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Abstract

A simple linear regression model is one of the pillars of classic econometrics. Multiple areas of research 
function within its scope. One of the many fundamental questions in the model concerns proving the 
efficiency of the most commonly used OLS estimators and examining their properties. In the literature of 
the subject one can find taking back to this scope and certain solutions in that regard. Methodically, they 
are borrowed from the multiple regression model or also from a boundary partial model. Not everything, 
however, is here complete and consistent. In the paper a completely new scheme is proposed, based on the 
implementation of the Cauchy-Schwarz inequality in the arrangement of the constraint aggregated from 
calibrated appropriately secondary constraints of unbiasedness which in a result of choice the appropriate 
calibrator for each variable directly leads to showing this property. A separate range-is a matter of choice of 
such a calibrator. These deliberations, on account of the volume and kinds of the calibration, were divided 
into a few parts. In the one the efficiency of OLS estimators is proven in a mixed scheme of the calibration 
by averages, that is preliminary, and in the most basic frames of the proposed methodology. In these frames 
the future outlines and general premises constituting the base of more distant generalizations are being 
created.
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Introduction

The surrounding economic reality is largely shaped by both economic phenomena and 
financial processes. For the majority of them identification, description or interpretation is 
a complex issue, frequently causing a multitude of problems. The reason for such complexity 
is a large number of interacting factors, often various in nature and character, multiplicity of 
layers and directions of their influence as well as other types of conditions or circumstances. 
That is why the models and methods used for their description and analysis ought to be, on the 
one hand, as simple as possible in numerical and interpretational terms, and on the other hand, 
provide possibly the most faithful reflection of reality in that regard. Therefore, unsurprisingly, 
linear models featuring the above listed characteristics in various shapes or forms constitute 
a fundamental tool for describing such types of phenomena and processes. Owing to their nature 
and character, a quantitative description of economic phenomena or financial processes must 
comprise two aspects: a statistical description and optimization. The underlining model for the 
description of such types of phenomena is a simple linear regression model. Despite the fact 
that it only links two factors, its role in various kinds of econometric studies is still relatively 
substantial. It is used, inter alia, in a sensitivity analysis, once the principle of ceteris paribus 
has been accounted for, an impact analysis and the force of influence that variables exert on 
one another, or in direct or indirect form it serves as a basic component of many different 
special-purpose models. Thus, recognizing its properties and nature in the widest and most 
varied aspects is an important issue, both from the theoretical and practical points of view. One 
of them involves the efficiency of OLS estimators of structural parameters, within the scope of 
which the first from variants of a completely new and methodogical approach is going to be 
presented being an important issue in this model. It will feature a simplicity and originality of 
solutions, cohesion of methodology, the use of enough simple tools, and dissimilarity from the 
outlines found in the literature.

1.	 Simple linear regression model

The model of a simple linear regression is defined as follows:

.y x= α +β + ε

where:
y	 –	 dependent variable,
x	 –	 independent variable,
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α and β	 –	 structural parameters,
ε	 –	 random component.
In the design of n-observations performed on y and x it is written as follows:

, 1, 2, ..., .i iy x i n= α +β + ε =

From a formal point of view, we have an additive composite of a random component with 
a simple linear dependency of variables. Such a design reflects the direct impact or influence 
of one factor and aggregation of all the other factors. It does not always entail direct economic 
reinforcement; nevertheless, it is highly convenient in numerical terms. The random component 
gives the model a stochastic character (with suitable assumptions) and it further determines its 
behaviour, since it collectively accumulates the influence of the variables omitted in the model. 
An adequate description of reality requires that suitable assumptions be taken in that regard. 
Typically, the so-called classic initial assumptions are made. The assumptions are as follows:

1.	 Invariance of an expected value. i.e. ( ) 0iE ε =  for all i = 1, 2, ..., n.
2.	 Variance stability ( )2 2

iD ε = σ for all i = 1, 2, ..., n.
3.	 Independence between one another, i.e. εi and εj are independent for all i and j.
4.	 Independence from xi: εi and xj are independent for all i and j (this is a natural assumption, 

since xj are non-random, i.e. εi distribution does not depend on xj).
5.	 Normality of distribution: εi have normal distributions for all i (a convenient assumption, 

though it may be weakened).
For the entire population the model equation assumes the following form:

( ) , 1, 2, ..., .i iE y x i n= α +β =

It defines the function of regression in a population.
The ordinary least square (OLS) method is the most popular method for structural 

parameters estimation. The structural parameter estimators obtained in the model with this 
method are expressed in the following formulas:

( )( )

( )
1

2

1

ˆˆ

ˆ

n

i i
i

n

i
i

y x

x x y y

x x

α β

β =

=

 = −

 − −


=
 −


∑

∑

.

