
ASSESSMENT OF THE DEVELOPMENT OF THE EUROPEAN OECD 
COUNTRIES WITH THE APPLICATION OF LINEAR ORDERING 

AND ENSEMBLE CLUSTERING OF SYMBOLIC DATA

Marcin Pełka, Ph.D.
Wrocław University of Economics
Faculty of Economics, Management and Tourism
Department of Econometrics and Computer Sciences
e-mail: macin.pelka@ue.wroc.pl
ORCID: 0000-0002-2225-5229

Received 13 November 2018, Accepted 15 October 2019

Abstract

The research background of the paper covers the development of a country, that can be measured in 
various ways. Simple indicators, like GDP and also complex indicators such as HDI (human development 
index), can be used to measure country development. However, usually countries are divided into groups 
via setting some arbitrary levels of final measure. What is more, the composite (complex) indices have some 
problems and errors.
The main purpose of the paper is the assessment of the development of the selected European OECD 
countries with the application of the linear ordering and ensemble clustering of symbolic data as well as 
comparison of the ensemble clustering with a single model. 
Research methodology covers linear ordering with the application of multidimensional scaling for 
a visualisation of results and ensemble clustering for symbolic data. 
The results are compared according to adjusted Rand and silhouette indices. The obtained results show 
that ensemble clustering for symbolic data can be a useful tool in country development analysis and allows 
reaching better results than a single model. 
The novelty of the proposed approach is to use a cluster analysis to obtain the clusters of countries with 
similar variables’ values (indicators of development) and the application of multidimensional scaling for 
symbolic data in order to visualise linear ordering results.
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Introduction

Recent papers show that there is a deep need for a more comprehensive way to measure 
the development of a country. A. Sen sees the development as the concept that goes far beyond 
the accumulation of wealth, measured by gross national product or similar indicators. In his 
opinion development should also enhance people’s lives (Sen, 1999, p. 14). So the measurement 
of development should take into account different areas of people’s lives – social, ecological, 
political and economic.

Many different papers deal with the problem of development and the comparison 
of development – see for example S. Vachon and Z. Mao (2008), S. Voigt (2009), A. Demirgüç-
Kunt and R. Levine (2004), P.H. Hsu, X. Tian and Y. Xu (2014), S. Dasgupta et al. (1999).

When considering country development, cluster analysis and symbolic data analysis only 
two papers by M. Pełka (2017 and 2018) present an analysis of innovation which is an important 
element of sustainable development in the European Union using different ensemble clustering 
approaches. 

A paper by D.B. Alonso et al. (2016) analyzed the how global crisis (during 2008–2012) 
had an impact on macroeconomic and social factors in the EU member states. The research 
findings prove the sensitivity and vulnerability of European countries during the crisis and 
could help policy makers identify effective measures for strengthening the protective capacity 
of their states in the event of a future economic and social crisis. C H. Ketels and O. Memedovic 
(2008) present how clusters can be leveraged for economic policy and what the role of different 
stakeholders in this process is. However their application part of the paper focuses on the 
concept to resource-rich, oil-dependent economies. K. Liapis et al. (2013) analyses the clusters 
of similarities among EU member states before and during the recent financial and debt crisis. 
Using Euclidian Distance and average linkage between groups two clusters were obtained. 
The first group consists of two subgroups, including the Netherlands, the UK, Luxembourg 
and Germany, characterised by developed financial sector’s and balanced fiscal policy. 
The second subgroup consists of two subgroups: one subgroup consists of Finland and Sweden 
and the other one consists of Austria and Denmark. Finally the countries which are faced with 
several financial or debt problems, Belgium and Ireland are connected with the second group. 
The second largest group consists of Southern European countries, such as Italy, Spain, France, 
Greece and Portugal, and are characterised by high deficit and high government debt, low gross 
wage revenues and low Bank’s Assets to GDP, low or medium total taxations performance, and 



Assessment of the Development of the European OECD Countries... 119

decreases or deficits of current accounts and balance of payments. B. Mercan and D. Goktas 
(2011) focused their paper on the innovation of ecosystems.

