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Abstract: The paper presents a concept and the outline of the implementation of a hybrid approach 
to modelling and solving constrained problems. Two environments of mathematical programming 
(in particular, integer programming) and declarative programming (in particular, constraint logic program-
ming) were integrated. The strengths of integer programming and constraint logic programming, in which 
constraints are treated in a different way and different methods are implemented, were combined to use the 
strengths of both. The hybrid method is not worse than either of its components used independently. 
The proposed approach is particularly important for the decision models with an objective function and 
many discrete decision variables added up in multiple constraints. To validate the proposed approach, two il-
lustrative examples are presented and solved. The first example is the authors’ original model of cost optimi-
sation in the supply chain with multimodal transportation. The second one is the two-echelon variant of the 
well-known capacitated vehicle routing problem. 
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1 Introduction 
 
The vast majority of models [1-4] of decision support 
and/or optimisation in manufacturing, distribution, 
supply chain management and so on have been formu-
lated as the mixed integer linear programming (MILP) 
or integer programming (IP) problems, and solved 
using the operations research (OR) methods. Their 
structures are similar and proceed from the principles 
and requirements of mathematical programming. 
The constraint-based environments have an advantage 
over traditional methods of mathematical modelling in 
that they work with a much broader variety of interre-
lated constraints (resource, time, technological 
and financial) and allow producing “natural” solutions 
for highly combinatorial problems. 

A Constraint-based environments 

We strongly believe that the constraint-based environ-
ment [5-7, 27] offers a very good framework for repre-
senting the knowledge and information needed for the 
decision support. The central issue for a constraint-
based environment is a constraint satisfaction problem 
(CSP). CSPs are mathematical problems defined as 
a set of elements whose state must satisfy a number 
of constraints. CSPs represent the entities in a problem 
as a homogeneous collection of finite constraints over 
variables, which are solved using constraint satisfaction 
methods. CSPs are the subject of intense study in both 

artificial intelligence and OR, since the regularity 
in their formulation provides a common basis for ana-
lysing and solving the problems of many unrelated 
families [5]. Formally, a CSP is defined as a triple 
(X,D,C), where X is a set of variables, D is a domain 
of values and C is a set of constraints. Every constraint 
is in turn a pair (t,R) (usually represented as a matrix), 
where t is an n-tuple of variables and R is an n-ary 
relation on D. An evaluation of the variables is a func-
tion from the set of variables to the domain of values, 
v:X→D. An evaluation v satisfies constraint 

((x1,…,xn),R) if (v(x1),..v(xn))R. A solution is an evalu-
ation that satisfies all constraints. 

CSPs on finite domains are typically solved using 
a form of search. The most widely used techniques 
include variants of backtracking, constraint propagation 
and local search. Constraint propagation embeds any 
reasoning that consists in explicitly forbidding values 
or combinations of values for some variables of a prob-
lem because a given subset of its constraints cannot be 
satisfied otherwise [26]. 

CSPs are frequently used in constraint programming 
(CP). CP is the use of constraints as a programming 
language to encode and solve problems. 

Constraint logic programming (CLP) is a form of CP, 
in which logic programming is extended to include 
concepts from constraint satisfaction. A constraint logic 
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program is a logic program that contains constraints 
in the body of clauses. Constraints can also be pre-
sent in the goal. These environments are declarative. 

The declarative approach and the use of logic pro-
gramming provide incomparably greater possibilities 
for decision problems modelling than the pervasive 
approach based on mathematical programming. 

 
2 Motivation and state of the art 
 
Based on [1-4], and our previous work [6, 8-12], we 
observed some advantages and disadvantages of these 
environments.  

An integrated approach of CP and mixed integer pro-
gramming (MIP) can help to solve optimisation prob-
lems that are intractable with either of the two methods 
alone [13-16]. Although OR and CP have different 
roots, the links between the two environments have 
grown stronger in recent years. 

Both MIP/MILP/IP and finite domain CP/CLP involve 
variables and constraints. However, the types of the 
variables and constraints that are used, and the way 
the constraints are solved, are different in the two ap-
proaches [16]. 

MILP relies completely on linear equations and ine-
qualities in integer variables, i.e., there are only two 
types of constraints: linear arithmetic (linear equations 
or inequalities) and integrity (stating that the variables 
have to take their values in the integer numbers). 
In finite domain CP/CLP, the constraint language is 
richer. In addition to linear equations and inequalities, 
there are various other constraints: disequalities, non-
linear and symbolic (alldifferent, disjunctive, cumula-
tive, etc). 

In both MILP/MIP and CP/CLP, there is a group 
of constraints that can be solved with ease and a group 
of constraints that are difficult to solve. The easily 
solved constraints in MILP/MIP are linear equations 
and inequalities over rational numbers.  

Integrity constraints are difficult to solve using mathe-
matical programming methods and often the real prob-
lems of MIP/MILP make them NP hard problems. 

In CP/CLP, domain constraints with integers and equa-
tions between two variables are easy to solve. The sys-
tem of such constraints can be solved over integer 
variables in polynomial time. The inequalities between 
two variables, general linear constraints (more than two 
variables) and symbolic constraints are difficult 

to solve, which makes real problems in CP/CLP NP-
hard. This type of constraints reduces the strength 
of constraint propagation. As a result, CP/CLP is inca-
pable of finding even the first feasible solution. 

Both approaches use various layers of the problem 
(methods, the structure of the problem, data) in differ-
ent ways. The approach based on OR focuses mainly 
on the methods of optimisation and, to a lesser degree, 
on the structure of the problem (Fig. 1). However, 
the data are completely outside the model. The same 
model without any changes can be solved for multiple 
instances of data. In the approach based on CP, due 
to its declarative nature, the methods are already built-
in. The data and structure of the problem are used 
for its modelling (Fig. 1). 

 

Figure 1. Layers used in the solution of the problem 
(OR and CP/CLP)  

 

Figure 2. Layers used in the solution of the problem 
(HYBRID) 

 
The motivation and contribution behind this work was 
to create a hybrid method for constrained decision 
problems modelling and optimisation instead of using 
mathematical programming or CP separately.  

It follows from the above that what is difficult to solve 
in one environment can be easy to solve in the other.  

Moreover, such a hybrid approach allows the use of all 
layers of the problem to solve it (Fig. 2). 
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The hybrid method is not inferior to its component 
elements applied separately. This is due to the fact that 
the number of decision variables and the search area 
are reduced. The extent of the reduction directly affects 
the effectiveness of the method. 
As mentioned in Section 1, the vast majority of deci-
sion-making models for constrained problems in pro-
duction, logistics and supply chain are formulated in 
the form of mathematical programming (MIP, MILP, 
IP). 

Due to the structure of these models (summing of dis-
crete decision variables in the constraints and the objec-
tive function) and a large number of discrete decision 
variables (integer and binary), they can only be applied 
to small problems. Another disadvantage is that only 
linear constraints can be used. In practice, the issues 
related to the production, distribution and supply chain 
constraints are often logical, non-linear and so on. 
For these reasons, the problem was formulated in a new 
way. 