The so-called OLS estimators are the functions of the following variables yi, xi,  
i = 1, 2, ..., n. 
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2.	 Efficiency of OLS estimators of structural parameters

The efficiency of the estimator is important and usually a desired feature from the point 
of view of its practical applications. In the simple regression model efficient are estimators 
that are received with the least squares method. The matter of proving the efficiency of OLS 
estimators α̂  and β̂  of the structural parameters of the simple regression model is separate 
and with one of the issues more placed in this model. The majority of literature on the subject 
points to, not without reason, to the multidimensional case (cf. e.g. Welfe, 2009). It is relatively 
simple to prove because it is directly based on deviations with uncomplicated apparatus. In the 
scheme of a uniform, general approach which we will present here being generally direct was 
not considered. One only knows a certain solution based on deviations and implemented directly 
from the multidimensional case (cf. Magnus, Katyszew, Pieriesieckij, 1997) as well as partial 
(cf. Maddala, 2006).

We will consider the matter of the OLS efficiency of estimators of structural parameters in 
the simple regression model:

, 1, 2, ..., .i i iy x i n= α +β + ε =

In the framework of the standard system of deliberations of this issue which we took 
it is possible to present a few different creatively and characteristically (analytical, synthetic) 
variants of proving the efficiency of OLS estimators of structural parameters in a simple 
regression model.

The basis of the considered scheme will be aggregated with an appropriate constant 
additive calibration of averages, single or double, from secondary constraints i.e. conditions of 
unbiasedness of the estimator and if necessary identities constraint of the covariantional nature 
and implemented in the dependencies arrangement of it and the variance of this estimator being 
the Cauchy-Schwarz inequality. The idea of constructing such an aggregated from secondary 
constraints conditional constraint under the angle of estimation the value of the variance of 
the estimator of the structural parameter of the simple linear regression model with the help of 
Cauchy-Schwarz inequality is quite new and so far has never been implemented in this problem. 
This constraint alone, even in its basic form, allows in a simple manner to synthetize just enough 
or even in an optimal way in the scheme of interested us here estimation of the threshold value 
of variance of the estimator both implied in the unbiasedness of the estimators secondary 
constraints, which directly but separately in this manner one cannot implement in any case.
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Because of the different complexity of the process of proving we will start from a simpler case 
i.e. from proving the efficiency of the OLS estimator ˆ.β  Here we have:

( )( )

( )

2
2 2 21 1 1

2 2 2 21 1

1 1 1 1

( ) ( )
ˆ ˆ, ( )

( ) ( ) ( )

n n n

i i i i i i n n
i i i

i i in n n n
i i

i i i i
i i i i

x x y y x y y x x y
c y D c

x x x x x x x x

σβ β σ= = =

= =

= = = =

− − − −
= = = = = =

− − − −

∑ ∑ ∑
∑ ∑

∑ ∑ ∑ ∑
.

Let 
1

n

i i
i

d y
=

β = ∑ be any linear unbiased estimator of the structural parameter β. From the 

condition of unbiasedness:

1 1 1 1 1
( ) ( ) ( ) ( ) ,

n n n n n

i i i i i i i i i
i i i i i

E E d y d E y d x d d x
= = = = =
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follow imposed on the weights secondary constraints:
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∑

In this form these constraints are not suitable for direct implementation in the Cauchy- 
-Schwarz inequality under the context of the efficiency of this OLS estimator. Bearing in mind, 
that the Cauchy-Schwarz inequality gives efficient estimation only in case of the one conditional 
constraint therefore in such a case like here before her implementing in the scheme of these 
secondary constraints and the variance of the estimator one must necessary initially perform the 
operation total of their transforming the type of the aggregation in one. Within this methodics 
we obtain them in the process of calibrating variables x  multiplying the first of them by x  i.e. 
the additive calibrator of these variables i.e. the number calibrating these variables by which we 
multiply the proper equality and then deduct the second. As a result of this procedure we get the 
conditional aggregated constraint:

