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Abstract

Research background: Mass appraisal is a process in which multiple properties are appraised simultaneously, 
with a uniform approach. One of the tools that can be used in this area are multiple regression models. In the 
valuation of real estate features are often described on an ordinal or nominal scale. Replacing them with 
dummy variables with an insufficient number of observations leads to multicollinearity. On the other hand, 
there is a risk of overfitting the model. One of the ways to eliminate or weaken these phenomena is to 
introduce regularization based on a model’s penalization for the high values of its weights.
Purpose: The aim of the study is to verify the hypothesis whether regularized regression reduces the errors 
of property valuation and which of the analyzed methods is the most effective in this context.
Research methodology: The article will present a study in which two ways of regularization will be applied 
– ridge and lasso regression, in the context of their impact on the errors of property valuation. The analyzed 
data set includes over 300 land properties valued by property appraisers. The key aspects of the study are 
the selection of optimal values of the regularization parameter and its influence on model’s errors with 
a different number of observations in the training sets.
Results: The study showed that regularization improves valuation results and, more specifically, allows for 
lower average absolute percentage errors. The improvement of model effectiveness was more pronounced 
in the case of ridge regression. An important result is also that regularization has provided a higher accuracy 
of valuation compared to multiple regression models for smaller training sets.
Novelty: The article confirms the effectiveness of regularization as a way to eliminate the problem 
of multicollinearity or overfitting of the model. The results showed that ridge regression can be an effective 
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Introduction

In the practice of real property valuation two main trends can be distinguished: individual 
and mass appraisal. In the process of an individual appraisal the entity valuing real estate focuses 
on one real property or on a small number of properties. Whereas in the case of mass appraisal 
the subject of an appraisal involves a large number of real properties of one type (e.g. Hozer, 
Kokot, Kuźmiński, 2002). When it comes to mass appraisal, the choice of method depends on 
the objectives and conditions regarding real properties. For example, in Poland, the legislator 
introduced three main objectives of mass property valuation: general property taxation, updating 
of perpetual usufruct fees and assessment of the economic effects of adopting and amending 
zoning plans. Mass valuations can be also useful for e.g. banks, which from time to time update 
the value of real estate, which are the basis for mortgage collateral. Mass appraisal methods can 
also support investment decisions. In practice and in the theory of real property mass appraisal, 
many models and algorithms can be differentiated (Jahanshiri, Buyong, Shariff, 2011). 

The most frequently used models of property valuation are multiple regression 
models. Their popularity in property valuation, but also in other areas, results mainly from their 
simplicity and ease of interpretation. However, these advantages have a price to pay. In order 
to build a good model, a number of conditions need to be met (egg. Doszyń, 2012). One of the 
problems that may occur when estimating multiple regression models is the multicollinearity 
of variables and model overtraining due to the insufficient number of observations. One 
way to reduce undesirable effects is to regularize the model, which is typically achieved by 
constraining its weights (structural parameters). The article will present a study in which two 
ways of regularization (ridge regression and LASSO) will be applied and their influence on the 
errors of real estate valuation will be presented and discussed. 

The aim of the study is to verify the hypothesis whether regularization reduces errors in 
property valuations and which of the analyzed methods is more effective in this context. The study 
also included the aspect of the size of the data set (training set), on the basis of which models are 

way of modelling the value of real estate. Especially in the case of a small amount of market data, which 
is an important conclusion in the context of the real estate market.
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estimated. It will be investigated whether the influence of regularization on valuation errors is 
stronger when the training set counts less observations.

The subject of the study was 318 properties located in Szczecin – one of the largest Polish 
cities. These properties were subject to valuation due to the revaluation of perpetual usufruct 
fees.

1. Literature review

The general review of quantitative methods used in mass appraisal could be found in 
(Pagourtzi, Assimakopoulos, Hatzichristos, French, 2003). In the article the methods are divided 
into traditional (multiple regression, comparable, cost, income, profit, contractors methods) and 
advanced, such as ANN (Artificial Neural Networks), hedonic pricing methods, spatial analysis, 
fuzzy logic, and ARIMA models. 

An interesting comparison of modern approaches in mass appraisals is presented in 
(McCluskey, McCord, Davis, Haran, McIllhatton, 2013). In the survey such modelling 
approaches as multiple regression (MLR), spatial autoregression (SAR), geographically 
weighted regression (GWR), and ANN are compared. The neural network is widely used in the 
real estate market. The most common cases regard valuation, but market rents are also modelled 
(Muczyński, Walacik, 2017).

T. Kauko and M. d’Amato (2008) classify appraisal methods into four groups: model 
driven methods, data driven methods, methods based on machine learning and expert methods. 

