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Introduction

First of all we will present some elements on the interest theory that are applied in financial 

operations, such as credits and deposits. The interest for a financial operation represents the sum 

added periodically to the initial sum S0 during the operation time T until its end. The interest can 

be simple or compound1.

Denoting by St the amount at the moment t from the initial moment to the maturity T, and 

by R the interest rate (the ratio of the initial sum added periodically), we obtain:

 ( )0 1tS S R t= + ⋅   (1)

The above interest rate can be expressed either as a number between 0 and 1 (the ratio 

between the periodically added sum and the initial one), or as percentage: 100 · R = p%. If we 

want to compute the initial capital in terms of the final capital, the duration of the operation and 

the interest rate, we obtain:

 0 1
TSS

R T
=

+ ⋅
  (1’)

Next, we define the equivalence by interest of two financial operations. For this purpose 

let us suppose that the financial operations A and B are decomposed in m, respectively n simple 

financial operations, characterized by initial sums ( )
0

iS , the interest rates Ri and the duration Ti, 

respectively by initial sums ( )
0

jS ′ , the interest rates jR′  and the duration jT ′ .

Definition 1. The financial operations A and B are equivalent by interest in the case of 
simple interest, and we write ;üA B∼  if:

( ) ( )
0 0

1 1

m n
i j

i i j j
i j

S R T S R T′ ′ ′

= =

⋅ ⋅ = ⋅ ⋅∑ ∑ .

By a multiple replacement operation we maintain two of the three elements that define 

the operation (the initial capitals, Sk, the interest rates, Rk, and the durations, Tk), and the third 

element becomes identical for all the n components, finally obtaining an equivalent operation. 

The initial expected replacing capital is:

 1

1

n

ü
k

n

k k
k

ü
S

R T
=

=

∑ ⋅ ⋅
=

∑ ⋅
  (2)
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The annual expected replacing interest rate is:

 1

1

n

k k k
k

n

k k
k

S R T
R

S T
=

=

∑ ⋅ ⋅
=

∑ ⋅
  (3)

The expected replacing maturity is:

 1

1

n

k k k
k

n

k k
k

S R T
T

S R
=

=

∑ ⋅ ⋅
=

∑ ⋅
  (4)

By a unique replacement operation we fix first two of the three elements (the initial capital, 

the annual interest rate and the duration) for all the n components, and next we fix the third 

element so that we obtain an equivalent financial operation by simple interest2. The initial 

unique replacing capital is:

 1

n

k k k
k

S R T
S

R T
=
∑ ⋅ ⋅

=
⋅

  (5)

The annual unique replacing interest rate is:

 1

n

k k k
k

S R T
R

S T
=
∑ ⋅ ⋅

=
⋅

  (6)

The unique replacing duration (maturity) is:

 1

n

k k k
k

S R T
T

S R
=
∑ ⋅ ⋅

=
⋅

  (7)

The above equivalence can be defined in terms of the actual value, i.e. the sum of initial 

capitals if we know the final capitals, the interest rates and the maturities. More precisely, we 

have the following definition:

Definition 2. Let A and B be financial operations that are decomposed in n, respectively 
m simple financial operations. Denote by Si, Ri and Ti, respectively by jS ′ , jR′  and jT ′  the final 
capitals, the interest rates and the maturities of components of the two financial operations. 
The financial operations A and B are equivalent by actual value in simple interest regime if
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( ) ( )
1 11 1

n m
ji

i ji i j j

SSAV A AV B
R T R T

′

′ ′
= =

ℵ
+ ⋅ + ⋅∑ ∑ .