1
( ) 1.

n

i i
i

d x x
=

− =∑

The value of this calibrator was chosen on the principle of direct borrowing from deep 
conditioning fastened inside the simple regression model, mainly from formulas of variances 
of OLS estimators but peculiarly β̂  and the same character of Cauchy-Schwarz inequality. 
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Implementing in the scheme of this constraint as being conditional and the variance 2 2

1

n

i
i

d
=

σ ∑  
of the estimator β  the Cauchy-Schwarz inequality we have:

2
2 2 2 2

1 1 1
( ) ( ) ,

n n n

i i i i
i i i

d x x d x x
= = =

 σ − ≥ σ − 
 

∑ ∑ ∑

which gives here:

2 2 2 2

1 1
( ) ,

n n

i i
i i

d x x
= =

σ − ≥ σ∑ ∑

hence:
2

2 2

2

1

ˆ( ) ( ),
( )

n

i
i

D D
x x

=

σ
β ≥ = β

−∑


As we see in this case all of these are imposed by the proper scaling of this variance.
We will now prove the efficiency of OLS estimator ˆ .α  This estimator has a slightly 

different character. On account of providing for the methodological cohesion both proves will 
be implemented above the methodology without changes at first. We have here:

2
2 2 2 2

2 21 1 1

1 1

( )1 1ˆ ˆ, ( ) .
( ) ( )

n n n
i
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i i i
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∑ ∑

Let 
1

n

i i
i

f y
=

α = ∑  be any linear unbiased estimator of the structural parameter α From the 

condition of unbiasedness:
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Multiplying first through the same as the earlier calibrator of  variables and deducting the 
sides from second we obtain additively and the one time calibrated initial, here the conditional 
aggregated constraint:
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1
( ) .

n

i i
i

f x x x
=

− = −∑
Implementing in the scheme of this constraint as conditional and the variance 2 2

1
.

n

i
i

f
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σ ∑
 
of 

the estimator α  the Cauchy-Schwarz inequality we have:
2

2 2 2 2

1 1 1
( ) ( ) ,

n n n

i i i i
i i i

f x x f x x
= = =

 σ − ≥ σ − 
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∑ ∑ ∑

which gives here:

( )2 2 2 2

1 1
( ) ,

n n

i i
i i

f x x x
= =

σ − ≥ σ −∑ ∑

and the result:
2

2 2

2

1

( ) .
( )

n

i
i

xD
x x

=

α ≥ σ
−∑



As one can see the received estimation is too weak to show the efficiency of this OLS 
estimator. The most probable reason of it seems to be the wrong calibration of variables x 
or the initial form of the secondary constraints what could translate into the conditional 
aggregated constraint and directly in effect too weak threshold estimation of the variance of 
the estimator. The relatively rather small gap in the final estimation here is very regular (1/n) 
as well as, the calibration of x variables here has being natural and deep authorisation inside 
the model impose to go towards the modification of this methodology and in trying to improve 
this threshold estimation and not search other qualitative approaches, without of course the 
function Lagrangean function. In this field we can only make the calibration of the weights of 
the distribution of this estimator. And indeed, by proper additional transformation this time the 
weights f of the distribution of estimator α  one can in a simple manner make this modification. 
The idea of the modification is to transform the weights f of the distribution of estimator α in 
the manner: 1 , 1, 2, ..., .i ig f i n

n
= − =  It is worthwhile paying special attention to the identical 

here value of moving the weights of distribution of the α  estimator and the gap received in the 
above estimation.

In the scheme of such calibration the weights of estimator α  the secondary constraints 
have the form:
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i
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i i
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g x x
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 = −
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Multiplying the first of them by the same as the earlier calibrator x  and deducting the 
sides from the second one we receive the following, equivalent that, aggregated constraint: 

( )
1

.
n

i i
i

g x x x
=

− = −∑

Moreover it is like earlier and obtained in the same way, but now it is related to the moved 
weights gi, i = 1, 2, ..., n i.e. calibrated. Implementing by analogy as earlier the Cauchy-Schwarz 
inequality for this dependencies scheme we have:

( ) ( )
2

22 2 2

1 1 1
,

n n n

i i i i
i i i

g x x g x x
= = =

 σ − ≥ σ − 
 

∑ ∑ ∑

which gives here:

( ) ( )2 22 2 2

1 1
,

n n

i i
i i

g x x x
= =

σ − ≥ σ −∑ ∑

hence we have an indirect estimation:

( )

2
2 2 2

21

1

.
n

i n
i

i
i

xg
x x=

=

σ ≥ σ
−

∑
∑

It is in addition the same kind of estimation which happened previously, but, the left-side 
is related to something completely different. Using the first of the secondary constraints we get 
the following dependence:

2
2 2 2 2

2 2
1 1 1 1 1 1 1

21 1 2 1 1 .
n n n n n n n

i
i i i i i i

i i i i i i i

g
f g g g g g

n n n nn n= = = = = = =

  = + = + + = + + = +      
∑ ∑ ∑ ∑ ∑ ∑ ∑

Hence as a result we have:

( )

2
2 2 2
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1

1 .
n

i n
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i
i

xf
n x x=

=

 
 
 σ ≥ σ +
 − 
 

∑
∑

The constant additive calibration of weights f of the distribution of estimator α added to 
the earlier obtained threshold estimation of the variance still one, constant i.e. first component 
in this case. Thanks to that we have here by the way also the distribution of the variance 2 ˆ( )D α  
of the OLS estimator α̂  to components with the full identification of sources.
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The obtained result is already satisfactory from a formal point of view of the targets. 
However, from the cognitive and interpretative side the feeling of being an unsatisfied 
researcher remains. The suggested here transformation of the variables, particularly weights f 
of the distribution of the estimator α  has a more combined rather than systematic character. 
Provided the calibration of variables x do not raise some greater technical doubts, the calibration 
of weights f of the distribution of the estimator α  is being top-down forced and does not already 
have such a direct interpretation inside it. Due to these circumstances we will still present the 
outline which is definitely more general than the above scheme of inference. It is crucial to 
notice here, that initial here resulted aggregated constraint:

1
( ) ,

n

i i
i

f x x x
=

− = −∑

is equivalent to equality:

1
( a)( ) ,

n

i i
i

f x x x
=

− − = −∑

where a – is any real number. From a formal point of view of these deliberations it is not only 
the parameter but the constant additive calibrator of the weights f of the distribution of the 
estimator α  and all at the same time the whole constraint. In just this constraint we have, unlike 
the previous case, two calibrators: one constant of variables x the second “parametric variable” 
of weights f of the distribution of the estimator.

This equality also results from the conditional secondary constraints of the estimator, where 
her receiving from initial their form is not already so direct as the straightforward aggregation 
used here so far and requires in dependence of the kind of approach their modification or 
supplements which, in other words, is being forced. It is possible to obtain it in the same manner 
as previously, where the secondary constraints must then have another form on entry:

( )

( )

1

1

a 1 a
,

a a

n

i
i
n

i i
i

f n

f x nx

=

=

 − = −

 − = −


∑

∑

that is initially parametrically calibrated already with additive weights f of the distribution of 
the estimator. It is equivalent to the initial one, but what is important here, is not aggregated 
directly from initial secondary constraints. It is also possibly different , if we want to preserve 
the unchanged form of the secondary constraints. In this case one needs to come from the 
extended of the known identity: 

1
( ) 0

n

i
i

x x
=

− =∑ for the arithmetic average set of equations:
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1

1

1
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i i
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=

=
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

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

− =


∑
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∑

what of course unchangeable leaves also the feasible here area and to aggregate in the two-
stage procedure i.e. sequentially after two, how it took place so far, appropriately and additively 
calibrated constraints of appearing in turn. At first from the first two after the calibration of 
variables x by average x  we get the standard here aggregated constraint: 

1
( )

n

i i
i

f x x x
=

− = −∑  like 

earlier and then like the same from him and last constraint i.e. the identity after the calibration of 
weights f of distribution of the estimator with parameter “a” already offer ultimate equality. And 
so this constraint is doubly additively calibrated: at first through constant x  and then through 
the variable parameter “a” Let us make a note, what is important here, such a situation i.e. the 
direct or indirect way of obtaining the ultimate aggregated constraint from secondary constraints 
has transferring into the comparative aspect of different methodologies, in it particularly in the 
context of applying here for example the Lagrangean function and the solutions obtained with 
this method. Implementing in the scheme of it as a condition and additively calibrated variance 
by calibrator “a” the Cauchy-Schwarz inequality we have:

2
2 2 2 2

1 1 1
( a) ( ) ( a)( ) ,

n n n

i i i i
i i i

f x x f x x
= = =

 σ − − ≥ σ − − 
 

∑ ∑ ∑

which gives here:

( )22 2 2 2

1 1
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and a further estimation of additively calibrated variance:

2 2
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21

1

( a) .
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n
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i
i
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=

σ
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−
∑

∑

The recalibration of her already gives the useful form a word of which is the estimation:

2 2
2 2 2 2 2 2 2 2

21 1 1 1 1

1

( a) 2a a 2a a ,
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n n n n n

i i i i n
i i i i i

i
i

xf f f f n
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=

σ   σ − = σ − + = σ − + ≥   
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∑ ∑ ∑ ∑ ∑
∑
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from which we receive directly one parametric lower of the same variance of the estimator α :

( ) ( )
2 2

2 2 2 2
1

2

1

2a a F (a).
( )

n

i
i

xD n
x x

=

σ
α ≥ + − σ = σ

−∑


In order to get in the frames of this scheme of calibration the best of all possible here lower 
estimations of the variance of this estimator that is the threshold we must find the maximal value 
of the right side of the above inequality with regard to the parameter “a” The threshold function 
of the variance of the estimator α is here a quadratic function of the parameter “a” hence it 
is possible to use the simple scheme i.e. use directly a proper for this function formula of the 
threshold calibrator. Quadratic function 1F (a)  of one variable:

2a – na2,

achieves the maximum value for:

max
2 1a ,

2n n
−

= =
−

and it is equal to 1/n, so we received, this time in the parametric variable scheme, the same result 
as previously. It is also obvious, that the above methodology, similarly as previously, which is 
a special case of her introducted into the threshold estimation of the variance obtained earlier as 
a result of copying the methodology of the verification of the efficiency of the OLS estimator β̂  
the same additional, in this case the first component, for need of its presence we recalled. Let us 
also still take note, what results from this scheme and what is closing the motif, past rather than 
closed until the end, that constant movement of the variance of the estimator α  is possible from 
the right infinite range 1 , ).

n
〈− ∞ This is a set of feasible values of the threshold here quadratic 

function: 2
1F (a) a 2a.n= −

The presented proof of efficiency of the OLS estimator α̂ in the whole comprehensive 
diameter though already very close, is not a full direct copy of the previous scheme until the 
end. Differences, at least perhaps already not typically qualitative, nevertheless are. Also from 
the cognitive side it is not truly complete, because both the same conception of the calibration 
of weights f of the distribution of the estimator as well as the value of this calibrator further 
remain contextually loose inside the model i.e. inconsistent with the rest and in some ways 
isolated from the whole issue, even though the very choice was already made in a systematic 
manner. The cause of it is still unidentified and not-interpreted properly until the end the form 
of the conditional aggregated constraint, being the core of this methodology. Crucial in the 
context of explaining the cohesion and the uniformity it turns out here to be only not entirely 
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a probable random observation, because however implied certain here with past conditioning 
and circumstances which right away we will see, resulting among others from the rushing here 
symmetry of variables pulling the suspicion also behind oneself the symmetry of calibrators. 
In this interpretation a received optimal value of the calibrator 1/n is the average of weights f  
of the distribution of the estimator α . The conditional aggregated constraint ultimate for the 
estimator α  in this interpretative scheme already has a symmetrical relative to the variables 
appearing here and the weights and their calibrators form and what is important, typical:

( )( )
1

.
n

i i
i

f f x x x
=

− − = −∑

Because it appears to the left side covariantional form that is fully taken back to the averages.
The above form of the conditional aggregated constraint already takes an effect uniform 

and cohesive methodically approach to proving the efficiency of both OLS estimators of the 
model of the simple linear regression in the arrangement of the form determined for them the 
Cauchy-Schwarz inequality.