In our approach to modelling and optimisation of these 
problems we proposed the solution environment, 
where: 

 knowledge related to the supply chain can be ex-
pressed as linear and logical constraints (implement-
ing all types of constraints of the previous 
MILP/MIP/IP models [8-11] and introducing new 
types of constraints (logical, non-linear, symbolic, 
etc.), 

 the decision models solved using the proposed 
framework can be formulated as a pure model 
of MILP/MIP/IP or of CP/CLP, or it can also be 
a hybrid model, 

 the problem is modelled in CP/CLP, which is far 
more flexible than MIP/MILP/IP, 

 the novel method of constraint propagation is intro-
duced (obtained by transforming the decision model 
to explore its structure),  

 constrained domains of decision variables, new 
constraints and values for some variables are trans-
ferred from CP/CLP into MILP/MIP/IP, 

 the efficiency of finding solutions to larger size 
problems is increased. 

As a result, we obtained a more effective solution envi-
ronment for a certain class of decision and optimisation 
problems.  

 

3 Hybrid solution environment  
 
Both environments have advantages and disadvantages. 
Environments based on the constraints such as CLPs 
are declarative and ensure a very simple modelling 
of decision problems, even those with poor structures 
if any. The problem is described by a set of logical 
predicates. The constraints can be of different types 
(linear, non-linear, logical, binary, etc.). The CLP does 
not require any search algorithms. This feature is char-
acteristic of all declarative backgrounds in which mod-
elling of the problem is also a solution, just as it is 
in Prolog, SQL and so on. The CLP seems perfect 
for modelling any decision problem.  

Numerous OR models of decision-making have been 
developed and tested, particularly in the area of deci-
sion optimisation. Constantly improved methods 
and mathematical programming algorithms, such as the 
simplex algorithm, branch and bound, and branch-and-
cost [20] have become classics now. 

The proposed method’s strength lies in high efficiency 
of optimisation algorithms and a substantial number 
of tested models.  

Traditional methods when used alone to solve complex 
problems provide unsatisfactory results. This is related 
directly to different treatment of variables and con-
straints in those approaches [2]. The proposed hybrid 
approach, a composition of methods as described 
in Section 3, offers the optimal system for specific 
contexts. 

A Architecture and implementation of Hybrid 
Solution Environment  

The hybrid solution environment (HSE) consists 
of IP/CLP/hybrid models and a hybrid solution frame-
work (HSF) for solving them (Fig. 3). The concept 
of this framework with its phases (P1 .. P5, G1 .. G3) 
is presented in Fig. 4.  

A detailed description of the phases in the order 
of execution is shown in Table 1.  

From a variety of tools for the implementation of the 
CP/CLP in HSE, ECLiPSe software [21] was selected. 
ECLiPSe is an open-source software system for the 
cost-effective development and deployment of CP ap-
plications. Environment for the implementation 
of MILP/MIP/IP in HSE was LINGO by LINDO Sys-
tems [22]. LINGO Optimization Modeling Software is 
a powerful tool for building and solving mathematical 
optimisation models [22]. 
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Figure 3. Scheme of the hybrid solution environment 
(HSE)  

(CLP - Constraint Logic Programming, CP - Constraint 
Programming, IP - Integer Programming, MILP - Mixed 
Integer Linear Programming, MIP - Mixed Integer Pro-

gramming) 
 

Figure 4. Detailed scheme of the hybrid solution  
framework (HSF) 

(CLP - Constraint Logic Programming)   

ECLiPSe software is the environmental leader in HSE. 
ECLiPSe was used to implement the following phases 
of the framework: P1, P2, P3, G1, G2 and G3 (Fig. 4, 
Table 1). The transformed files of the model were 
transferred from ECLiPSe to LINGO where they were 

 

merged (P4). Then the complete model was solved 
using LINGO efficient solvers (P5). Constraint propa-
gation (phase P3) greatly affected the efficiency of the 
solution. Therefore, phase P2 was introduced.  

Table 1. Description of phases 

Phase P1 

Name Implementation of decision model 

Description 
The implementation of the model in CLP, the term 
representation of the problem in the form of predi-
cates. 

Phase P2 

Name 
Transformation of implemented model for better 
constraint propagation (optional) 

Description 

The transformation of the original problem aimed 
at extending the scope of constraint propagation. 
The transformation uses the structure of the prob-
lem. The most common effect is a change in the 
representation of the problem by reducing 
the number of decision variables, and the introduc-
tion of additional constraints and variables, chang-
ing the nature of the variables and so on. 

Phase P3 

Name Constraint propagation 

Description 

Constraint propagation for the model, which is one 
of the basic methods of CLP. As a result, the 
variable domains are narrowed and, in some cases, 
the values of variables are set, or even the solution 
can be found. 

Phase G1 

Name Generation of MILP/MIP/IP model 

Description 

Generation of the model for mathematical pro-
gramming. Generation performed automatically 
using CLP predicate. The resulting model is in 
a format accepted by the system LINGO. 

Phase G2 

Name Generation of additional constraints (optional) 

Description 
Generation of additional constraints on the basis 
of the results obtained in step P3. 

Phase G3 

Name 
Generation domains of decision variables and other 
values 

Description 

Generation of domains for different decision varia-
bles and other parameters based on the propagation 
of constraints. Transmission of this information in 
the form of fixed value of certain variables and/or 
additional constraints to the MP. 

Phase P4 

Name Merging MILP/MIP/IP model 

Description 
Merging files generated during the phases G1, G2 
and G3 into one file. It is a model file format 
in LINGO system. 

Phase P5 

Name Solving MILP/MIP/IP model 

Description 
The solution model from the previous stage 
by LINGO. Generation of the report with the 
results and parameters of the solution. 
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During this phase, the transformation was performed 
using the structure and properties of the model. This is 
an optional phase that depends on the modelled prob-
lem. The details of this phase will be presented in one 
of the illustrative examples in Section 4 (cost optimisa-
tion of supply chain). 

CLP, constraint logic programming; IP, integer program-
ming; MILP, mixed integer linear programming; MIP, 
mixed integer programming. 

 
4 Illustrative examples 
 
The proposed HSE environment was verified and tested 
for two illustrative examples. The first example is the 
authors’ original model of cost optimisation of supply 
chain with multimodal transport (section A). The sec-
ond is a two-echelon capacitated vehicle routing problem 
(2E-CVRP) model (section B). It is the known bench-
mark of a very large number of sets/instances of data 
and their solutions. 

A Cost optimisation of supply chain with  
multimodal transport 

During the first stage, the model was formulated as 
a MILP problem [9, 10, 17] in order to test the pro-
posed environment (Figs 1, 2) against the classical IP 
environment [22]. The next step involved the imple-
mentation and solving of the hybrid model. Indices, 
parameters and decision variables in the models togeth-
er with their descriptions are provided in Table 2. 
The simplified structure of the supply chain network 
for this model, composed of producers, distributors and 
customers is presented in Fig. 5. 

