topographic 
corrections are performed for each Sentinel–2 image 
using Sen2Cor tool by ESA. Then, each pixel in image 
mosaic is evaluated independently in the time series of 
images. Selection of the highest quality pixel, having low-
est cloud cover and being in vegetation growing season, 
is based on decision tree using the values of vegetation 
index sensitive to biomass (e.g. the Normalized Differ-
ence Vegetation Index, or NDVI). In addition to highest 
NDVI value, several other rules are applied in the form 
of decision tree: these include cloud masking and a-pri-
ori assumptions on reflectance range in visible and near 
infrared region. An example of the synthetic cloud free 
mosaic and the individual dates used for its construction 
is shown on Fig. 3.

2.1.3 Forest health assessment system
In the presented Czech methodology, health status is not 
assessed as absolute amount of leaf biomass (having LAI 
as proxy for leaf biomass), but on its change over time. 
The basic premise is that the health status can be objec-
tively determined only by observing the relative change 
in LAI over time. In the first step, we calculate selected 
vegetation indexes (e.g. Normalized Difference Vegeta-
tion Index – NDVI, Red Edge Inflection Point – REIP 
and Normalized Difference Infrared Index – NDII), 
and image transformations (e.g. components of Tas-
seled Cap transformation) and compare their sensitiv-

ity against in-situ data from sampled plots (e.g. LAI and 
ICP Forests plots). For each dataset, a linear regression 
models between in-situ data and Sentinel–2 indices were 
calculated and evaluated. For indices yielding best linear 
fit, neural network was trained and applied per-pixel to 
retrieve prediction LAI maps (Fig. 4).

Fig. 4. Developing prediction model of LAI using multiple 
source of in-situ data.

Classification system of forest health is proposed, 
which will evaluate forest health on pixel level as a change 
in LAI values over time and classify each pixel in the fol-
lowing five categories:
I.	 significant increase: increase in LAI by 1.5 and higher
II.	 moderate increase: increase in LAI from 0.5 to 1.5
III.	stable conditions: change of LAI between −0.5 

and 0.5
IV.	moderate decrease: decrease in LAI from −1.5 to −0.5
V.	 significant decrease: decrease in LAI higher than −1.5

The countrywise assessment of forest health is carried 
out on cadastral level, where the area of forest stands of 
classes IV and V are evaluated for the total forest area of 
cadastre for stands of age between 0 and 80 years. This 
condition is put due to the fact that it is not possible to 
distinguish between sanitary logging and planned log-
ging for old-grown forests – both will be reflected by a 
sharp decrease in LAI values. Each cadastre is assigned 
in one of the following categories:

Fig. 3. Combining different observation dates in single syn-
thetic cloud-free mosaic.
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The methodology is based on a two-phase regression 
sampling. The first phase estimates forest health directly 
from satellite images. The second phase refines the ini-
tial assessment using data from a ground defoliation 
assessment. Defoliation was set as the main indicator 
of a visual symptom of health of trees. Even though the 
value of spectral reflectivity recorded with sensors and 
the defoliation are not of an identical phenomenal base, 
most works proved a close relation between them (e.g. 
Gross 2000; Joria & Ahearn 1997).

2.2.1 Ground data and forest mask
The ground data on defoliation were collected by visual 
inspection on 112 permanent monitoring plots, distrib-
uted regularly over the afforested territory of Slovakia in 
a grid 16 × 16 km, using methodology of the ICP Forests 
program. Each plot has a squared shape with 50 m long 
sides (ICP Forests 2010; Pavlenda et al. 2014). Defolia-
tion, defined as needle/leaf loss in the assessable crown 
as compared to a reference tree, is observed regardless 
of the cause of foliage loss and assessed in a 5% interval. 
Visual inspection is carried out on yearly basis. Defo-
liation expresses the percentage of missing assimilation 
organs to a fully leafed tree, i.e. 0% – healthy tree, 100% 
– dead tree. To identify forest area and distribution of 
main tree species in Slovakia, a raster map prepared by 
Bucha (1999) on the base of Landsat scenes is used. This 
source is preferred as it contains information on tree spe-
cies distribution within forestry management units which 
is the main advantage against the more actual data taken 
from forest management plans. 