The literature concerning the possibility of applying econometric methods in appraisal is 
fairly extensive e.g. (Benjamin, Randall, Guttery, Sirmans, 2004; Isakson, 1998; Dell, 2017). 
Econometric methods are sometimes also used not directly in appraisal but, for example, to 
identify outlier transactions (e.g. Doszyń, Gnat, 2017).

Multiple linear regression models have known issues and there have been many disputes 
regarding the legitimacy of use of these models for real estate valuation, (Pawlukowicz, 2007; 
Barańska, 2010; Ligas, 2010; Zurada, Levitan, Guan, 2011; Bieda, 2018). There are some 
methods that can tackle some of the multiple regression problems, such as multicollinearity, 
little variance of explanatory variables and overfitting for small training data sets. One of those 
methods is regularization also known as shrinkage methods (Hastie, Tibshirani, Friedman 2008, 
p. 61). There is a plethora of studies regarding the regularization of regression models. Some 
of them concern research related to improvements in classical forms of regularization (Lipovetsky, 
2010; Toker, Kaçiranlar, 2013; Hurvich, Simonov, Tsai, 1998; Durage 2014, Assaf, Tsionas, 
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Tasiopoulos, 2019). Studies related to regularization also concern the methods of determining 
the level of regularization hyperpameter (Golub, Heath, Wahba, 1979; Khalaf, Shukur, 2005; 
Ohishi, Yanagihara, Fujikoshi, 2020). There are also studies on the comparison of regularized 
models (Melkumova, Shatskikh, 2017; Fraley, Hesterberg, 2009; Rakesh, Suganthan, 2017; 
Pereira, Basto, Silva, 2016). 

From the perspective of this study, the most important publications are those on the use 
of regularized models in the real estate market. It should be stated here that the literature in this 
area is not broad. The paper (Kubus, 2016) presents the possibility of using the local regularization 
of regression models. The proposed procedure has proved to be effective. However, this study 
concerns modelling on the basis of a large dataset. In the real estate market, it is not uncommon 
that the number of available transactions is very limited. Therefore, the presented application 
of regularization in the case of a small set of data on real estate is a novelty in the scope of the 
mass valuation of real estate.

2. The Szczecin Algorithm of Real Estate Mass Appraisal

As was previously mentioned, there are a number of methods of mass appraisal. One 
example of such a method is the Szczecin Algorithm of Real Estate Mass Appraisal (SAREMA). 
In the survey, an econometric form of this algorithm constitutes a point of reference to regularized 
models: 

 ( ) 0
1 2 2
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pkK J
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= = =

= + + +∑ ∑ ∑  (1)

where:
wji – market value of 1 square meter of i–th real estate in j–th location attractiveness 

  zone,
N  – number of real estates (i = 1, 2, ..., N), 
J –  number of location attractiveness zones (j = 2, 3, ..., J), 
surfi – surface of i-th real estate (in m2),
α0 – constant term,
K  –  number of real estate attributes,
kp  –  number of states of k-th attribute,
αkp – impact of p-th state of attribute k,
xkpi  –  zero–one variable for p-th state of attribute k,
αj – market value coefficient for j-th location attractiveness zone,
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lazji – dummy variable equal one for j-th location attractiveness zone,
ui  –  error term.

The explained variable is a natural logarithm of a real estate unit value. Real estate values 
are determined by certified appraisers in the individual appraisals. Real estate attributes are 
qualitative characteristics measured on an ordinal scale, so they are introduced into the model (1) 
through dummy variables for each state of an attribute. 

In the model (1) there is a constant term. In order to avoid the strict multicollinearity of the 
explanatory variables, each dummy variable for the worst attribute states are skipped. Hence 
the summation of p = 2, ..., kp in the formula (1). In the interpretation, the ignored state of an 
attribute serves as a point of reference for the remaining states. 

There are also market value coefficients (αj) in the model (1). They could be treated as 
a proxy for location. They are estimated by introducing dummy variables for each location 
attractiveness zone. Location attractiveness zones are constructed by experts. They are defined as 
areas with a similar impact of location. Therefore, location attractiveness zones are constructed 
in such a way that the impact of location in the given area is homogenous. 

Because of the strict collinearity of explanatory variables the worst (cheapest) location 
attractiveness zone is skipped. The omitted location attractiveness zone creates a point 
of reference. 

3. Linear models regularization

Regularization is achieved by setting constrains for the weights of the model. Different 
kinds of algorithms implement those constraints in different ways. Two types of regularization 
will be used in this article. The first one is ridge regression and the second one is lasso regression. 
In multiple regression models, model weights are determined by minimizing the sum of squares 
of the residuals of the model (RSS  min→ ). When it comes to ridge regression a regularization 

term equal to 2

1

n

i
i

β α
=
∑  is added to RSS cost function (Lesmeister, 2019, p. 107) of equation (1). 