Analogously to the case of equivalence by interest we define the financial operation with 

multiple substitutions and the financial operation with unique substitution, as follows. The 

expected final replacing capital is:

 
1

1

1
1

1

i

i i

i i

n
S
R T

i
n

R T
i

S
+ ⋅

=

+ ⋅
=

∑
=
∑

  (8)

The expected replacing annual interest rate is computed by solving the nonlinear equation with 

the variable R:

 
1 11 1

n n
i i

i ii i i

S S
R T R T= =

=
+ ⋅ + ⋅∑ ∑   (9)

and the expected replacing maturity is computed by solving the nonlinear equation with the 

variable T:

 
1 11 1

n n
i i

i iü

S S
R T R T= =

=
+ ⋅ + ⋅∑ ∑   (10)

In the case of the unique replacing operations we have closed formulae for the three elements. 

The unique replacing final capital is:

 ( )
1

1
1

n
i

i i i

Sü
R T=

= + ⋅ ⋅
+ ⋅∑   (11)

the unique replacing interest rate is:

  
1

1

1 1
i

i i

n
S
R T

i

SR
T

+ ⋅
=

 
 

= − 
∑ 

 

  (12)

and the unique replacing maturity is:
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1

1

1 1
i

i i

n
S
R T

i

ST
R

+ ⋅
=

 
 

= − 
∑ 

 

  (13)

In the case of compound interest the maturity is divided into n periods T1, T2, ..., Tn. The 

final capital is in this case3:

 ( )0
1

1
n

T i i
i

S S RT
=

= ⋅ +∏   (14)

where S0 is the initial capital, and Ri is the interest rate on the period Ti.

Usually T is divided into equal time periods, the common length of these time periods 

becoming time unit (Ti = 1). If the interest rate is constant, R, over all the duration T, the formula 

(14) becomes:

 ( )0 1 T
Tü = +   (14’)

Remark 1. Sometimes the maturity T, is not supposed to be an integer, considering 

1nT n T += +  with ( )1 0,1nT + ∈ . In this case the above value ST is the trading solutionand the 
rational solution is ( ) ( )0 11 1n

T nS S R R T += + ⋅ + ⋅ .
In the case of deposits at a given term, also the solution with lost interest is used: 

( )0 1 n
TS S R= + .

The initial capital is4 computed using (14) and (14’), as in the case of the simple interest. 

We obtain the general formula:

  
( )

0

1
1

T
n

i i
i

SS
RT

=

=
∏ +

  (15)

and in the particular case when Ti = 1 and Ri = R:

 
( )0
1

T
T

SS
R

=
+

  (15’)

Obviously, we can derive analogue formulae for the rational solution and for the solution 

with the lost interest.
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Analogously to the case of the simple interest we define the equivalence by interest and 

the equivalence by actual value. For this we denote by 0TD S S= −  the interest of a financial 

operation, where ST is the final capital computed using (14). Given the final capital, the actual 

value is the initial capital computed using (15).

Definition 3. Consider the financial operations A and B that are divided in m, respectively 
n financial operations. Suppose also that their maturities are Ti, 1,i m=  and jT ′ , 1,j n= , which 
are decomposed in mi, respectively nj sub-periods with constant interest rates.

Given the initial capitals, the financial operations A and B are called equivalent by 
compound interest if the sum of interests for the components of A is equal to the sum of interests 
for the components of B.

Given the final capitals, the financial operations A and B are called equivalent by actual 
value in compound interest regime if the sum of actual values for the components of A is equal 
to the sum of actual values for the components of B.

For replacing operations, we suppose first of all that each component of a financial 

operation has the interest rate constant during its period. Otherwise, in both cases5 we solve the 

equation:

 ( ) ( )
1

1 1
n

T
i i

i

R R T
=

+ = + ⋅∏   (16)

Therefore we can next assume that the financial operation A is decomposed in n 

components, having the interest rates Ri and the maturities Ti, where 1,i n= .

Next, we define the multiple replacing operations and the unique replacing operations in 

the case of equivalence by compound interest.

The initial expected replacing capital is:

 
( )( )

( )
1

1

1 1

1

i

i

n T
i i

i
n T

i
i

S R
S

R n
=

=

∑ + −
=

∑ + −
  (17)

where Si are the initial capitals.