2.2.2 Phase 1 
Alternative 1
Two components are derived from the original satellite 
bands using an orthogonal transformation; the compo-
nents are referred to as new synthetic channels (NSC1 and 
NSC2). Only red (R), near infrared (IR) and shortwave 
infrared (SWIR) bands are used. The second SWIR band 
(band 7 in Landsat products) was utilized in analyses for 
2015 – 2017. Mathematic apparatus for the components 
derivation follows Jackson (1983). There is a difference 
in the way of defining the physical meaning of the derived 
components. In Jackson’s approach, the first component 
represents brightness. It is derived from points with low 
and high reflectivity, ordinarily represented with moist 
soil on one side and dry soil on the other side. The second 
component (greenness) represents the amount of green 
vegetation. In our study, the NSC1 represents a spectral 
variability of tree species. The NSC2 component is opti-
mized for defoliation estimation.

Fully foliaged stands with very different reflectivity 
(coniferous and broadleaves) were chosen and the dif-
ferences of their reflectance were calculated as:

I.	 Category 1: 0 – 5% of class IV and V forests – healthy 
stands

II.	 Category 2: 5 – 10% of class IV and V forests – pre-
dominantly healthy stands

III.	Category 3: 10 – 15% of class IV and V forests – mod-
erate conditions of stands

IV.	Category 4: More than 15% of class IV and V forests 
– damaged stands
The proposed thresholds for inclusion of the cadas-

tres into one of the four classes are purely empirical and 
the values can be set based on user experience. The con-
ceptual diagram of the entire system is illustrated in Fig. 
5, and its application for LAI change maps between 2015 
and 2017 is shown in Fig. 11.

Fig. 5. Conceptual diagram of the system for assessing the 
health status of forest stands at cadastral level in the Czech 
Republic.

2.2. Slovakia
In presented Slovak approach, classification of forest 
health status is based on Landsat and/or Sentinel–2 
satellite scenes and ground data on tree defoliation (ICP 
Forests database). Both types of imagery are processed 
using the same methodology. Forest health is evaluated 
once a year (at the peak of vegetation season) and final 
product is a map of defoliation classes. Compositions 
of scenes and classifications are prepared for years in 
the period 2003 – 2017, except for 2004, 2005, 2009 
and 2014, when cloudless scenes were not available, 
or available scenes did not cover the whole forest area 
of the country. The assessment was done also for 1990, 
1996, 1998 and 2000 (Bucha & Barka 2014), but due 
to different classification system of health status these 
evaluations are not presented here.
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bi = (Xs – Xb)i

where: i – R, IR and SWIR bands; Xs and Xb represent 
reflectance values of spruce (coniferous) and beech 
(broadleaves) stands.

The low reflectance values represent spruce stands; 
high reflectivity is typical of beech. These values (low and 
high) were calculated as mean value from several plots 
identified manually on the satellite scene.

A standardization of vector b = (b1, b2, b3) was carried 
out into the form of unit vector by dividing each of vector 
elements by a normalisation factor B:

and A1,i are coefficients used to derive the first component 
NSC1: 

NSC1 = A1,1* X1 +A1,2 * X2 + A1,3 * X3, 

where Xi are reflectance values of pixel in i-th band.
To derive the second component, the reflectance 

values representing maximum defoliation (dead stands 
– Xdeadtree) are calculated as well as the difference to the 
first component:

gi = (xdeadtres – Xb)i – D2,1 * A1,i

where D2,1 = ∑i=1(xdeadtres – Xb) * A1,i

Such a process ensures orthogonality of b and g vec-
tors. Similarly, as in the first step, the g vector is stand-
ardized by means of the normalization factor G, and 
transformation coefficients are calculated: 

Calculation of NSC2 is as follows: 
NSC2 = A2,1 * X1 + A2,2 * X2 + A2,3 * X3

Calculated values of NSC2 component represent a 
perpendicular distance from the line of reflectance values 
of component NSC1 defined by the fully foliated trees of 
spruce and beech on its borders. The distance from the 
line is proportional to the extent of the tree damage in 
the given pixel. 

Alternative 2
An alternative approach takes benefit of a moderate cor-
relation in defoliation between subsequent years (Bucha 
& Barka 2014). This allowed simplifying the 1st phase 
of regression sampling. Instead of calculating the NSC2 
component, a defoliation was estimated in a given year t 
on the basis of defoliation in the previous (or next) assess-
ment t-1 (or t+1), i.e deft-1 = f(Rt, IRt, SWIRt) where inde-
pendent variables are the reflectance values of satellite 
bands from year t. A multiple linear regression is used 
to analyse the relationship. The defoliation predicted in 
this way can be considered to be a proxy of NSC2. In 2017 
assessment, derivation of NSC2 component from actual 
satellite scenes was used as an input for correlation analy-
sis instead of classification from previous year (Table 2).