Figure 5. The simplified structure of the supply chain 
network 

Table 2. Summary indices, parameters  
and decision variables 

Symbol Description 

Indices 

N  number of manufacturers/factories 

M  number of delivery points/customers 

E number of distributors 

O  number of product types 

L  number of mode of transport 

k  product type  (k = 1, …0) 

j  delivery point/customer/city (j = 1, … M) 

i  manufacturer/factory (i = 1, … N) 
s  distributor/distribution centre (s = 1,… E) 

d  mode of transport (d = 1, … L) 

Input parameters 

sF  the fixed cost of distributor/distribution centre  s  

kP  the area/volume occupied by product  k 

sV  distributor s maximum capacity/volume  

ki,W  production capacity at factory  i  for product  k  

ki,C  the cost of product  k  at factory  i  

ks,R  
if distributor s can deliver product k then Rsk = 1

1R
ks,
 , otherwise 0R

ks,
  

ks,Tp  the time needed for distributor s to prepare the ship-
ment of product k 

kj,Tc  the cut-off time of delivery to the delivery 
point/customer  j of product  k  

kj,Z  customer demand/order j for product  k  

dZt  the number of transport units using mode of transport 
d 

dPt  the capacity of transport unit using mode of transport d 

ds,i,Tf  the time of delivery from manufacturer  i  to distribu-
tor s using mode of transport  d 

k,ds,i,Ka  the variable cost of delivery of product k from manu-
facturer i or distributor s using mode of transport  d 

ds,i,Ra  

if manufacturer i can deliver to distributor s using 

mode of transport d then 1Ra
di,s,
 , otherwise 

0Ra
di,s,
  

ds,i,A  the fixed cost of delivery from manufacturer i to 
distributor s using mode of transport d  

dj,s,Tm  the time of delivery from distributor s to customer j 
using mode of transport d  

dk,j,s,Kb  the variable cost of delivery of product  k  from dis-
tributor  s  to customer  j  using mode of transport  d 

dj,s,Rb  
if distributor  s  can deliver to customer  j  using mode 
of transport  d  then 1Rb dj,s,  , otherwise 0Rb dj,s,   

dj,s,G  the fixed cost of delivery from distributor s to custom-
er  j  using mode of transport  d 

dOd  the environmental cost of using mode of transport d 

Decision variables 

dk,s,i,X  delivery quantity of product k  from manufacturer  i 
to distributor  s  using mode of transport  d 

dk,j,s,Y  delivery quantity of product  k  from distributor  s  to 
customer  j  using mode of transport  d 
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Table 2 (cont.). Summary indices, parameters  
and decision variables  

Symbol Description 

Decision variables 

ds,i,Xa  

if delivery is from manufacturer  i  to distributor  s 
using mode of transport  d  then 1Xa ds,i,  , otherwise 

0Xa ds,i,   

di,s,Xb  the number of courses from manufacturer  i  to distrib-
utor  s  using mode of transport  d 

dj,s,Ya  

if delivery is from distributor  s to customer  j  using 
mode of transport d then 1Ya dj,s,  , otherwise 

0Ya dj,s,   

dj,s,Yb  the number of courses from distributor  s  to customer 
j using mode of transport  d 

sTc  
if distributor  s  participates in deliveries, then 

1Tcs  , otherwise 0Tc s   

Values calculated 

di,s,Koa
 

the total cost of delivery from distributor  s  to cus-
tomer  j  using mode of transport  d 

dj,s,Kog
 

the total cost of delivery from distributor  s  to cus-
tomer  j  using mode of transport  d 

Cw  
arbitrarily large constant (for example, te sum of all 
orders) 

 

The proposed models are the cost models that take into 
account three other types of parameters, i.e., the spatial 
parameters (area/volume occupied by the product, dis-
tributor capacity and capacity of transport unit), time 
(duration of delivery and service by distributor, etc.) 
and the transport mode. Multimodality in this example 
is understood as the possibility of using different modes 
of transport: railway, commercial vehicles, heavy 
trucks and so on. 

The main assumptions made for the construction 
of these models were as follows: 

 the shared information process in the supply chain 
consists of resources (capacity, versatility, costs), 
inventory (capacity, versatility, costs, time), produc-
tion (capacity, versatility, costs), product (volume), 
transport (cost, mode, time), demand and so on, 

 a part of the supply chain has the structure as in 
Fig. 5, 

 the transport is multimodal (several modes of trans-
port, a limited number of means of transport 
for each mode), 

 the environmental aspects of use of transport modes 
are taken into account, 

 different products are combined in one batch 
of transport, 

 the cost of supplies is presented in the form of 
a function (in this approach, linear function of fixed 
and variable costs), 

 models have linear or linear and logical (hybrid 
model) constraints, 

 logical constraints of hybrid model allow the distri-
bution of exclusively one of two selected products 
in the distribution centre and allow the production 
of exclusively one of two selected products in the 
factory. 

Objective function 

The objective function (1) defines the aggregate costs 
of the entire chain and consists of five elements. 
The first element comprises the fixed costs associated 
with the operation of the distributor involved in the 
delivery (e.g. distribution centre, warehouse). The sec-
ond element corresponds to environmental costs 
of using various means of transport. Those costs are 
dependent on the number of courses of the given means 
of transport and, on the other hand, on the environmen-
tal levy, which in turn may depend on the use of fossil 
fuels and carbon dioxide emissions. 

The third component determines the cost of the deliv-
ery from the manufacturer to the distributor. Another 
component is responsible for the costs of the delivery 
from the distributor to the end user (the store, the indi-
vidual client, etc.). The last component of the objective 
function determines the cost of manufacturing 
the product by the given manufacturer. 

Formulating the objective function in this manner al-
lows comprehensive cost optimisation of various as-
pects of supply chain management. Each subset of the 
objective function with the same constrains provides 
a subset of the optimisation area and makes it much 
easier to search for a solution. 

  

 

       
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


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L
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N

1i

E

1s

M

1j

L

ld
d,j,s

E

1s

L

1d
d,s,i

L

1d

E

1s

M

1j
d,s,j

N

1i

E

1s
d,s,id

E

1s
ss

)XC(KogKoa

)YbXb(Od)TcF(

(1) 

Constraints 

The model was based on constraints (2)–(24) Con-
straint (2) specifies that all deliveries of product k pro-
duced by the manufacturer i and delivered to all 
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distributors s using mode of transport d do not exceed 
the manufacturer’s production capacity.  

Constraint (3) covers all customer j demands for prod-
uct k (Zj,k) through the implementation of delivery by 
distributors s (the values of decision variables Yi,s,k,d). 
The flow balance of each distributor s corresponds to 
constraint (4). The possibility of delivery is dependent 
on the distributor’s technical capabilities – constraint 
(5). Time constraint (6) ensures the terms of delivery 
are met. Constraints (7a), (7b) and (8) guarantee deliv-
eries with available transport taken into account. Con-
straints (9), (10) and (11) set values of decision 
variables based on binary variables Tcs, Xai,s,d and 
Yas,j,d. Dependencies (12) and (13) represent the rela-
tionship based on which the total costs are calculated. 
In general, these may be any linear functions. The re-
maining constraints (14)-(23) arise from the nature 
of the model (MILP). 