The expected replacing annual interest rate is computed by solving the nonlinear equation 

with the variable R:

 ( )( ) ( )( )
1 1

1 1 1 1i i
n n

T T
ü

i i

S R S R
= =

+ − = + −∑ ∑   (18)
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and the expected replacing maturity is computed by solving the nonlinear equation with the 

variable T:

 ( )( ) ( )( )
1 1

1 1 1 1i
n n

T T
i i i i

i i

S R S R
= =

+ − = + −∑ ∑   (19)

The initial unique replacing capital is:

 
( )( )
( )( )

1
1 1

1 1

i
n T

i i
i

T

S R
S

n R
=
∑ + −

=
+ −

  (20)

The unique replacing annual interest rate is:

 
( )( )

1

1
1 1

1 1

T
i

n T
i i

i
S R

R
nS

=

 ∑ + − 
= + − 
 
 

  (21)

and the unique replacing maturity is:

 

( )( )

( )

1
1 1

ln 1

ln 1

n Ti
i i

i
S R

nS

T
R

=
∑ + − 

+  
 =

+
  (22)

The replacing operations in the case of actual value in compound interest regime are defined as 

follows. The final expected replacing capital is:

 ( )

( )

11

1
11

i
Ti

i

Ti
i

n
S

Ri
n

Ri

S +=

+=

∑
=
∑

  (23)

where Si are the final capitals.

The expected replacing annual interest rate is computed by solving the nonlinear equation 

with the variable R:

 
( ) ( )1 11 1i i

n n
i i

T T
i i i

S S
R R= =

=
+ +

∑ ∑   (24)
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and the expected replacing maturity is computed by solving the nonlinear equation with 

variable T:

 
( ) ( )1 11 1 i

n n
i i

T T
i ii i

S S
R R= =

=
+ +

∑ ∑   (25)

The final unique replacing capital is:

 ( )
( )1

1
1 i

n
T i

T
i i

SS R
R=

= + ⋅
+

∑   (26)

the unique replacing annual interest rate is:

 

( )

1

11

1

T

i
Ti

i

n
S

Ri

SR

+=

 
 

= − 
∑ 

 

  (27)

and the unique replacing maturity is:

 
( )

( )
11

ln ln

ln 1

i
Ti

i

n
S

Ri
S

T
R

+=

 − ∑ 
 =
+

  (28)

Next, we present some notions on queueing systems and queueing networks. These 

models can be applied in a bank model because they use the exponential models for times/

Poisson models for the number of customers. The Poisson models are also used in finances for 

modeling shocks. Kleinrock6 and Garcia et al.7 presented the service systems with bulk arrivals 

and with bulk services. Technically, these service systems are built starting from the M/M/1 

system, for which the interarrival time is ( )ü λ , the service time is ( )exp µ , one server and 

infinite queue. The difference is that instead of a single customer we have a group of k customers 

that arrive and are served one by one by the channel of the system.

It is proved that these service systems are equivalent to the service system with ( )exp λ  

interarrival time and ( )kE µ  service time, respectively with ( )kE λ  interarrival time and 

( )exp µ  service time. This is called the method of phases in the above mention books.

According to Zbăganu8, a light tail distribution is the distribution of a random variable X 

such that the moments’ generating function:

 ( )XE e ξ−    (29)
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is finite for any ξ  complexes number in the neighborhood of zero. Otherwise, we have a heavy 

tail distribution.

A heavy tail distribution is the Pareto distribution9, for which the cdf is:

 ( )
( )1 1 , if 0

1 exp , if 0

a t c

F t
x c


  − − ≠   

  − − =  
 

   (30)

From the presented method of moments, it results that the r-th moment exists if and only 

if 1a
r

> − . We can derive from here that the Pareto distribution is light tail for 0a ≥ , and heavy 

tail for 0a < .