2.2.3 Phase 2
The 2nd phase is based on the evaluation of defoliation ICP 
Forest dataset, complemented with data from the Forest 
Protection Service Centre and other field measurements, 
e.g. known dead stands with defoliation 100% to cover 
full range of defoliation values (0 – 100%, see Fig. 1). For 
the needs of health classification, the average defoliation 
on plot was calculated. The total number of plots for each 
year is given in Table 2. 

Mean spectral reflectance and standard deviation are 
found for each monitoring plot. This spectral character-
istic is paired with respective defoliation value. Then, a 
regression model is derived by means of a simple linear 
regression analysis between the output of the first stage 
(NSC2) and defoliation. Finally, the defoliation for each 
pixel of the NSC2 raster is assessed by means of the 
derived regression equation.

The result of forest stand classification is the per cent 
defoliation. For the presentation purposes, the forest 
stands were considered as damaged if their defoliation 
exceeded 40%. It is noteworthy that forest stands after 
felling (both regular and accidental felling) are included 
in this category. Stands with defoliation below 40% were 
classified as healthy.

3. Results

3.1. Czechia 
3.1.1 Developing forest health assessment 
system
Scattergrams and coefficients of determination of lin-
ear regression indicated that NDVI and REIP vegeta-
tion indices calculated from the Sentinel–2 data were 
not found to be related to LAI values measured in the 
field. The determination coefficients are very low for both 
indices (R2 = 0.01) and the relationships are distinctive 
for coniferous and deciduous forest stands. The Tasseled 
Cap transformation of the DI’ index (Wetness – Green-
ness component) has a moderate sensitivity to field data 
(R2 = 0.29), but the relationships are species-specific. 
The highest potential for prediction of ground-based LAI 
values have indices NDII (R2 = 0.57), DI (R2 = 0.63) and 
Wetness component of Tasseled Cap transformation (R2 
= 0.58). All three products also yield identical relation-
ships for coniferous and deciduous stands (Fig. 6).

For the development of LAI prediction model, NDII, 
DI and Wetness indices were found to be the most suit-
able ones. In the training phase we designed a neural 
network with good theoretical performance (correlation 
coefficient R = 0.77, Fig. 7a) and very good prediction 
of LAI from Wetness values (R = 0.86, Fig. 7b). Neural 
network was stored as Matlab function and applied per 
pixel to Wetness values for Sentinel–2 cloud free mosaics 
of 2015, 2016 and 2017. Fig. 8 shows an example of the 
retrieved LAI map.

3

A = g / G G = ∑ g2,1 i i=1 iwhere ( )
1/223
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3.1.2 Validation of leaf area index maps 
against in-situ data

Leaf area index
First validation was based on the comparison of field 
measurements of LAI against per pixel retrieval of LAI 
from Sentinel–2 mosaic of 2017. This was done by plot-
ting the measured LAI against retrieved LAI values and 
evaluating its root mean square error (RMSE). We 
found a good correspondence of measured and retrieved 
LAI, with values close to the 1:1 line. The RMSE of LAI 
retrieval was 0.53 and mean absolute error (MAE) was 
0.41 (Fig. 9). The validation is, however, not truly inde-
pendent as some of the validation data were used in model 
development.

Defoliation levels from ICP Forest database
In the next step, we compared the ICP Forest site-level 
defoliation values from 2015 against the LAI values 
obtained by LAI prediction model for Wetness compo-
nent of the Sentinel–2 mosaic from 2015 (see 3.1). We 
extracted the defoliation values for 194 ICP Forests plots 
and compared them against LAI values obtained by the 
prediction model. Here we observe a strong linear rela-
tionship between site-level defoliation and retrieved LAI 
(R2 = 0.58), with increase in defoliation with decreasing 
LAI (Fig. 10).

3.1.3 Developing forest health assessment 
system – a synthesis
The final concept of the monitoring system is as follows:
1) Sentinel–2 data processing chain has been developed, 
which produces time series of high-quality, cloud-free 
mosaics for the Czech Republic and for a user-selected 
time period (see 2.2)
2) A predictive model for LAI retrieval from the Wet-
ness data of the Tasseled Cap of the Sentinel–2 image 
transformation based on the machine learning methods 

Fig. 6. Performance of selected vegetation indices obtained 
from the Sentinel-2 cloud-free mosaics for prediction of LAI 
of coniferous (dark green) a deciduous (light green) stands.