In the arrangement of this constraint the following forms of the Cauchy-Schwarz inequality 
can be here implemented:

	 I: 	 ( ) ( ) ( )( )
2

2 22 2

1 1 1
,

n n n

i i i i
i i i

f f x x f f x x
= = =

 σ − − ≥ σ − − 
 

∑ ∑ ∑ 	

for the linear unbiased estimator of the structural parameter α and

	 II:	 ( ) ( ) ( )( )
2

2 22 2

1 1 1
,

n n n

i i i i
i i i

d d x x d d x x
= = =

 σ − − ≥ σ − − 
 

∑ ∑ ∑ 	

for the linear unbiased estimator of the structural parameter β
or, which identical, in the equivalent shorter, with the right side like so far:

	 I:	 ( ) ( ) ( )
2

2 22 2

1 1 1
,

n n n

i i i i
i i i

f f x x f x x
= = =

 σ − − ≥ σ − 
 

∑ ∑ ∑ 	

for the linear idle estimator of the structural parameter α and

	 II:	 ( ) ( ) ( )
2

2 22 2

1 1 1
,

n n n

i i i i
i i i

d d x x d x x
= = =

 σ − − ≥ σ − 
 

∑ ∑ ∑ 	

for the linear idle estimator of the structural parameter β.
The above forms of the Cauchy-Schwarz inequality are most general for every possible 

arrangement of the calibration of the variables x and weights f or d of the distributions of both 
estimators with averages which as well are completely symmetrical. Well more here effective on 
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account of the form and character of secondary constraints, particularly first. In the framework 
of the adopted above concept of the ultimate conditional aggregate constraint and answering 
it in the form of the Cauchy-Schwarz inequality in the target arrangement of the threshold 
estimation the value of the variance of the estimator from the low still referring to the fact 
is necessary why in the initial inequalities and in consequence in the conditional aggregated 
constraints or inversely just averages x , f  and d  were applied, rather than other constant values 
acting as calibrators of present here variables and weights of distributions of the estimators 
doubly already calibrated additively the ultimate conditional aggregated constraint. In all of 
the considered cases we are dealing with quadratic forms of the same spherical type in a direct 
straight or “compound” i.e. multiplied form. It is known that the quadratic form 2

1
( )

n

i
i

x x
=

−∑  

achieves the minimal value just for the arithmetic mean i.e. x . In the initial here forms of 
the Cauchy-Schwarz inequality we have such just left-side “ quadratic minimal” situation not 
always for very sums of squares ( )2

1
a

n

i
i

f
=

−∑  and ( )2

1
b

n

i
i

d
=

−∑ and 2

1
( )

n

i
i

x x
=

−∑
 
but, what is also 

in this separabel arrangement equivalent, in their products. The area of largest their sensitivities 
is because appropriate minimax descent together the minimum of the left hand with a maximum 
or a constancy right hand or inversely. Such inequality is so in the arrangement of choice about 
the averages as calibrators being the strongest, because:

( ) ( ) ( )2 2 2 2
1 1

1 1
min a,b min a ( b) , ,

n n

i i
i i

f x f x
= =

σ Φ = σ − − = σ Φ∑ ∑

for the estimator α  and

( ) ( ) ( )22 2 2 2
2 2

1 1
min a,b min a ( b) , ,

n n

i i
i i

d x d x
= =

σ Φ = σ − − = σ Φ∑ ∑

for the estimator β  because determined in this way functions ( )1 a,bΦ and ( )2 a,bΦ  achieve 
the smallest values exactly in points ( ),f x  and ( ),d x  appropriately.

Not only the considered above issue but also and other, easily noticeable, “are wiping” 
very close of power transferring to the effectiveness of the Cauchy-Schwarz inequality used here 
for the inference which is already directly being associated with optimization procedures. Due to 
the importance of, the already signalled as a matter of fact earlier, element of the approach it will 
be discussed individually and in the context most general from here possible: at first constant and 
then of the variable calibration of variables and weights of distributions but further alone only 
weights of the distributions of estimators. This motif is very closely related and already directly 
with optimization and has such a character. It is also in this problem the scope which is completely 
innovative and alone in itself constitutes a separate, sharply outlined cohesive whole.
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Conclusions

The proposed approach to prove the efficiency of OLS estimators based on the Cauchy-
Schwarz inequality and certain general properties, taking into account classical, often used 
associations seems to a large extent to simplify deliberations related to the simple linear 
regression model which brings also some new ideas to it. The simplicity of the inferences 
proofs combined with the ease and comprehensibility of the approach may predestine it to gain 
a place in the literature and the didactics of the subject. Simultaneously, it further proves that 
new approaches or solutions can still be found in models that, at present, are considered to be 
classic. Let us add still to the above suggested methodology that it has more distant and broader 
generalizations.
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