Another heavy tail distribution is presented in Drăgan and Simionescu10, namely the 

inverse Weibull distribution, with the cdf:

 ( ) 1exp kF t
tθ

 = − ⋅ 
  (31)

where , 0kθ > .

In the case of Pareto distribution, the method of moments 1
3

a > − 
 

 leads to a nonlinear 

equation in a, involving the skewness, G. The other two parameters are computed in terms of a, 

and the other two moments11:

 
( ) ( )
( )

2
2

2

1

1 1 2

2 1 1 2
1 3

bX c
a
bS

a a

a a
G

a


 = +
 +
 =

+ + ⋅


+ + ⋅ = + ⋅

  (32)

If we use the maximum likelihood method we obtain ( )min ic X= , and the other two 

parameters are estimated from the nonlinear system:
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 ( )
( )

1

1

1

ln 1

n
i

i i

n
i

i

X c n
b a X c a

a X c
n a

b

=

=

−
= − − −


 − − = − ⋅   

∑

∑

 (32’)

For the inverse Weibull distribution, used by Drăgan and Simionescu12 to model complex 

technical systems, the maximum likelihood method is used. For fixed 0k >  we have to solve 

the equation:

 2
1

ln 1 1 0
n

k
i i

L n
Xθ θ θ =

∂
= − + =

∂ ∑   (33)

and from here:

 
1

1 1n

k
i in X

θ
=

= ∑   (33’)

2. Modeling using the compound Poisson processes

Next we define the compound Poisson process13 that will be useful in our model.

Definition 4. A compound Poisson process with the intensity λ  and the jump size f  is 
a stochastic process:

1

tN

t i
i

X Y
=

=∑ ,

where Nt is a Poisson process with the intensity λ , and the random variables Yi, 1i ≥  are 
independent and they have the same distribution, f.

If the distribution f is such that 1iY =  with the probability 1, we have t tX N= . Therefore 

the Poisson process is a particular case of the compound Poisson process. We have the following 

property of the compound Poisson processes.

Proposition 1. The stochastic process ( ) 0t t
X

≥
 is a compound Poisson process if and only 

if it is a Lévy process and its sample paths are piecewise constant functions.
Next we define the Lévy process14.

Definition 5. A Lévy process is a stochastic process Xt such that:
(a)  Independent increments: for any sequence of time moments t1 < t2 < ... < tn, the random 

variables Xt1, Xt2 – Xt1, ..., Xtn – Xtn–1, are independent.
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(b)  Stationary increments: for any t, h > 0 the distribution law of Xt+h – Xt depends only on h, 
and it does not depend on t.

(c)  Stochastic continuity: for any ɛ > 0 we have ( )
0

0lim t h t
h

P X X ε+
→

− > = .
The examples of the Lévy processes are the Brownian motion, where the distribution law of 

t h tX X+ −  is normal, and the above mentioned compound Poisson processes. Only the Brownian 

motion has continuous paths. It means that the point (c) from Definition 5 does not imply that 

sample paths are continuous. In fact, any Lévy process has the Lévy-Itô decomposition, as 

follows15. First of all, we define the Lévy measure.

Definition 6. Let Xt be a Lévy process. The Lévy measure is defined on the Borelian sets in 
R (or in Rd if the dimension of the process is d > 1) such that:

( ) [ ]{ }( )# 0,1 0,t tA E t X X Aν = ∈ ∆ ≠ ∆ ∈ ,

i.e. the measure of the number of jumps that have the value in A.
Theorem 2. Let Xt be a Lévy process. There exist γ > 0, the Brownian motion Bt , the 

compound Poisson process 1
tX  and the family of compound Poisson processes ( )

0tX ε

ε >
  such 

that:
1

t t t t
0

X t B X Xlim ε

ε
γ= ⋅ + + +



,

where 1
tX  has Lévy measure greater than one, and ε

tX  has the Lévy measure between ɛ and one.