Fig. 7. Training (left) and testing (right) phase of artificial 
neural network for prediction of LAI from Wetness compo-
nent of the Tasseled Cap image transformation of Sentinel-2 
reflectance.

Fig. 8. Per-pixel retrieval of LAI for Bruntál municipality. The 
map is based on the Sentinel-2 cloud-free mosaic from 2017. 
The values were predicted using artificial neural networks-
based algorithm.
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was developed (see 3.1.1). The model has been success-
fully validated against in-situ data (see 3.1.2). There was 
a strong relationship between LAI values and site-level 
defoliation observed from ICP Forests data. Finally, we 
also found a good correspondence of the predicted LAI 
with forest health assessment based on independent air-
borne hyperspectral dataset with a very high spatial and 
spectral resolution.

Prediction model was applied on cloud-free image 
mosaics of 2016, 2017 and 2018 to yield maps of LAI 
and its change in the studied time period. Difference 
LAI maps were then used to classify each forested pixel 
in one of the five classes of forest health. Cadastre-level 
assessment of forest health is then performed based on 

the percentage share of class IV and V forests (high and 
medium LAI decrease) to total forested area of cadastre 
(Fig. 11). In Table 1 total areas of different forest health 
classes for the area of Czech Republic is given.

3.2. Slovakia 

3.2.1 Models for forest health 
status classifications
Statistical models for estimation of forest health condi-
tion based on the two-phase approach are shown in Table 
2. Pearson correlation coefficients between reflectance 
in actual satellite composition and defoliation in previ-
ous year (1st phase of the assessment) varied from 0.47 
to 0.70. Correlations between 1st and 2nd phase were in 
the range 0.85 – 0.97. Standard error (syx) of regression 
lines for the 2nd phase varied from 2.1 to 11.0 % of defo-
liation. This measure could be used for interpretation of 
accuracy. For example, syx = ± 8.9% in 2013 means that 
if defoliation is determined at 30%, it can actually range 
from 21.1 to 38.9% at 68% confidence, respectively from 
12.2 to 47.8% at 95% confidence.

3.2.2 Evaluation of forest health status
The total share of damaged stands (i. e. with defoliation 
higher than 40%) increased from 6–8% in 2003–2011 
to 13–15% in 2012–2017 (Fig. 12 and 13). Situation in 
coniferous stands was worse by ca 5–10% compared to 
broadleaved tree species for most of the studied period. 
The most damaged tree species in Slovakia in the period 
2003–2017 was spruce, with the share of damaged 
stands reaching as much as 22.8% of the total spruce 
stands area in 2013 (Fig. 12 and Table B1 in Appendix 
B). Pine (Pinus sylvestris) showed higher damage than 
other tree species as well, with the peak at 30.2% in 2017. 
The most damaged broadleaved tree species was horn-
beam (16.8% in 2013).

4. Discussion
Presented methodologies strongly depend on the quality 
of input satellite data. While Slovak methodology com-
bine scenes from Sentinel–2 and Landsat satellites in 
the input mosaics and thus takes benefit of longer data 
archive, Czech methodology is based on the Sentinel–2 
data dating back to 2015 only. Optical satellite data are 
particularly sensitive to cloud cover, atmospheric aero-
sol content and low solar illumination. While low solar 

Fig. 9. Comparing ground measured (x-axis, DHP analysis) a 
retrieved (y-axis, neural network applied on Sentinel-2 Wet-
ness component) LAI data. 

 

Fig. 10. Relationship between site-level defoliation from ICP 
Forests data (X axis) and its corresponding retrieved LAI val-
ues (Y-axis).

Table 1. Results of forest health assessment in Czech Republic.

Sharp decrease in LAI Medium decrease in LAI Stable LAI Medium increase in LAI Sharp increase in LAI Forest area
[ha]Heavy damage 

[ha] / [%]
Damage 

[ha] / [%]
No change
[ha] / [%]

Regeneration 
[ha] / [%]

Strong regeneration 
[ha] / [%]

50,186 / 1.6 389,633 / 12.5 2,468,698 / 79.2 195,891 / 6.3 12,399 / 0.4 3,116,807
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illumination is not a problem in Central Europe during 
the peak of vegetation season (July – August) and aerosol 
contamination can be partly removed by atmospheric cor-
rection or by a careful selection of input satellite scenes, 
both presented methodologies rely on accurate cloud and 
shadow identification. 