Constraint (24) allows the distribution of exclusively 
one of the two selected products in the distribution 
centre s. Similarly, constraint (25) allows the produc-
tion of exclusively one of the two selected products in 
the factory i. 

Those constraints result from technological, marketing, 
sales or safety reasons. Therefore, some products can-
not be distributed and/or produced together. The con-
straint can be re-used for different pairs of product k 
and for some of or all distribution centres s and facto-
ries i. A logical constraint like this cannot be easily 
implemented in a linear model. Only declarative appli-
cation environments based on CSP make it possible to 
implement constraints such as (24) and (25).  

Adding this type of constraints changes the model 
class. It is a hybrid model. 

1..Ok 1..N,ifor  WRX k,i
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 1..Ld 1..0,k  1..E,s 1..N,ifor   CX d,k,s,i   (17) 

1..Ld 1..E,s 1..N,ifor   CXb d,s,i   (18) 

1..Ld 1..0,k  1..M,j 1..E,sfor  CY d,k,j,s   (19) 

 1..L,d  1..M,j 1..E,sfor   CYb d,j,s   (20) 

  1..L,d 1..E,s 1..N,ifor   1,0Xa d,s,i   (21) 

  1..L,d  2..M,j 1..E,sfor   1,0Ya d,j,s   (22) 

  1..Esfor   1,0Tcs   (23) 

ExclusionD(Xi,s,k,d, Xi,s,l,d, s) for k≠l , s=1..S (24) 

ExclusionP(Xi,s,k,d, Xi,s,l,d, i) for k≠l , i=1..N (25) 

Model transformation 

Due to the nature of the decision problem (adding up 
decision variables and constraints involving a lot of 
variables), the constraint propagation efficiency de-
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creases dramatically. Constraint propagation is one 
of the most important methods in CLP affecting the 
efficiency and effectiveness of the CLP and hybrid 
optimisation environment (Fig. 3, Table 1). For this 
reason, research into more efficient and more effective 
methods of constraint propagation was conducted. The 
results included different representation of the problem 
and the manner of its implementation.  

The classical problem modelling in the CLP environ-
ment consists in building a set of predicates with pa-
rameters. Each CLP predicate has a corresponding 
multi-dimensional vector representation. While model-
ling both problems, quantities i, s, k, d and decision 
variable Xi,s,k,d were vector parameters (Fig. 6a). 
As shown in Fig. 6b, for each vector instance, there are 
five values to be determined. They define the size 
of the delivery, factories, distributors involved in the 
delivery and the mode of transport. 

[Z_n,P,M,D,F,Tu,Tu,Oq,X,T] 

Fig. 6a Representation of the problem in the classical 
approach – vector definition 

[[z_1,p1,m1,_,_,_,_,10,_,8], 
[z_2,p1,m2,_,_,_,_,20,_,6],…] 

Fig. 6b Representation of the problem in the classical 
approach – a set of vector instances in the process 

of finding a solution 

The process of finding the solution may consist in us-
ing the constraint propagation methods, variable label-
ling and the backtracking mechanism. The number 
of parameters that must be specified/labelled in the 
given predicate/vector critically affect the quality 
of constraint propagation and the number of backtracks. 
In both models presented above, the classical problem 
representation included five parameters: i, s, k, d 
and Xi,s,k,d. Considering the domain size of each param-
eter, the process was complex and time-consuming. 
In addition, the above representation (Fig. 6a, 6b) aris-
ing from the structure of the problem is the cause 

of many backtracks.  

Our idea involved the transformation of the problem 
by changing its representation without changing 
the very problem. All permissible routes were first 
generated based on the fixed data and a set of orders, 
and then the specific values of parameters i, s, k, d were 
assigned to each of the routes. In this way, only deci-
sion variables Xi,s,k,d (deliveries) had to be specified 
(Fig. 7). This transformation fundamentally improved 
the efficiency of the constraint propagation and reduced 

the number of backtracks. A route model is a name 
adopted for the models that underwent the transfor-
mation. 

[[name_1,f1,p1,c1,m1,s1,s1,5,12,100,_], 
[name_2,f1,p1,c1,m1,s1,s2,6,14,100,_], 

[name_3,f1,p1,c1,m1,s2,s1,6,22,100,_],...]

Figure 7. Representation of the problem in the novel 
approach – a set of feasible routes 

Symbols necessary to understand both the representa-
tion of the problem and their descriptions are presented 
in Table 3. 

Table 3. Symbols used in the representation  
of the problem 

Symbol Description 

Z_n order number 

P products, P{p1,p2, ... ,po} 

M customers, M{m1,m2, … mm} 

D distributors, D{c1,c2, … ce} 

F factories, F{f1,f2, … fn} 

Tu transport unit, Tu{s1,s2, … sl} 

T delivery time/period 

Oq order quantity 

X delivery quantity 

Name_ routes name-number 

Decision-making support 
The proposed models can support decision-making in the 
following areas: 

 the optimisation of total cost of the supply chain 
(objective function, decision variables – Appendix 
A2), 

 the selection of the transport fleet number, capacity 
and modes for specific total costs, 

 the sizing of distributor warehouses and the study 
of their impact on the overall costs, 

 the selection of transport routes for optimal total 
cost. 

Detailed studies of these topics are being conducted 
and will be described in our future articles. We use 
the hybrid approach to both modelling and solving. 

B Two-Echelon Capacitated Vehicle Routing 
Problem 

The 2E-CVRP is proposed as a benchmark verifying 
the presented approach. The 2E-CVRP is an extension 
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of the classical capacitated vehicle routing problem 
(CVRP) where the delivery depot-customers pass 
through intermediate depots (called satellites). As in 
CVRP, the goal is to deliver goods to customers with 
known demands, minimising the total delivery cost 
with respect to vehicle capacity constraints. Multi-
echelon systems presented in the literature usually ex-
plicitly consider the routing problem at the last level 
of the transportation system, while a simplified routing 
problem is considered at higher levels [18, 19, 23].  

In 2E-CVRP, the freight delivery from the depot to the 
customers is managed by shipping the freight through 
intermediate depots. Thus, the transportation network is 
decomposed into two levels (Fig. 8): the first level 
connecting the depot (d) to intermediate depots (s) 
and the second one connecting the intermediate depots 
(s) to the customers (c). The objective is to minimise 
the total transportation cost of the vehicles involved 
in both levels. Constraints on the maximum capacity 
of the vehicles and the intermediate depots are consid-
ered, while the timing of the deliveries is ignored. 