The development of a country can be measured in many various ways. The simplest way 
is to use well-known wealth indicators such as gross domestic product (GDP), gross national 
product (GNP), gross national income (GNI). Usually the GNI is the standard way of measuring 
the level of wealth in a country (Baker, 2011, p. 6). As the measurement of total value of GNI, 
GDP, GDP can be misleading because it does not take into account the population of the country, 
the GNI, GDP or GNP are measured per capita – that is the total wealth of a particular country 
is divided by its population.

There were many efforts done to build rather a composite index that would capture 
all aspects of development. A major work was done by the United Nations Development 
Programme (UNDP) that proposed the Human Development Index (HDI). The HDI goes far 
beyond the measurement of the pure GDP, GNI, GNP and takes into account many different 
aspects of development (see for example Aziz et. al., 2015; McGillivray, 1991; Stanton, 2007; 
Sen, 1994).

Many other development indices, besides the HDI, have been proposed for many different 
purposes – like Quality of Life, Inequality-adjusted Human Development Index, OECD Better 
Life Index, Gender-related Development Index, Bhutan GNH Index (see for example Magee, 
Scerri, James, 2012; Durand, 2015; Dijkstra, Hanmer, 2000; Bates, 2009). However even the 
composite indices have some drawbacks (see Sagar, Najam, 1998; McGillivray, 1991).

For example A.D. Sagar and A. Najam (1998) show that a Human Development Index 
fails to include any ecological considerations. According to them over the years, the HDRs seem 
to have become stagnant, repeating the same rhetoric without necessarily increasing the HDI’s 
utility.

According to M. McGillivray (1991) the HDI assesses intercountry development levels on 
the basis of three so-called deprivation indicators: life expectancy, adult literacy and the logarithm 
of purchasing power adjusted per capita GDP. Using a simple statistical analysis, his paper 
questions both the composition of the HDI and its usefulness as a new index of development. 
This paper concludes that the HDI is both flawed in its composition and, like a number of its 
predecessors, fails to provide insights into intercountry development level comparisons which 
pre-existing indicators, including GNP per capita, alone cannot.

What is more the HDI covers long-term changes (e.g. in GDP per capita) and may not 
respond to recent short-term changes. Many composite indices do not cover wide divergence 
within countries. A well-known problem is that higher national income may not mean welfare. 



Marcin Pełka   120

It depends on how it is spent. Some countries with high real GNI per capita have high levels 
of inequality (e.g. Saudi Arabia or Russia). 

Thus, there is still a need for development of new indices, development measurement and 
cross-country development comparisons. The main aim of the paper is to present a symbolic 
ensemble clustering of the selected European OECD countries considering their development as 
well as the linear ordering results for this type of data using multidimensional scaling.

The obtained results show that ensemble clustering for symbolic data and linear ordering 
for this type of data can be a useful tool for a development analysis.

1. Symbolic data analysis

In classical data analysis objects are usually described by a vector of quantitative or 
qualitative measurements, where each column represents a single variable (a number or 
a category). However, this kind of data representation is too restrictive to represent more 
complex data. This type of data takes into account the uncertainty and/or variability to the 
data, variables must assume a set of categories or intervals even with frequencies or weights. 
Such data has been mainly studied in Symbolic Data Analysis. It provides suitable methods and 
algorithms to deal with aggregated or complex data that are described by multi-valued variables, 
where cells of the data table can contain sets of categories, intervals or weights (probabilities) 
distributions (see for example Bock, Diday, 2012; Billard, Diday, 2006; Billard, Diday, 2008; 
Noirhomme‐Fraiture, Brito, 2011). Table 1 presents examples of the main types of symbolic 
variables and their realisations (see Bock, Diday, 2000, p. 2).