Despite automatic cloud cover detection algorithms 
have recently significantly improved (Zhu & Wood-
cock 2012, 2014; Zhu et al. 2015), the best results can 
be obtained by manual identification of clouds and 
shadows, especially in case of low cloud cover and low 
number of scenes (in case of Slovakia there are 7–8 
scenes a year, what makes the manual detection feasi-
ble). Still, improved automated identification of clouds 
and shadows would be a great benefit for the whole 
monitoring system, future research should focus on this 
issue. A novel approach to cloud and shadow detection 
has been developed in the frame of the Czech method-
ology, where number of input scenes is considerably 
higher (with respect to the size of territory). Despite the 

use of more frequent observations acquired by the pair 
of Sentinel–2 satellites, and use of advanced methods for 
automatic synthesis of cloud free mosaics using the “big 
data” approach, some areas still remain contaminated by 
clouds. This leads to potentially incorrect assessment in 
some pixel in time series of LAI change. 

In addition to the predictive power of developed 
model, its resistance to atmospheric effects also high-
lights its efficiency. As each of the indices uses different 
wavelength, their resistance indeed differs. Specifically, 
the Wetness component of Tasseled Cap transformation 
yielded significantly better results compared to NDII and 
DI (results not shown here).

Sentinel–2 system has a very good specification for 
high-quality automated atmospheric corrections. The 
system contains several spectral bands, which are able 
to capture instantaneous atmospheric parameters and to 
detect different types of clouds, including cirruses, which 
are usually difficult to detect. Still, automated cloud 
detection and atmospheric correction are not perfect. For 

Fig. 11. Cadastre-level assessment of forest health status in Czech Republic using LAI change maps as a baseline. 
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Fig. 12. Share of damaged stands according to main tree species in Slovakia (2003 – 2017).



methodology evaluates forest health conditions via veg-
etation indices. The latter approach strongly benefits 
from the prior suitability analysis of selected indices for 
prediction of LAI. 

Satellite data are generally not able to interpret of 
the cause of the observed change in forest health status. 
While the Slovak methodology does not distinguish 
between standing forests and harvested compartments 
(planned or sanitary harvests), the Czech methodology 
addressed this issue by the analysing stands up to 80 years 
of age, where planned forest logging is not expected to 
occur. This gives that the forest health assessment on 
cadastral level may not be representative if cadastre unit 
is dominated by mature stands with worsened health 
conditions.

In the Slovak methodology, entire classifications for 
the whole afforested area is published as well as input 
satellite mosaics. In the Czech approach, raster classi-
fication is further processed and the interpretation of 
the difference maps LAI is done for the cadastral areas 
which differ in area and forest cover. Considering that 
the methodology classifies the cadastres into individual 
classes based on the share of Class IV and V forest stands 
to total forest area, the classification may not be relevant 
for cadastres with little forest cover.

Methodology developed by Stoklasa Tech was previ-
ously used to assess the health status of the Czech forests. 
Since it has never been presented in detail and published, 

Fig. 13. Classifications of forest health status in Slovakia based on the satellite imagery from years 2003 (A) and 2017 (B).
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example, about 6% of clouds were not detected correctly 
in the study of Hollstein et al. (2016). As was mentioned 
earlier, the Slovak methodology deals with this problem 
by manual identification of clouds and shadows.

Significant changes in forest reflectance are observed 
during different phenological phases, especially in decid-
uous stands. Satellite observations from different days 
must always capture vegetation in the same phenophase, 
otherwise the observed change in forest reflectance may 
be misinterpreted. This issue is addressed in the Czech 
methodology by a robust identification of the maximum 
of the vegetation phenophase individually for each pixel, 
which should ensure that the entire mosaic of the Czech 
Republic always captures the vegetation at its maximum. 
However, in some situations (such as the presence of 
clouds or loss of data) data from the phase of phenologi-
cal maximum cannot be acquired for some areas. In the 
Slovak methodology, the scene from the top of the vegeta-
tion season is chosen as a master scene for mosaicing. 