If in the definition of the compound Poisson process Yi we change the unit of time and 

same for unit of Yi (which is money unit in our case), we can consider the shocks on credits and 

on the deposits modeled as Poisson processes. The same we can say about absorbing the shocks. 

Now, using the well-known exponential distribution of times between events if the number of 

events per time unit is Poisson (same parameter λ), we can represent each type of credit/deposit 

as a node in a queueing network with shocks being the money the bank should pay (for credits 

or for interests at deposits), and services being the money the bank should receive (the interests 

paid by the customers, and the money received for deposits).

First we have to define the Jackson queueing network16. 

Definition 7. The Jackson queueing network is an open queueing network with n nodes, 
exponential external arrivals ( )exp , 1,i i nλ = , exponential services ( )exp , 1,i i nµ = , and, 
when they finish their service at the node i, a customer goes to the node j with the probability pij 

ijp , or leaves the network with the probability pi0.
We can prove17 that the total arrivals (external or from another node) are ( )exp , 1,i i nΛ = , 

where Λi is the solution of the system:
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1

n

ji j i i
j

P λ
=

Λ + = Λ∑   (34)

The Jackson queueing network is stable if Λi < μi.

The Jackson queueing network representing a bank is in Figure 1, that follows.

Fig. 1. The model for a bank using the Jackson queueing network
Source: own research.

In the above graphics, we have denoted the average borrowed sum per month by λ, and 

the average deposited sum per month by μ. The node B is the bank, the node C represents all 

the credits types contracted by the bank, and D is a similar node, but it represents the deposits.  

Cnip;i1 
while Cnip;i2

 represent the mortgage credit type i1, respectively non-mortgage credit type i2. 

Correspondingly, Di3
 is the deposit type i3.

The only external arrivals are exp (λ) in B. We take the services exp (μ) in B, C, D, and other 

nodes with the parameter of this service such that it is large enough such that the corresponding 

nodes are stable (the interarrival Λj from system (29) are less than μB). For instance μB = λ + μ. 
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The other services are the expected sums that the bank must receive in one month from the 

corresponding type of credit/deposit. It means the expected sum of payments in the case of 

credits if they are actually paid (no historical debts, or defaults), and the average total sum 

deposited in deposit type i3 for deposits.

The probabilities from C and D are proportional to the sums borrowed for the corresponding 

credit type/deposited for the corresponding deposit type. For credits we have two corresponding 

nodes: P(ij) and IP(ij), i.e. the historical debts, respectively the default. They have probabilities 

proportional to the sums that have not been yet paid by the customers who have only historical 

debts, respectively they are in the default situation. The probability to leave the network is 

proportional to the sum paid at (on?) time. PD3S3 is equal to 3

3

i

i

λ
µ , where μi3 is the expected sum 

deposited in the deposit type i3, and λi3
 is the average sum paid by the bank per month as interest. 

Note that the sum of probabilities for the exit from each node is one. If from a node we can 

move only to another given node, the probability is one, as we have represented in the graphics.

When the Jackson queueing network is not stable, the bank can increase μ (the expected 

total sum deposited). But it means that the bank must pay interests, hence it involves a long 

term loss.

Another method is to decrease the probabilities of historical debts, and, more importantly, 

the probabilities of default. Both can be done by the stress test imposed by The National Bank 

of Romania. It means that, before receiving a credit, a customer must complete a questionnaire 

in order to inform the bank about their financial situation (and attaching some documents that 

confirm the answers are true). According to the answers (checked), the bank decides to grant the 

credit (considering that the customer will never be in the situation of historical debts, or even in 

the situation of default), or not. We denote by α the first degree error, i.e. the probability that the 

bank decides that the customer will not be in the corresponding situation, while in fact they will 

(consequently, the bank makes the error to give a credit to a customer that will not pay their debt 

in time). The second degree error β is the probability that the bank decides that the customer will 

be in the corresponding situation, while in fact they will not (consequently the bank refuses the 

customer, and the customer receives the same credit from another bank, and they will pay their 

debt in time). In both cases the bank makes the wrong decision: either to give the credit to a bad 

customer (α), or to refuse the credit to a good customer (β). These errors depend on the situation 

that is taken into consideration (historical debts, respectively default).