Table 1. Example of symbolic variables and their realisations

Symbolic variable Realisations Variable type

Money spent monthly on 
food (PLN) <100, 200>; <150, 300>; <170, 400> symbolic interval-valued 

(non-disjoint intervals)

Distance to work (km) <0, 5>; <5, 10>; <10, 15>; <15, 20> symbolic interval-valued 
(disjoint)

Preferred car make {Toyota}, {VW, Audi}, {Skoda, Kia} categorical multi-valued

Preferred laptop brands {Asus (0.6), Lenovo (0.4)}, {Acer (0.4), Asus (0.3), Dell 
(0.3)} categorical modal

Time spent travelling to 
work weekly (min.)

{<0, 10> (0.6); <10, 20> (0.4)}, {<0, 10> (0.1); <10, 20> 
(0.9)}, {<0, 10> (0.1); <10, 20> (0.5); <20, 30> (0.4)}, histogram

Gender of a person {M}, {F} categorical single-valued

Number of rooms in a flat 1, 2, 3, … numerical single-valued

Source: own elaboration.
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Symbolic data analysis allows to describe objects in a more detailed, complex, way but is 
requires a special type of distance measures, clustering algorithms, etc. that can deal with such 
types of data. More details about symbolic variables, objects can be found in e.g. H. H. Bock 
and E. Diday (2000), L. Billard and E. Diday (2006), E. Diday and M. Noirhomme-Fraiture 
(2008), M. Noirhomme‐Fraiture and P. Brito (2011).

In the case of symbolic objects two types of data aggregation are used (see Billard, Diday, 
2006; Diday, Noirhomme-Fraiture, 2008; Noirhomme-Fraiture, Brito, 2011):

a) temporal data aggregation – where information for classical objects (individuals) are 
aggregated over time;

b) contemporary data aggregation – where other information than time is used to obtain 
symbolic objects (e.g. consumers buying the same product).

In the case of symbolic interval-valued variables usually four approaches are used to 
obtain the intervals:

 – minimum values from the data set as lower bounds of intervals and maximum values 
from the data set as upper bounds of intervals,

 – the first quartile from the data set as lower bounds of intervals and the third quartile 
from the data set as upper bounds of intervals,

 – the 10th percentile from the data set as lower bounds of intervals and the 90th percentile 
from the data set as upper bounds of intervals,

 – arbitrary taken values for lower and upper bounds of intervals.
In this paper first and third quartile of the original data values will be used in the empirical 

part and the contemporary data aggregation was used (data about countries was aggregated over 
time).

2. Linear ordering and ensemble clustering for symbolic data

The first concepts on pattern and anti-pattern of development and the measurement 
of development were proposed by Professor Z. Hellwig (see Walesiak, 2017a, p. 2). A two-step 
procedure that allows visualizing the results of linear ordering was presented by M. Walesiak 
(see 2016, 2017b, p. 11). This procedure can be applied also for symbolic objects and it involves.

1. Choice of a complex phenomenon that cannot be measured directly. This phenomenon 
is considered among a set of objects A.

2. Choice of objects.
3. Selection of variables and collecting data and the construction of a symbolic data table.
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Identification of preferential variables – stimulants, destimulants and nominants. Variable 
is a stimulant when for every two of its observations ,S S

ij kjv v  for two objects Ai, Ak there is 
a reference S S

ij kj i kv v A A> ⇒  ( means that object Ai dominates over object Ak). Variable is 
a destimulant for every two of its observations ,D D

ij kjv v  for two objects Ai, Ak there is a reference 
D D
ij kj i kv v A A> ⇒  (means that object Ak dominates over object Ai). A variable is a unimodal 

nominant when for every two of its observations ,N N
ij kjv v  for two objects Ai, Ak if ,N N

ij kj jv v nom≤  
then N N

ij kj i kv v A A> ⇒   and if ,N N
ij kj jv v nom>  then N N

ij kj i kv v A A> ⇒   (where i, k are object’s 
numbers and j is the variable’s number).