From a practical point of view, a 2E-CVRP system 
operates as follows (Fig. 8): 

 freight arrives at an external zone, the depot, where 
it is consolidated into the first-level vehicles, unless 
it is already carried into a fully-loaded first-level 
vehicles, 

 each first-level vehicle travels to a subset of satel-
lites that will be determined by the model and then 
it will return to the depot, 

 at a satellite, freight is transferred from first-level 
vehicles to second-level vehicles. 

The mathematical model (MILP) was taken from [18]. 
Table 4 shows the parameters and decision variables 
of 2E-CVRP. Figure 8 shows an example of the 2E-
CVRP transportation network. 
 

Figure 8. An example of two-echelon capacitated  
vehicle routing problem transportation network  

The transformation of this model in the hybrid ap-
proach focused on the resizing of Yk,i,j decision variable 
by introducing additional imaginary volume of freight 
shipped from the satellite and re-delivered to it. Such 
transformation resulted in two facts. First of all, 
it forced the vehicle to return to the satellite from which 
it started its trip. Second, it reduced decision variable 
Yk,i,j to variable Yi,j, which decreased the size of the 
combinatorial problem. 

Table 4. Summary indices, parameters  
and decision variables 

Symbol Description 

Indices 

sn  number of satellites 

cn  number of customers 

 o0 vV   depot 

 
ssn2s1ss v,...v,vV   set of satellites 

 
ccn2c1cc v,...v,vV   set of customers 

Input parameters 

1M  number of the first-level satellites 

2M  number of the second-level satellites 

1K  
capacity of the vehicles for the first 
level 

2K  
capacity of the vehicles for the second 
level 

id  demand required by customer  i 

j,ic  cost of the arc  (i, j) 

ks  
cost of loading/unloading operations  
of a unit of freight in satellite  k 

Decision variables 

j,iX  

an integer variable of the first-level 
routing is equal to the number of first-
level vehicles using arc (i, j) 

j,i,kY  

a binary variable of the second-level 
routing is equal to 1 if a second-level 
vehicle makes a route starting from 
satellite  k  and goes from node  i  to 
node  j  and 0 otherwise 

1
ji,Q  

the freight flow arc  (i, j)  for the first-
level  

2
j,i,kQ  

the freight arc  (i, j)  where k repre-
sents the satellite where the freight is 
passing through  

j,kz  

a binary variable that is equal to 1 if 
the freight to be delivered to customer 
j  is consolidated in satellite  k  and  0 
otherwise 
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5 Numerical experiments 
 

In order to verify and evaluate the proposed approach, 
many numerical experiments were performed for both 
illustrative examples. 

A Cost optimisation of supply chain  
with multimodal transport 

 All the examples relate to the supply chain with two 
manufacturers (i = 1..2), three distributors (s = 1..3), 
five customers (j = 1..5), three modes of transport (d = 
1..3) and 10 types of products (k = 1..10). Other param-
eter values are shown in Appendix A1. The first series 
of experiments were designed to show the advantages 
of the hybrid approach used. 

The experiments began with six examples: E1, E2, E3, 
E4, E5 and E6 for the problem formulated in MILP 
(Section 4) [17]. Two approaches were used to imple-
ment the proposed model: mathematical programming 
(LINGO) and the hybrid approach (LINGO, Eclipse, 
transformation). The examples E1 .. E6 varied in terms 
of the number of orders (No). The set of all orders for 
calculation examples is given in Appendix A1. The 
experiments were conducted to optimise examples E7 
and E8, which are implementations of the hybrid model 
(with logical constraints) in the hybrid approach.  

The implementation of logic constraints for the hybrid 
model was as follows: product k = 5 cannot be distrib-
uted with product k = 6; product k = 2 cannot be dis-
tributed with product k = 8; and these products cannot 
be produced together. The results in the form of the 
objective function, computation time, number of dis-
crete decision variables and constraints are shown in 
Table 5 and Appendix A2. 

Table 5. The results of numerical examples  
for both approaches 

E(No) 
MILP-LINGO MILP-Hybrid 

Fc T V C Fc T V C 

E1(6) 7764 4 1389 1405 7764 1 155 174

E2(9) 17043* 600** 1389 1567 17039 235 182 177

E3(12) 24106 600** 1389 1729 24106 5 215 177

E4(18) 35772 600** 1389 2053 35772 3 305 178

E5(24) 46481 600** 1389 2377 46481 11 370 178

E6(30) 48946* 600** 1389 2701 48006 8 450 178

P(No) 
Hybrid-Hybrid  

Fc T V C     

E7(12) 24359 45 235 207     

E8(18) 35792 136 325 208     

Fc The optimal value of the objective function 

T Solution finding time 

V/C The number of integer variables/constraints 

* The feasible value of the objective function after the time T 

** Calculation was stopped after T = 600s 
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The analysis of the outcome indicates that the hybrid 
approach provided better results in terms of the time need-
ed to find the solution in each case, and to obtain the op-
timal solution in some cases, which was impossible to do 
within the acceptable time limits using the traditional 
approaches. 

B Two-Echelon Capacitated Vehicle Routing 
Problem 

For the final validation of the proposed hybrid approach, 
the benchmark (2E-CVRP) was selected. 2E-CVRP, 
a well described and widely discussed problem, corre-
sponded with the issues to which our hybrid approach was 
applied.  

The instances for computational examples were built from 
the existing instances for CVRP [24] denoted as E-n13-k4. 
All the instance sets can be downloaded from the website 
[25]. The instance set was composed of five small-sized 
instances with one depot, 12 customers and two satellites. 
The full instance consisted of 66 small-sized instances 
because the two satellites were placed over 12 customers 
in all 66 possible ways (number of combinations: 2 out of 
12). All the instances had the same position for depot 
and customers, whose coordinates were the same as 
those of instance E-n13-k4. Small-sized instances dif-
fered in the choice of two customers who were also 
satellites (En13-k4-2 (1,3), En13-k4-6 (1,6), En13-k4-
61 (9,10), etc.). 

The analysis of the results for the benchmark instances 
demonstrates that the hybrid approach may be a superi-
or approach to the classical mathematical program-
ming. For all examples, the solutions were found 2–16 
times faster than they are in the classical approach. 
As the presented benchmark was formulated as an 
MILP problem, the HSF was tested for the solution 
efficiency. Owing to the hybrid approach, the 2E-
CVRP models can be extended over logical, non-linear 
and other constraints. 

Table 6. The results of numerical examples  
for both approaches 

E-n13-k4 
MILP-LINGO MILP-Hybrid 

Fc T V C Fc T V C 

En13-k4-13 288 600* 368 1262 288 342 186 1024

En13-k4-6 230 125 368 1262 230 55 186 1024

En13-k4-9  244 153 368 1262 244 44 186 1024

En13-k4-20 276 535 368 1262 276 32 186 1024

En13-k4-61 338 6648 368 1262 338 407 186 1024

Fc The optimal value of the objective function 

T Time of finding solution 

V/C The number of integer variables/constraints 

* The feasible value of the objective function after the time T 

6 Conclusion and discussion on possible  
extension 

 
The efficiency of the proposed approach is based on the 
reduction of the combinatorial problem and using the 
best properties of both environments. The hybrid ap-
proach (Tables 5, 6) makes it possible to find better 
solutions in the shorter time.  