Next we consider the worst case, i.e. the default, and we act in the same way as in the case 

of historical debts. The corresponding interarrival time parameter from (29) is denoted by Λ, 
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and the service parameter (the expected sum that the bank must receive in a month for the given 

credit type) by μ. The initial loss of the bank due to defaults is:

 { }, 1, 2
j jC Ipierd P jµ= ⋅ ∈   (35)

After applying the stress test, Λ decreases to Λʹ, because the probability of default has 

decreased by a multiplication by α. Consequently the new loss of the bank is:

 ( )
j j j jC I C Epierd P Pµ µ µ′ ′ ′ ′ ′= ⋅ + − ⋅   (35’)

where we have marked the new values after the test as “prime”. They are:

 
( )

( )

1

1

1 .

C Ij j

j j C I C Ej j j j

j j j j j j

P
C I P P

C E C I C P

P

P P P

α

α β

µ µ β

⋅

⋅ + ⋅ −
 ′ =

 ′ ′= − −
 ′ = ⋅ −

  (35”)

Conclusions

In the Lévy process, the Brownian motion from the Lévy-Itô decomposition, as we can see 

in Geman, Madan and Yor18, captures the stable part of the process. The shocks, i.e. the problem 

with which this paper deals with, are captured by the Poisson part. It remains an open problem 

how we can model shocks using the third term from the Lévy-Itô decomposition19.

When we compute the new loss of a bank we must take into account that due to the second 

degree error the bank loses customers, hence μ decreases as in (30”). An open problem is to 

check how the stress test and its errors influence the deposits. Therefore the loss of the bank 

decreases due to the falling probability of default/historical debts. But it must be added the term 

arisen from loss of customers, due to the second order error.

In the case of non-mortgage credits the bank can reschedule the credit and in this way 

decrease the “number of customers”, i.e. the sum the bank must receive the next month (μ is 

the sum that the bank must receive next month in the case of lack of historical debts and of the 

defaults).

Note that the node to which the probability is one is the bank (B) in the case of mortgage 

credit, respectively the credits node, C if the credit is non-mortgage. This is because the bank 

sells the customer’s property in the first case, but the customer takes a credit for buying it.

When at a node that represents a credit the current payment come together with historical 

debts, we can consider bulk arrivals at that node. Therefore, according Kleinrock20 and 
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Garcia et al.21, we can consider Erlang services. But an Erlang distribution is also a light tail one, 

because it is the convolution of k exponential services. A problem open for further investigation 

isthe queueing network from Figure 1 in this case, or in the case when services become heavy 

tail ones, as in Singh and Guo22 and in Drăgan and Simionescu23.

The same problems can be studied in the case of arrivals, that model the case of lack of 

confidence in banks, when banks have money, but they have only few credit customers.

Notes

1 Purcaru, Purcaru (2005).
2 Ibidem.
3 Ibidem.
4  Ibidem.
5  Ibidem.
6 Kleinrock (1975).
7 Garcia et al. (1990).
8 Zbăganu (2004).
9 Singh, Guo (1995).

10 Drăgan, Simionescu (2013).
11 Singh, Guo (1995).
12 Drăgan, Simionescu (2013).
13 Cont, Tankov (2004); Applebaum (2009).
14 Ibidem.
15 Applebaum (2009); Cont, Tankov (2004).
16 Garcia et al. (1990); Kleinrock (1975); Ciuiu (2009).
17 Garcia et al. (1990); Kleinrock (1975).
18 Geman, Madan, Yor (2001).
19 Asmussen, Rosinski (2001), pp. 482–493.
20 Kleinrock (1975).
21 Garcia et al. (1990).
22 Singh, Guo (1995).
23 Drăgan, Simionescu (2013).
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