Evaluation of forest conditions using optical remote 
sensing is often based on spectral (vegetation) indices. In 
such a case, the results strongly depend on index evalu-
ated. It is obvious that selection of an appropriate index 
and knowledge of its properties is crucial for proper use 
of the method (Pickel et al. 2015). The two methodologies 
differ in their approach to the use of spectral data. While 
the Slovak methodology is based on direct relationship 
between defoliation and spectral reflectance, the Czech 



ularly pine stands are sensitive, from the view of selected 
methodology, to the conditions of grass vegetation in the 
understory. If satellite scene used for evaluation comes 
from relatively dry period, damage rate in the stands with 
lower density can be overestimated compared to terres-
trial measurements. 

ICP Forest data usually lack stands with defoliation 
higher than 50 or 60% (Fig. 1). As inclusion of such data 
into analysis is crucial for the 2nd phase of the presented 
Slovak methodology, they have to be identified in the field 
and on the scene (e.g. dead stands in unmanaged natural 
reserves) and added to inputs for regression model.

Table 2. Derived models of two-phased sampling method used for damage classification in 2003 – 2017.
Ye

ar Model r st. error 
[% of defol.]

Size of sample 
(1st and 2nd phase)

20
03

1st phase: Estimation by classification from 2006:
SAO3by6 = 16.93+0.81*R2003−0.52*IR2003+0.46*SWIR2003

2nd phase: Assessment on monitoring plots in 2003
SAO2003 = −18.16+1.94*SAO3by6

0.55

0.86 ±11.0 n1: all forest pixels
n2: 24 plots

20
06

1st phase: Estimation by classification from 2010:
SAO6by10 = 26.8+0.28*R2006−0.47*IR2006+0.59*SWIR2006

2nd phase: Assessment on monitoring plots in 2006
SAO2006 = −38.26+2.34*SAO6by10

0.48

0.97 ±5.9 n1: all forest pixels
n2: 23 plots

20
07

1st phase: Estimation by classification from 2006:
SAO7by6 = −30.50+0.54*R2007+0.56*IR2007+0.57*SWIR2007

2nd phase: Assessment on monitoring plots in 2007
SAO2007 = −17.85+1.57*SAO7by6

0.57

0.87 ±7.4 n1: all forest pixels
n2: 94 plots

20
09

1st phase: Estimation by classification from 2010:
SAO9by10 = 33.70+0.06*R2009−0.61*IR2009+0.72*SWIR2009

2nd phase: Assessment on monitoring plots in 2009
SAO2009 = −46.34+2.58*SAO9by10

0.48

0.85
 

±7.7 n1: all forest pixels
n2: 98 plots

20
10

1st phase: Derivation of NSC1 and NSC2 components:
NSC2 = 0.20*R2010−0.58*IR2010+0.79*SWIR2010

2nd phase: Assessment 2009 (SPOT scenes classified into 10 classes – spruce forests only)
SAO2010 = 3.06+0.197*NSC2

0.68

±2.1
n1: all forest pixels

n2: all spruce pixels from 
2009 

20
11

1st phase: Estimation by classification from 2010:
SAO11by10 = 25.37+0.26*R2011−0.84*IR2011+0.99*SWIR2011

2nd phase: Assessment on monitoring plots in 2011
SAO2011 = −12.55+1.74*SAO11by10

0.60

0.88 ±9.0 n1: all forest pixels
n2: 104 plots

20
12

1st phase: Estimation by classification from 2011:
SAO12by11 = 28.9+0.14*R2012−0.83*IR2012+0.97*SWIR2012

2nd phase: Assessment on monitoring plots in 2012
SAO2012 = 31.66+2.11*SAO12by11

0.70

0.95 ±9.7 n1: all forest pixels
n2: 24 plots

20
13

1st phase: Estimation by classification from 2012:
SAO13by12 = −25.72+0.53*R2013−0.5*IR2013+1.08*SWIR2013

2nd phase: Assessment on monitoring plots in 2013
SAO2013 = −26.77+1.78*SAO13by12

0.65

0.86 ±8.9 n1: all forest pixels
n2: 100 plots

20
15

1st phase: Estimation by classification from 2013:
SAO15by13 = 1.346+0.036*R2015−0.027*IR2015+ 0.068*SWIR52015 +0.037*SWIR72015

2nd phase: Assessment on monitoring plots in 2015
SAO2015 = −24.41+16.64*SAO15by13

0.65

0.86
±10.45

n1: all forest pixels

n2: 97 plots

20
16

1st phase: Estimation by classification from 2015:
SAO16by15 = 1.2846+0.0001*R2016−0.0013*IR2016+ 0.0027*SWIR52016+0.0024*SWIR72016