In addition to solving larger problems faster, the pro-
posed approach provides virtually unlimited modelling 
options. 

Therefore, the proposed solution is recommended for 
decision-making problems that have a structure similar 
to the presented models (Section 4). This structure is 
characterised by the constraints and objective function 
in which the decision variables are added together. 
Further work will focus on running the optimisation 
models with non-linear and logical constraints, multi-
objective, uncertainty and so on in the hybrid optimisa-
tion framework.  
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APPENDIX  A1 
 
Table 7. Data for computational examples E1, E2, E3, E4, 

E5, E6, E7 and E8 

k Vk 
 

j s Fs 
Vs  

 E1,-E3, E7 E4,-E6, E8  

P1 1  1 C1 600 200 800  

P2 1  2 C2 700 200 800  

P3 3  3 C3 900 200 1000  

P4 2  4      

P5 3  5 
d Pts 

Zts 
Odd P6 1   E1,-E3, E7 E4, - E6, E8 

P7 1  i S1 10 30 60 125 

P8 3  F1 S2 20 20 35 180 

P9 2  F2 S3 40 10 20 240 

P10 3        

 
i s d Ki,s,d Ti,s,d  i k Wi,k Ci,k 

F1 C1 S2 2 3  F1 P1 350 10 

F1 C1 S3 4 4  F1 P2 300 40 

F1 C2 S2 4 2  F1 P3 500 30 

F1 C2 S3 8 3  F1 P4 600 40 

F1 C3 S2 6 2  F1 P5 400 50 

F1 C3 S3 8 3  F1 P6 300 60 
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F2 C1 S2 5 4  F2 P5 400 50 

F2 C1 S3 7 4  F2 P6 300 60 

F2 C2 S2 2 6  F2 P7 400 70 

F2 C2 S3 4 7  F2 P8 500 80 

F2 C3 S2 2 6  F2 P9 600 90 

F2 C3 S3 3 6  F2 P10 650 90 
 

 
 

s j d Ks,j,d Ts,j,d s j d Ks,j,d Ts,j,d 

C1 M1 S1 2 1 C2 M3 S2 6 2 

C1 M1 S2 4 2 C2 M4 S1 3 1 

C1 M2 S1 2 1 C2 M4 S2 6 2 

C1 M2 S2 4 2 C2 M5 S1 3 1 

C1 M3 S1 2 1 C2 M5 S2 6 2 

C1 M3 S2 4 2 C3 M1 S1 4 1 

C1 M4 S1 2 1 C3 M1 S2 8 2 

C1 M4 S2 4 2 C3 M2 S1 4 1 

C1 M5 S1 2 1 C3 M2 S2 8 2 

C1 M5 S2 4 2 C3 M3 S1 4 1 

C2 M1 S1 3 1 C3 M3 S2 8 2 

C2 M1 S2 6 2 C3 M4 S1 4 1 

C2 M2 S1 3 1 C3 M4 S2 8 2 

C2 M2 S2 6 2 C3 M5 S1 4 1 

C2 M3 S1 3 1 C3 M5 S2 8 2 

 
 

k i k  k s k 

P5 F1 P6  P5 C1 P6 

P5 F2 P6  P5 C2 P6 

P2 F1 P8  P5 C3 P6 

P2 F2 P8  P2 C1 P8 

    P2 C2 P8 

    P2 C3 P8 

 
 

s k Ts,k s k Ts,k s k Ts,k 

C1 P1 2 C2 P1 1 C3 P1 3 

C1 P2 2 C2 P2 1 C3 P2 3 

C1 P3 2 C2 P3 1 C3 P3 3 

C1 P4 2 C2 P4 1 C3 P4 3 

C1 P5 2 C2 P5 1 C3 P5 3 

C1 P6 2 C2 P6 1 C3 P6 3 

C1 P7 2 C2 P7 1 C3 P7 3 

C1 P8 2 C2 P8 1 C3 P8 3 

C1 P9 2 C2 P9 1 C3 P9 3 

C1 P10 2 C2 P10 1 C3 P10 3 
 
 

Name k j Tj,k Zj,k Name k j Tj,k Zj,k 

Z_01 p1 m1 8 10 Z_11 p1 m3 8 15 

Z_02 p2 m2 12 10 Z_12 p2 m4 12 20 

Z_03 p3 m3 10 25 Z_13 p3 m5 10 25 

Z_04 p4 m4 8 30 Z_14 p4 m1 8 30 

Z_05 p5 m5 12 10 Z_15 p5 m2 12 30 

Z_06 p6 m1 8 15 Z_16 p6 m3 8 15 

Z_07 p7 m2 12 20 Z_17 p7 m4 12 20 

Z_08 p8 m3 10 25 Z_18 p8 m5 10 25 

Z_09 p9 m4 8 30 Z_19 p9 m1 8 30 

Z_10 p10 m5 12 30 Z_20 p10 m2 12 35 

APPENDIX A2 
 

Table 8. Results of optimisation for computational 
 examples E1, E2, E3, E4, E5, E6, E7 and E8 

Example E1 Fcopt = 7764 

Name i k s j d1 d2 Xiskd1 Ysjkd2 

Z_01 F1 P1 C1 M1 S3 S2 10.00 10.00 

Z_02 F1 P2 C1 M2 S3 S1 10.00 10.00 

Z_03 F1 P3 C1 M3 S3 S2 25.00 25.00 

Z_04 F1 P4 C1 M4 S3 S2 30.00 30.00 

Z_05 F1 P5 C1 M5 S3 S2 10.00 10.00 

Z_06 F1 P6 C1 M1 S3 S1 
15.00 

10.00 

Z_06 F1 P6 C1 M1 S3 S2 5.00 

 

i s d Xbi,s,d 

F1 C1 S3 5 

 

s J d Ybs,j,d s j d Ybs,j,d 

C1 M1 S1 1 C1 M3 S2 4 

C1 M1 S2 1 C1 M4 S2 3 

C1 M2 S1 1 C1 M5 S2 2 

 

Example E2 Fcopt = 17039 

Name i k s j d1 d2 Xiskd1 Ysjkd2 

Z_01 F1 P1 C1 M1 S3 S2 10.00 10.00 

Z_02 F1 P2 C2 M2 S3 S1 10.00 10.00 

Z_03 F1 P3 C1 M3 S3 S2 16.00 16.00 

Z_03 F1 P3 C2 M3 S3 S2 9.00 9.00 

Z_04 F1 P4 C1 M4 S3 S2 30.00 30.00 

Z_05 F1 P5 C2 M5 S3 S2 1.00 
10.00 

Z_05 F2 P5 C2 M5 S3 S2 9.00 

Z_06 F1 P6 C1 M1 S3 S1 2.00 
5.00 

Z_06 F2 P6 C1 M1 S3 S1 
13.00 

Z_06 F2 P6 C1 M1 S3 S2 10.00 

Z_07 F2 P7 C2 M2 S3 S2 20.00 20.00 

Z_08 F2 P8 C1 M3 S3 S2 2.00 2.00 

Z_08 F2 P8 C2 M3 S3 S2 23.00 23.00 

Z_09 F2 P9 C1 M4 S3 S2 30.00 30.00 

 

i s d Xbi,s,d i s d Xbi,s,d 

F1 C1 S3 3 F2 C1 S3 2 

F1 C2 S3 1 F2 C2 S3 3 

 

s j d Ybs,j,d s j d Ybs,j,d 

C1 M1 S1 1 C2 M2 S1 1 

C1 M1 S2 1 C2 M2 S2 1 

C1 M3 S2 3 C2 M3 S2 5 

C1 M4 S2 6 C2 M5 S2 2 
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Example E3 Fcopt = 24106 