4. Transformation of nominants into stimulants. There is no need to transform destimulants 
into stimulants.

5. Normalisation of variable values.
6. Calculation of distances between objects. For a symbolic data case many different 

distance measures can be applied. They are chosen upon the type of symbolic variables.
Multidimensional scaling for symbolic data is done. This method allows representing 

objects from a m-dimensional space on a q-dimensional space (usually q = 2, 3). In the case 
of symbolic data two approaches for multidimensional scaling can be carried out:

a) the symbolic-symbolic approach, where for symbolic data a table containing symbolic 
interval-valued data only, interval-valued distances are calculated. The interval-valued 
distances are used to carry out multidimensional scaling with one of three approaches – 
InterScal, SymScal or I-Scal (see Groenen, Terada 2015; Goenen et al., 2005; Groenen 
et al., 2006). This approach allows to represent symbolic objects as rectangles, in 
the case of a 2 dimensional plane, or cuboids (hyperrectangles) in the case of a 3 
dimensional plane;

b) symbolic-numeric approach, where for a symbolic data table containing any symbolic 
variables distances for all objects are calculated. There are many different distance 
measures for symbolic data. The choice is usually limited to the symbolic variables 
(see for example Gatnar, Walesiak, 2011). The iterative procedure called smacof 
was used in this paper (Borg, Groenen, 2005, pp. 204–205). The symbolic-numeric 
approach allows representing symbolic objects as points.

7. Graphical representation and interpretation of the results (multidimensional scaling and 
linear ordering results). For the multidimensional scaling results a straight line that connects 
pattern and anti-pattern (so-called axis of the set) is added. Isoquants of development are 
determined and based on a pattern object – e.g. by dividing the axis of the set into four equal 
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parts. The objects that are located between isoquants represent a similar level of development 
that can be archived by different objects.

Normalised distances of the i-th object from the pattern of development are calculated as 
follows (see Hellwig, 1981, p. 62):
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where:

( )2ij jz z+−   −  Euclidean distance between the i-th object and the pattern object, 

( )2j jz z+ −−  – Euclidean distance between pattern and anti-pattern objects,

i  – the object’s number,
j  – the variable’s number, 
+  – means pattern object, 
–  – means anti-pattern.

The objects are ordered by the increasing values of distance measure (1). The linear 
ordering results are presented in Figure 1.

When considering clustering methods for symbolic data we can distinguish the following 
groups of methods:

a) adaptations of the classical clustering method and clustering methods designed strictly 
for symbolic data (see for example Verde, 2004; Bock, Diday, 2000; Billard, Diday, 
2006; Diday, Noirhomme-Fraiture, 2008);

b) density based clustering for symbolic data – an adaptation of a well-known DBSCAN 
algorithm for symbolic data (see Pełka, 2018);

c) conceptual clustering methods for symbolic data, e.g. pyramids or the adaptation 
of COBWEB (see Pełka, 2015; Brito, 2002; Brito, 1995).

In general, in ensemble clustering for symbolic data we can use three main groups 
of methods (see Ghaemi et al., 2009; de Carvalho, Lechevallier, Melo, 2012; Hornik, 2005; 
Leisch, 1999; Dudoit, Fridlyand, 2003):

1. Clustering based on multiple relational matrices proposed by F.D.A. de Carvalho, Y. 
Lechevallier and F.M. Melo (2012), where multiple distance matrices (different points of view) 
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are used to calculate relevance weight vectors. These vectors and distance matrices are used to 
cluster objects.