2nd phase: Assessment on monitoring plots in 2016
SAO2016 = −15.13+1.5239*SAO16by15

0.59

0.87
±10.41

n1: all forest pixels

n2: 90 plots

20
17

0. phase: Derivation of NSC1 and NSC2 components:
NSC2 = 0.3631*R2017−0.4248*IR2017+0.5964*SWIR52017+ 0.5760*SWIR72017

1st phase: Estimation by classification from 2016:
SAO17by16 = −10.4851+0.1016*NSC2
SAO17by16-byte = SAO17by16+7*8

2nd phase: Assessment on monitoring plots in 2017
SAO2017 = −189.8+2.746*SAO17by16-byte

0.60

0.88

±3.4 n1: all forest pixels

n2: 86 plots

270

I. Barka et al. / Cent. Eur. For. J. 64 (2018) 259–275

we can only assume that it uses the time series of the MSI 
or NDII vegetation index from the Landsat data. The 
experience of previous authors (e.g. Lambert et al. 1995; 
Campbell et al. 2004) also leads to doubts about the pos-
sibility of re-evaluating the absolute value of 10 classes of 
defoliation of stands (from 0 to 100%) based on Landsat 
multispectral data without performing an annual land 
defoliation survey to calibrate the prediction model.

In addition to a high share of damaged spruce stands, 
high defoliation is visible in pine stands in Slovakia. How-
ever, these results could be affected by lower density of 
tree crowns and state of undergrowth vegetation. Partic-



tus is assessed at pixel-scale as a change in LAI for a given 
time interval. Final assessment of the state of health is 
applied at the cadastral level, where each cadastral unit 
is classified into four health classes based on the fraction 
of the lowest health status stands with significant LAI 
decrease out of the total forest cover for stands up to 80 
years of age.

The procedure for spruce forest status assessment 
based on two phase sampling was described and applied 
in Slovakia. The procedure uses R, IR and SWIR satel-
lite bands. The first phase is based either on the compo-
nent (NSC2) optimized for the damage estimation or on 
classification from the previous year. The second phase 
refines estimations by ground data and multi-regression 
analysis. The high correlations and low standard errors 
between 1st and 2nd phase of regression sampling proved 
the method’s suitability for consistent classification of 
forest status and time series analysis. Compositions of 
satellite scenes as well as classifications of forest sta-
tus were made available at http://www.nlcsk.sk/stales 
where forest health status maps can be explored using 
different web map tools. The boundaries and identifi-
cation of forestry management units can be overlaid in 
these applications to localize visible changes. The appli-
cations can be particularly useful for forest managers, 
state administration as well as for a wider public.

The ability for rapid and cost effective nationwide 
assessment of forest health status is the main strength of 
both presented methodologies. On the other hand, their 
weaknesses stem in demanding procedure for creation of 
cloud free mosaics of satellite scenes, exclusion of stands 
older than 80 years in the Czech approach and mixing 
of harvested stands and severely damaged stand in the 
same categories in the Slovak approach. Data fusion with 
Sentinel 1 and other radar datasets seems to be the most 
promising way of future methodological development in 
both countries.
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It is planned that both methodologies will further 
develop in the future. Data from Synthetic Aperture 
Radar (SAR) satellite sensors are increasingly being used 
for monitoring of forest cover and its changes (Schmul-
lius et al. 2015). The research is often driven by effort to 
evaluate growing stock (e.g. Santoro et al. 2011, 2013), 
carbon stock (Thurner et al. 2014) or forest disturbances 
(Ranson et al. 2014). SAR data can be used alone or 
in combination with optical data (Reiche et al. 2018). 
Combining data from different sensors in detection algo-
rithms seems to have an increasing trend, and attempts 
to combine outputs from several detection algorithms are 
conducted as well (Healey et al. 2018). Much of the newly 
developed algorithms is based on trend analysis in longer 
time periods (Zhu et al. 2015).

Cloud-based processing of time series of high tem-
poral and spatial resolution data like SAR, Sentinel-1 
and optical Sentinel–2 will further enhance capabilities 
for incorporating time domain in the analyses of forest 
health status. This will allow not only to increase capac-
ity for cloud-free image generation, but also to increase 
the frequency of assessment. Temporal trends in forest 
reflectance may be also used e.g. to improve species clas-
sification and include more detailed species maps.