Name i k s j d1 d2 Xiskd1 Ysjkd2 

Z_01 F1 P1 C1 M1 S3 S1 

25.00 

10.00 

Z_11 F1 P1 C1 M3 S3 S1 
15.00 

Z_11 F1 P1 C1 M3 S3 S2 

Z_02 F1 P2 C1 M2 S3 S1 
30.00 

10.00 

Z_12 F1 P2 C1 M4 S3 S2 20.00 

Z_03 F1 P3 C1 M3 S3 S1 
25.00 

3.00 

Z_03 F1 P3 C1 M3 S3 S2 22.00 

Z_04 F1 P4 C1 M4 S3 S1 
30.00 

20.00 

Z_04 F1 P4 C1 M4 S3 S2 10.00 

Z_06 F1 P6 C1 M1 S3 S1 10.00 10.00 

Z_06 F2 P6 C2 M1 S2 S1 5.00 5.00 
Z_05 F2 P5 C3 M5 S3 S2 10.00 10.00 
Z_07 F2 P7 C3 M2 S3 S2 20.00 20.00 
Z_08 F2 P8 C2 M3 S2 S1 5.00 5.00 
Z_08 F2 P8 C2 M3 S3 S2 20.00 20.00 
Z_09 F2 P9 C2 M4 S2 S1 30.00 30.00 
Z_10 F2 P10 C2 M5 S3 S2 20.00 20.00 
Z_10 F2 P10 C3 M5 S3 S2 10.00 10.00 

 
i s d Xbi,s,d i s d Xbi,s,d 

F1 C1 S3 5 F2 C2 S3 3 

F2 C2 S2 4 F2 C3 S3 2 

 

s j d Ybs,j,d s j d Ybs,j,d 

C1 M1 S1 2.000000 C2 M3 S1 2.000000 

C1 M2 S1 1.000000 C2 M3 S2 3.000000 

C1 M3 S1 1.000000 C2 M4 S1 6.000000 

C1 M3 S2 4.000000 C2 M5 S2 3.000000 

C1 M4 S1 4.000000 C3 M2 S2 1.000000 

C1 M4 S2 2.000000 C3 M5 S2 3.000000 

C2 M1 S1 1.000000     

 
Example E4 Fcopt = 35772 

Name i k s j d1 d2 Xiskd1 Ysjkd2 

Z_01 F1 P1 C1 M1 S3 S1 

25.00 

7.00 

Z_01 F1 P1 C1 M1 S3 S2 3.00 

Z_11 F1 P1 C1 M3 S3 S2 15.00 

Z_02 F1 P2 C1 M2 S3 S2 
30.00 

10.00 

Z_12 F1 P2 C1 M4 S3 S2 20.00 

Z_03 F1 P3 C1 M3 S3 S2 
50.00 

25.00 

Z_13 F1 P3 C1 M5 S3 S2 25.00 

Z_14 F1 P4 C1 M1 S3 S1 

60.00 

4.00 

Z_14 F1 P4 C1 M1 S3 S2 26.00 

Z_04 F1 P4 C1 M4 S3 S2 30.00 

Z_15 F1 P5 C1 M2 S3 S2 
40.00 

30.00 

Z_05 F1 P5 C1 M5 S3 S2 10.00 

Z_06 F1 P6 C1 M1 S3 S1 
30.00 

15.00 

Z_16 F1 P6 C1 M3 S3 S2 15.00 

Z_17 F2 P7 C1 M4 S3 S1 20.00 20.00 

Z_07 F2 P7 C2 M2 S2 S2 20.00 20.00 

Z_08 F2 P8 C1 M3 S3 S2 
50.00 

25.00 

Z_18 F2 P8 C1 M5 S3 S2 25.00 

Z_09 F2 P9 C1 M4 S3 S2 30.00 30.00 

Z_10 F2 P10 C1 M5 S3 S1 30.00 30.00 

 

 

i s d Xbi,s,d i s d Xbi,s,d 

F1 C1 S3 12.00 F2 C2 S2 1.00 

F2 C1 S3 8.00     

 

s j d Ybs,j,d s j d Ybs,j,d 

C1 M1 S1 3.00 C1 M4 S2 7.00 

C1 M1 S2 3.00 C1 M5 S1 9.00 

C1 M2 S2 5.00 C1 M5 S2 9.00 

C1 M3 S2 9.00 C2 M2 S2 1.00 

C1 M4 S1 2.00     
 
 