2. A clustering ensemble that uses one of the consensus functions, e.g. co-clustering 
matrix, hypergraph partitioning, mutual information, finite mixture model (Ghaemi et al., 2009). 
In this paper the co-clustering (co-association) matrix will be used. The algorithm that uses a co-
association matrix can be described as follows (Fred, Jain, 2005, p. 848):

a) obtain different base partitions (models). This can be done in many ways – e.g. by 
using the same clustering algorithm with different initial parameters (e.g. number 
of clusters, normalisation method, and distance measure, etc.), using subsets of objects, 
using subsets of variables, and using different clustering algorithms. In the paper 
different clustering techniques will be used (SClust, DClust, DBSCAN for symbolic 
data, spectral clustering for symbolic data, single, and complete link clustering) and 
also these methods will be used with different initial parameters (distance measure, 
normalisation, number of clusters varying from 2 to 20);

b) use obtained partitions to build a co-clustering (co-association) matrix. The elements 
of this matrix are defined as follows:

 ( ), ,ijn
C i j

N
=  (2)

where: 
i, j – objects (pattern) number, 
nij – number of times objects ji, were clustered together among N partitions, 
N – total number of partitions;

c) the obtained co-association matrix is used as the data matrix for some classical 
clustering methods – like k-means, pam, etc.;

d) choosing the best partitions – e.g. by using cluster quality indices. In the paper a well-
known silhouette index will be used (see Kaufman, Rousseeuw, 2009 for further 
details).

3. Adaptations of well-known bagging procedure for clustering (see Hornik, 2005; Leisch, 
1999; Dudoit, Fridlyand, 2003). In this paper the F. Leisch’s adaptation of bagging for clustering 
will be used (see Leisch, 1999):

a) the initial data set is divided into M subsets, drawn from the initial data set with 
a replacement – in this paper 20 subsets with 20 objects each will be used;



Assessment of the Development of the European OECD Countries... 125

b) subsets are clustered and in the case of classical data centers of clusters are obtained. 
In the case of symbolic data medoids will be used;

c) medoids (cluster centers) are used as the data matrix for some clustering algorithms – 
e.g. k-means, ward, complete, DIANA, etc. and final clusters are obtained;

d) for the final clusters new medoids are calculated;
e) all objects are assigned to the nearest medoid. 

3. Results of the empirical study

The empirical study uses the statistical data obtained from the World Bank (World 
Development Indicators available at https://datacatalog.worldbank.org/dataset/world-develop 
ment-indicators). The data contains information about development indicators for 217 countries. 
From this data set 30 OECD countries were taken. The evaluation of their development was 
done using the following variables (where contemporary data aggregation was used – the data 
about countries was aggregated over time):

v1 – access to clean fuels and technologies for cooking (percent of population),
v2 – account in a financial institution (percent of people aged 15+),
v3 – account in a financial institution (40% of poorest people, aged 15+),
v4 – adjusted net national income (constant 2010 in USD),
v5 – adjusted net savings, excluding particulate emission damage (percent of GNI),
v6 – adolescent fertility rate (births per 1,000 women ages 15–19),
v7 – age dependency ratio (percent of working population),
v8 – alternative and nuclear energy (percent of total energy use),
v9 – annual freshwater withdrawals caused by agriculture (percent of total freshwater  

  withdrawal),
v10 – annual freshwater withdrawals caused by households (percent of total freshwater  

  withdrawal),
v11 – annual freshwater withdrawals caused by industry (percent of total freshwater  

  withdrawal),
v12 – birth rate (per 1,000 people),
v13 – total central government debt (percent of GDP),
v14 – CO2 emissions (kt),
v15 – cost of business start-up procedure (percent of GNI per capita),
v16 – GDP per capita (current USD’s),
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v17 – unemployment with higher education (percent of total labour force with higher  
  education),

v18 – unemployment with basic education (percent of total labour force with basic  
  education),

v19 – life expectancy at birth.
Variables v1, v2, v3, v4, v5, v7, v8, v12, v16, v19 are stimulants, variables v6, v9, v10, v11, v13, v14, 

v15, v17 and v18 are destimulants. To find the optimal multidimensional scaling (for a symbolic-
numeric approach) the mdsOpt package of R was used (Walesiak, Dudek, 2018).