The hyperparameter β controls how much you want to regularize the model. If β = 0 then ridge 
regression is just a pure multiple regression. If β is very large, then all weights end up very close 
to zero and the result is a flat line going through the data’s mean (Geron, 2017, p. 201). Therefore 
setting β is a crucial stage of creating a model in order to achieve high quality results. In the 
case of lasso regression, the model weights are regularized by entering in the cost function 
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an expression 
1

n

i
i

β α
=
∑ . An important feature of this type of regularisation is the elimination 

of the least significant variables from the model. What causes lasso regression to be used for the 
selection of explanatory variables in addition to the regularization of weights of the regression 
equation? For both methods of regularization, the key stage is the selection of its strength – β. 
Figure 1 presents the results of preliminary ridge regression models for 500 draws, in which 
250 properties were a training set and 68 a test set (more about the set of modelled properties 
in the next section). Nine different values of the regularization strength have been adopted. 
For each model, a mean absolute percentage error (MAPE) has been calculated. As it turned 
out, the level of the coefficient β strongly influenced the average MAPE for 500 models. This 
confirms that determining its optimum level of β is an important stage in modelling with the use 
of regularization.

Figure 1. Comparison of average MAPEs for multiple regression models with ridge regression 
models taking into account different levels of regularization strength

Source: own work.

The selection of the value of this parameter can be carried out in a number of ways. From 
a completely random, arbitrary value, to the use of different machine learning techniques 
to optimize this parameter. In this study, the aim of adopting the appropriate strength 
of regularization is to obtain the best possible valuation results. The accuracy of the valuations 
obtained with estimated models will be determined by comparing them with the valuations 
carried out by certified property valuers.
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4. Empirical study

The described SAREMA procedure will be used for the appraisal of 318 land plots located 
in the northern part of Szczecin, which is the capital of the West Pomeranian voivodeship, one 
of 16 Polish voivodeships. The real properties constitute a set for which an update of annual 
perpetual usufruct charges was conducted. The real properties were located in three clusters 
(referred as LAZs) of various numbers of real properties. The area within which the appraised 
real properties lie is shown in Figure 2.

Attributes describing properties and their states are presented in (Table 1). It could be 
noted that all attributes, except plot area, are qualitative variables. They are introduced into 
econometric model (1) as a dummy variable for each state of an attribute (with the exclusion 
of the first, worst, state). The land of a plot area is a quantitative variable, but it is treated 
as a qualitative one. This is because market participants often treat this variable in this way. 
This conclusion stems from appraisers. With respect to real estate unit value, it is assumed that 
a small area is better than average and average is better than large. 

   

Figure 2. Location of the valued properties
Source: own work.



Sebastian Gnat170

Table 1. Real estate attributes and their states

Yeah. Attribute Attribute category/symbol 

1 Utilities 
None

Incomplete
Complete

2 Neighbourhood

Onerous
Unfavourable

Average
Favourable

3 Transport availability
Unfavourable

Average
Favourable

4 Physical plot properties 
Unfavourable

Average
Favourable

5 Plot area
Large (>1,200 m2)

Average (500–1,200 m2)
Small (<500 m2)

Source: own work.

The accuracy of the valuations will be assessed on the basis of the absolute percentage 
error (APE):

 00%
ˆ

1i i
i

i

w w
APE

w
−

= ⋅  (2)

where:
wi  –  the actual unit value of the property determined by the property valuer,
ˆ iw   – theoretical, unit value of the property determined from the model.

The empirical study was carried out according to the following scheme. The collection 
of 318 properties was divided 500 times into a test set of 68 properties and a training set 
of 250 properties. For each of the 500 training sets, the SAREMA model and its variants 
with ridge and LASSO regularization were estimated. In order to select the optimal strength 
of regularization, the procedure of a 3-fold cross-validation was carried out. 70 different values 
of the β coefficient from 0.0001 to 1,000 were tested. The models with best β were used to 
estimate the value of properties in the test sets.

The same procedure for estimating and testing the models was repeated with a reduced 
number of properties in the training sets. This time they consisted of 50 properties, with an 
unchanged number of test sets, i.e. 68 properties. This scheme has resulted in the estimation 
of more than 400,000 models (including those estimated for cross validation). The final result 
of the estimation was 3,000 models. 
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The target variable in the models was the value of 1 square meter of properties. The models 
reflect valuers estimates rather than the market as such. The results obtained allow us to 
determine how well the econometric models imitate the results of real estate appraisal conducted 
by valuers.