With the availability of new remote sensing datasets 
acquired, for example by multispectral and hyperspectral 
UAV cameras or very high temporal resolution micro-
satellites (e.g. Planet Labs), an entirely new type data 
analysis in forestry emerges. Whereas very high spatial 
resolution data from UAVs may be applied on regional 
level e.g. to identify pre-visual stress on individual tree 
level, daily revisit time of Planet system allows for near-
real time monitoring of forest operations in very high 
spatial resolution. Our capacity for incorporation of 
this type of data is however limited due to the additional 
costs related to data acquisition (UAVs) and access (com-
mercial satellite systems such as Planet Labs). Therefore, 
these advances are unlikely to be included in regular for-
est health assessment in the Czech Republic and Slovakia 
in the near future.

5. Conclusions
Nationwide assessment of the forest health status in 
the Czech Republic is based on the analysis of synthetic 
cloud-free Sentinel–2 satellite observations using a novel 
analysis of all-available satellite observations (so called 
“spatio-temporal synthesis”) in a big data environment. 
Using several independent datasets containing informa-
tion on health status (e.g. site-level defoliation assessed 
within ICP Forests plots, in-situ measurements of LAI 
on NFI plots, airborne hyperspectral data) an advanced 
machine learning techniques are applied to predict LAI 
from Sentinel–2 transformed images. Forest health sta-
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Appendix figures and tables

Fig. A2. Location of National forest inventory plots sampled for digital hemispherical photography. All field plots were visited 
during the period of maximum vegetation foliage, for 2016 and 2017 in June to August, while in 2015 was the test period, where 
photos were taken only for evergreen coniferous plots, mostly in October. All DHP photos were analysed in Hemisfer software 
(WSL, Switzerland). The software uses the LAI value inversion from angular distribution of canopy gaps for a set of statistically 
representative set of images.

Table A1. Basic descriptive statistics of retrieved leaf area index (LAI) values for sampled plots.
Year Number of sampled sites Average LAI Maximum LAI Minimum LAI Standard deviation of LAI
2015 32 2.52 3.50 1.75 0.13
2016 45 3.12 5.22 0.49 1.03
2017 112 2.04 3.48 0.72 0.26
2015–2017 189 3.15 5.22 0.49 0.61

Table A2. Share of damaged forest stands in 2003–2017 out of the total areas occupied by a given tree species (Slovakia).

Forest type Area 
[ths. ha]

Share of damaged stands 
[%]

2003 2006 2007 2009 2010 2011 2012 2013 2015 2016 2017
Spruce 427.554 7.9 10.3 11.1 18.1 16.3 17.5 22.7 22.8 18.5 21.2 18.4
Fir 78.455 3.5 3.6 3.4 5.8 5.1 5.6 9.2 9.8 8.5 11.9 8.6
Pine 100.595 17.7 8.2 5.5 14.2 11.5 9.2 19.1 19.6 22.8 16.7 30.2
Other conifers 43.042 6.9 5.6 5.9 7.9 8.2 7.5 11.5 11.7 8.8 12.4 9.4
Conifers 649.647 8.8 8.8 8.9 15.3 13.6 14.1 19.8 20.0 17.3 18.7 18.4
Beech 585.803 6.2 3.2 2.9 3.9 3.9 4.1 7.3 10.0 10.2 14.7 7.4
Oaks 297.157 6.1 3.4 4.9 5.5 2.8 3.6 13.1 9.9 9.1 11.3 11.2
Hornbeam 113.577 8.2 4.4 6.1 6.7 3.3 4.6 16.3 16.8 11.7 15.6 13.0
Other broadleaves 122.171 12.0 4.8 7.1 6.8 5.4 5.7 15.3 10.9 11.0 10.3 15.0
Broadleaves 1 118.708 7.0 3.6 4.2 4.9 3.7 4.2 10.6 10.8 10.1 13.4 9.8
Total 1 768.355 7.7 5.5 5.9 8.7 7.3 7.8 14.0 14.2 12.8 15.3 13.0

Fig. A1. Sampling scheme for acquisition of digital hemi-
spherical photographs. The images were taken with a Nikon 
D5500 digital SLR camera with a Sigma 4.5 mm circular fish-
eye lens. The camera was placed on a Vanguard Espod CX203 
AP tripod and aligned horizontally with a two-axis level. All 
photos were shot with lens facing north and taken as RAW 
uncompressed images. 
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