The best results were obtained for standardisation in terms of normalisation and Ichino-
Yaguchi distance measure. Figure 1 presents the results of the multidimensional scaling 
of 32 objects (30 OECD countries, the pattern and the anti-pattern object). Objects 31 (pattern 
object) and 32 (ani-pattern object) were connected with a straight line to obtain the so-called 
axis of a set. Four isoquants were added by dividing the axis into four equal parts.

The distances of each country from a pattern object were calculated in accordance with 
formula (1). OECD countries were ordered by the growing values of this measure. The results 
are presented in Table 2.

Figure 1.  Results of the multidimensional scaling in the two-dimensional space for 32 objects – 
30 OECD countries, pattern object (31) and anti-pattern object (32)

Source: own elaboration using R software.
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Table 2. The ordering of 32 objects regarding the development of the OECD countries

Object no. Distance Name

31 0.0000 pattern

14 0.1665 Iceland

21 0.1958 Norway

28 0.2034 Sweden

10 0.2288 France

29 0.2419 Switzerland

7 0.2532 Denmark

19 0.2721 Luxembourg

20 0.2872 The Netherlands

2 0.3008 Belgium

15 0.3010 Ireland

9 0.3021 Finland

1 0.3197 Austria

11 0.3269 Germany

30 0.3422 The United Kingdom

26 0.3469 Slovenia

27 0.3884 Spain

4 0.3893 Croatia

6 0.3917 Czech Republic

5 0.3978 Cyprus

23 0.3995 Portugal

16 0.4107 Italy

18 0.4111 Lithuania

17 0.4132 Latvia

8 0.4288 Estonia

13 0.4484 Hungary

22 0.4540 Poland

25 0.4720 The Slovak Republic

12 0.5087 Greece

3 0.5509 Bulgaria

24 0.5754 Romania

32 1.0000 anti-pattern

Source: own elaboration using R software.

Then for the same data set ensemble symbolic clustering was done. Both Leisch’s 
adaptation of bagging and the co-clustering matrix allowed obtaining the same final clustering 



Marcin Pełka   128

results. A two cluster structure was obtained (with silhouette the clustering index equal to 
0.87321):

1. Cluster 1 contains the following countries: Denmark, Iceland, Norway, Sweden, 
France, Germany, Italy, the United Kingdom, Finland and the pattern object. These 
countries are the most developed ones. They reach the narrowest symbolic interval-
valued variables spans (ranges) for all variables. This means that the objects from this 
cluster are most similar to each other. They have high, but narrow in terms of interval 
length, values of stimulants (v1, v2, v3, v4, v5, v7, v8, v12, v16, v19) and low and narrow 
values for destimulants (v6, v9, v10, v11, v13, v14, v15, v17, v18). So it means people living 
in these countries have very good access to clean fuels and technologies for cooking, 
both the young and the poorest have accounts in financial institutions. They have a high 
adjusted net national income (measured via constant 2010 in USD or GDP per capita) 
also their adjusted net savings damage are high. Countries from this cluster have low 
adolescent fertility rate, and a high age dependency ratio (% of the working population). 
People from these countries usually have a choice to use alternative and nuclear energy 
and they care about annual freshwater withdrawals caused by agriculture, households 
and industry. Unfortunately the birth rate is usually lower than in other countries. Total 
central debt and CO2 emissions are an issue in these countries. The costs of business 
start-up procedures are usually lower. Both unemployment with higher or basic 
education are quite low. Life expectancy is quite high.