Figures 3–5 show the collective results of the comparison of non-regularized models with 
models for which regularization has been applied. Figure 3 shows the values of the coefficients 
of the determination of the estimated models. There are two main elements here. Firstly, because 
of the regularization, the SAREMA model’s plain form R2 is on average higher than that of the 
regularized models. This is expected since regularization tends to flatten the results. Secondly, 
determination coefficients for smaller training sets indicate another feature associated with 
multiple regression models (MLR), namely their tendency to overfit. With a smaller training set, 
the difference between R2 coefficients for classic and regularized models is greater. In general, 
the values of these coefficients for models based on 50 properties are on average higher than 
for models based on 250 properties. Whether or not this is actually proof for overfitting will be 
revealed after the analysis of valuation errors in the test sets.

               
Figure 3. Distribution of determination coefficients for SAREMA models in the form of plain 

multiple, ridge and lasso regression. Training sets of 250 items (left side), training sets 
of 50 items (right side)

Source: own work.

To compare MLR, ridge and lasso models, the relative differences between MAPE for 
MLR and ridge models and MLR and lasso for both sizes of training sets were determined. 
Negative differences indicate that a lower MAPE occurred in a given test set for the classic 
SAREMA form; positive differences meant lower errors of the regularized models. Figures 4 
and 5 show the distribution of these differences. In each comparison the number of positive 
differences was higher. This means that in most cases, the models with regularization resulted 
on average in lower valuation errors than the models without regularization. For models 



Sebastian Gnat172

estimated on the basis of larger training sets, ridge regression gave lower valuation errors in 299 
cases out of 500. For lasso regression it was 269 cases. With small training sets, the advantage 
of regularized models was more frequent: 340 and 311 times, respectively. This confirms the 
hypothesis that the MLR models tend to overfit more often than regularized ones, especially in 
the case of a smaller number of properties in the training set. Interestingly, although lower errors 
were more often obtained for regularized models, in extreme cases that non-regularized models 
had a greater advantage over regularized ones. This was visible in the longer left tails of the 
distributions (especially for smaller training sets).

               
Figure 4. Distribution of relative MAPE differences between SAREMA models in the form 

of plain multiple and ridge regression (left side) and plain multiple and lasso regression 
(right side). Training collections of 250 properties

Source: own work.

               
Figure 5. Distribution of relative MAPE differences between SAREMA models in the form 

of multiple and ridge regression (left side) and multiple and lasso regression (right 
side). Training collections of 50 properties

Source: own work.
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The shares of regularized models with lower and higher valuation errors than plain multiple 
regression are presented in (Table 2). The use of regularization was particularly beneficial when 
the training sets were smaller. It allows avoiding overfitting and eliminates problems resulting 
from the multicollinearity of variables.

Table 2. Font sizes of headings (%)

Ridge regression Lasso regression

N = 250 N = 50 N = 250 N = 50

Number of MAPE models in a test set lower 
than for multiple regression 59.8 68.0 53.8 62.2

Number of MAPE models in the test set higher 
than for multiple regression 40.2 32.0 46.2 37.8

Source: own work.

Conclusions

As indicated in the literature, the linear model can be improved, by replacing plain least 
squares fitting with some alternative fitting procedures (James, Witten, Hastie, Tibshirani, 2017, 
p. 203). Such techniques allow to maintain the advantages of linear regression models, while 
improving the accuracy of prediction, eliminating the problem of the collinearity of variables 
or their low volatility (which may occur in the real estate market in particular) and increasing 
the interpretability of models. The article presents an example of using the regularization 
of multiple regression models in order to improve the results of the mass valuation of real 
estate. The results of the valuation of 68 properties estimated using the econometric form of the 
Szczecin Algorithm of Real Estate Mass Appraisal (SAREMA) with models supplemented with 
a component responsible for regularization in 500 repetitions were compared. Results obtained 
from 3,000 models show that regularization has in most cases reduced valuation errors in the 
test sets. The improvement in performance was more pronounced in the case of small training 
sets. Better results for both 250- and 50- element sets were obtained using ridge regression 
than lasso regression, so in this particular set of properties this first type of regularization 
proved to be a more effective way to minimize valuation errors. For small training sets the 
differences in MAPE were much higher than in larger sets (both in cases indicating an advantage 
of regularization and indicating an advantage of plain MLR). This means that with a larger 
training set, the impact of regularization improves (or worsens) the results of valuations to 
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a lesser extent. It can be concluded that the less data you have on the real estate market, the more 
worthwhile it is to apply regularization.

Further planned research will be aimed at verifying the results obtained in other markets 
as well as for other types of real estate.
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