2. Cluster 2 contains the following countries: Austria, Belgium, Bulgaria, Croatia, Czech 
Republic, Estonia, Cyprus, Greece, Hungary, Ireland, Latvia, Lithuania, Luxembourg, 
the Netherlands, Poland, Portugal, Romania, the Slovak Republic, Slovenia, Spain, 
Switzerland and the anti-pattern object. This cluster contains all other countries with 
high and mid-high development (according to HDI). Countries from this cluster are the 
least similar ones. People from these counties have good and very good access to clean 
fuels and technologies for cooking, usually the youngest members of these countries 
have accounts in financial institutions. The poorest usually do not have one. Their 
income varies a lot, when looking at different countries from this cluster. Net savings 
are not so high as in cluster one. The countries from these clusters also have quite a low 
fertility rate and age dependency ratio. People from these countries not always have 
a choice to use nuclear energy and their interest about freshwater withdrawals is not 
always so clear. Sometimes the governments of these countries have problems when 
considering CO2 emissions and CO2 limits. The costs of business start-up procedures 



Assessment of the Development of the European OECD Countries... 129

are higher than in cluster 1. Both unemployment with higher education is lower than in 
the case of basic education. Generally speaking life expectancy at birth is a bit lower 
than in cluster one.

When compared the ensemble clustering results with the single clustering (pam method 
with Ichino-Yaguchi normalised distance measure) the results are the same – also the two cluster 
structure is reached with the same objects in each cluster. For ensemble and single clustering 
the results were adjusted and the Rand index was calculated. In both cases we have quite stable 
clustering results with 0.673212 (for the single model) and 0.772136 (for ensemble clustering).

Conclusions

As the results of the applied research the analysis of development for 30 OECD countries 
was done. The linear ordering (see the results presented in Table 2) and cluster analysis were 
conducted for 30 OECD countries using a symbolic-numeric approach for linear ordering 
visualisation, and single and ensemble clustering for symbolic interval-valued data.

The classifications done by international organisations (e.g. UNDP) were done on the basis 
of the composite development index where clusters are obtained by selecting some arbitrary 
values of these indices. This paper has used clustering methodology to obtain two clusters.

Cluster 1 contains the following countries: Denmark, Iceland, Norway, Sweden, France, 
Germany, Italy, the United Kingdom, Finland and the pattern object. These countries are the 
most developed ones. They reach the narrowest symbolic interval-valued variables spans 
(ranges) for all variables. This means that the objects from this cluster are most similar to each 
other. People living in these countries have very good access to clean fuels and technologies 
for cooking; both the youngest and the poorest have accounts in financial institutions. They 
have a high adjusted net national income (measured via constant 2010 in USD or GDP per 
capita) also their adjusted net savings damage is high. The countries from this cluster have a low 
adolescent fertility rate, and high age dependency ratio (percent of the working population). 
People from these countries usually have a choice to use alternative and nuclear energy and 
they care about annual freshwater withdrawals caused by agriculture, households and industry. 
Unfortunately the birth rate is usually lower than in other countries. Total central debt and CO2 
emissions are an issue in these countries. The costs of business start-up procedures are usually 
lower. Both unemployment with higher or basic education are quite low.

Cluster 2 contains the following countries: Austria, Belgium, Bulgaria, Croatia, Czech 
Republic, Estonia, Cyprus, Greece, Hungary, Ireland, Latvia, Lithuania, Luxembourg, the 
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Netherlands, Poland, Portugal, Romania, the Slovak Republic, Slovenia, Spain, Switzerland 
and the anti-pattern object. This cluster contains all other countries with high and mid-high 
development (according to HDI). The countries from this cluster are the least similar ones. 
People from these counties have good and very good access to clean fuels and technologies for 
cooking, usually the youngest have accounts in financial institutions. The poorest usually do not 
have one. Their income varies a lot, when looking at the different countries from this cluster. Net 
savings are not so high as in cluster one. The countries from this cluster also have quite a low 
fertility rate and age dependency ratio. People from these countries not always have a choice 
to use nuclear energy and how they care about freshwater withdrawals is not always so clear. 
Sometimes the governments of these countries have problems when considering CO2 emissions 
and CO2 limits. The costs of business start-up procedures are higher than in cluster 1. Both 
unemployment with higher education is lower than in the case of basic education.
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