Example E5 Fcopt = 46481 

Name i k s j d1 d2 Xiskd1 Ysjkd2 

Z_01 F1 P1 C1 M1 S3 S2 

27.00 

10.00 

Z_11 F1 P1 C1 M3 S3 S1 2.00 

Z_11 F1 P1 C1 M3 S3 S2 13.00 

Z_21 F1 P1 C1 M5 S3 S1 2.00 

Z_20 F2 P10 C1 M2 S3 S2 
31.00 

1.00 

Z_10 F2 P10 C1 M5 S3 S1 30.00 

Z_20 F2 P10 C2 M2 S2 S1 21.00 
34.00 

Z_20 F2 P10 C2 M2 S3 S1 13.00 

Z_02 F1 P2 C1 M1 S3 S2 

31.00 

1.00 

Z_02 F1 P2 C1 M2 S3 S2 10.00 

Z_12 F1 P2 C1 M4 S3 S1 20.00 

Z_23 F1 P3 C1 M4 S2 S1 
2.00 

1.00 

Z_03 F1 P3 C1 M3 S2 S2 
25.00 

Z_03 F1 P3 C1 M3 S3 S2 

50 
Z_23 F1 P3 C1 M4 S3 S1 1.00 

Z_13 F1 P3 C1 M5 S3 S1 2.00 

Z_13 F1 P3 C1 M5 S3 S2 23.00 

Z_04 F1 P4 C1 M4 S2 S1 6.00 
12.00 

Z_04 F1 P4 C1 M4 S3 S1 

55.00 
Z_14 F1 P4 C1 M1 S3 S2 30.00 

Z_04 F1 P4 C1 M4 S3 S2 18.00 

Z_24 F1 P4 C1 M5 S3 S1 1.00 

Z_15 F1 P5 C1 M2 S3 S1 

40.00 

10.00 
Z_15 F2 P5 C1 M2 S3 S1 

Z_15 F1 P5 C1 M2 S3 S2 20.00 

Z_05 F1 P5 C1 M5 S3 S1 10.00 

Z_16 F1 P6 C1 M3 S2 S1 
17.00 

15.00 

Z_06 F1 P6 C1 M1 S2 S2 
3.00 

Z_06 F1 P6 C1 M1 S3 S2 
5.00 

Z_06 F1 P6 C1 M1 S3 S1 4.00 

Z_06 F2 P6 C2 M1 S2 S1 8.00 8.00 

Z_07 F2 P7 C1 M2 S3 S1 
12.00 

10.00 

Z_07 F2 P7 C1 M2 S3 S2 2.00 

Z_17 F2 P7 C2 M4 S2 S2 
27.00 

20.00 

Z_07 F2 P7 C2 M2 S2 S1 
8.00 

Z_07 F2 P7 C2 M2 S3 S1 1.00 

Z_08 F2 P8 C1 M3 S3 S1 

40.00 

21.00 

Z_08 F2 P8 C1 M3 S3 S2 4.00 

Z_08 F2 P8 C1 M5 S3 S2 15.00 

Z_18 F2 P8 C2 M5 S2 S1 10.00 10.00 

Z_01 F2 P9 C1 M1 S3 S1 

46.00 

13.00 

Z_19 F2 P9 C1 M1 S3 S2 3.00 

Z_09 F2 P9 C1 M4 S3 S2 30.00 

Z_19 F2 P9 C2 M1 S2 S1 14.00 14.00 
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i s d Xbi,s,d i s d Xbi,s,d 

F1 C1 S2 2.00 F2 C2 S2 8.00 

F1 C1 S3 11.00 F2 C2 S3 1.00 

F2 C1 S3 8.00     

 
 

s j d Ybs,j,d s j d Ybs,j,d 

C1 M1 S1 3.000000 C1 M4 S2 5.000000 

C1 M1 S2 4.000000 C1 M5 S1 13.00000 

C1 M2 S1 4.000000 C1 M5 S2 6.000000 

C1 M2 S2 4.000000 C2 M1 S1 4.000000 

C1 M3 S1 8.000000 C2 M2 S1 11.00000 

C1 M3 S2 5.000000 C2 M4 S2 1.000000 

C1 M4 S1 5.000000 C2 M5 S1 3.000000 

 
Example E6 Fcopt = 48006 

Name i k s j d1 d2 Xiskd1 Ysjkd2 

Z_01 F1 P1 C1 M1 S2 S2 10.00 10.00 

Z_11 F1 P1 C1 M3 S3 S1 
17.00 

15.00 

Z_21 F1 P1 C1 M5 S3 S1 2.00 

Z_02 F1 P2 C1 M2 S2 S1 10.00 10.00 

Z_22 F1 P2 C1 M1 S3 S2 
21.00 

1.00 

Z_12 F1 P2 C1 M4 S3 S1 20.00 

Z_13 F1 P3 C1 M5 S2 S1 25.00 25.00 

Z_03 F1 P3 C1 M3 S3 S1 
27.00 

25.00 

Z_23 F1 P3 C1 M4 S3 S1 2.00 

Z_04 F1 P4 C1 M4 S2 S1 

4.00 

1.00 

Z_24 F1 P4 C1 M5 S2 S1 1.00 

Z_04 F1 P4 C1 M4 S2 S2 
29.00 

Z_04 F1 P4 C1 M4 S3 S2 
57.00 

Z_14 F1 P4 C1 M1 S3 S2 30.00 

Z_25 F1 P5 C1 M3 S2 S1 
2.00 

1.00 

Z_05 F1 P5 C1 M5 S2 S1 
8.00 

Z_05 F1 P5 C1 M5 S3 S1 
37.00 

Z_15 F1 P5 C1 M2 S3 S1 30.00 

Z_05 F2 P5 C2 M5 S2 S2 

13.00 

2.00 

Z_26 F1 P6 C1 M5 S2 S1 1.00 

Z_06 F1 P6 C1 M1 S2 S2 1.00 

Z_06 F1 P6 C1 M1 S2 S1 
10.00 

Z_06 F1 P6 C1 M1 S3 S1 
16.00 

Z_16 F1 P6 C1 M3 S3 S2 15.00 

Z_06 F2 P6 C2 M1 S2 S1 
6.00 

4.00 

Z_26 F2 P6 C2 M5 S2 S1 2.00 

Z_07 F2 P7 C1 M2 S3 S1 

35.00 

18.00 

Z_17 F2 P7 C1 M4 S3 S1 2.00 

Z_17 F2 P7 C1 M4 S3 S2 15.00 

Z_07 F2 P7 C2 M2 S2 S1 2.00 2.00 

Z_27 F2 P7 C2 M3 S3 S2 
5.00 

2.00 

Z_17 F2 P7 C2 M4 S3 S1 3.00 

Z_08 F2 P8 C1 M3 S3 S1 
21.00 

19.00 

Z_18 F2 P8 C1 M5 S3 S1 2.00 

Z_08 F2 P8 C2 M3 S2 S2 

19.00 

6.00 

Z_28 F2 P8 C2 M4 S2 S1 2.00 

Z_18 F2 P8 C2 M5 S2 S2 
23.00 

Z_18 F2 P8 C2 M5 S3 S2 12.00 

Z_19 F2 P9 C1 M1 S3 S2 
60.00 

30.00 

Z_09 F2 P9 C1 M4 S3 S2 30.00 

Z_29 F2 P9 C2 M2 S2 S1 2.00 2.00 

Z_20 F2 P10 C1 M2 S3 S1 34.00 34.00 

Z_30 F2 P10 C2 M1 S2 S1 

7.00 

2.00 

Z_20 F2 P10 C2 M2 S2 S1 1.00 

Z_10 F2 P10 C2 M5 S2 S1 2.00 

Z_10 F2 P10 C2 M5 S2 S2 
28.00 

Z_10 F2 P10 C2 M5 S3 S2 26.00 
 
 
 
 

i s d Xbi,s,d i s d Xbi,s,d 

F1 C1 S2 6.00 F2 C2 S2 5.00 

F1 C1 S3 9.00 F2 C2 S3 3.00 

F2 C1 S3 8.00     

 
 

s j d Ybs,j,d s j d Ybs,j,d 

C1 M1 S1 1.00 C1 M5 S1 11.00 

C1 M1 S2 7.00 C2 M1 S1 1.00 

C1 M2 S1 22.00 C2 M2 S1 1.00 

C1 M3 S1 15.00 C2 M3 S2 1.00 

C1 M3 S2 1.00 C2 M4 S1 1.00 

C1 M4 S1 3.00 C2 M5 S1 1.00 

C1 M4 S2 7.00 C2 M5 S2 8.00 

 
 

Example E7 Fcopt = 24359 

Name i k s j d1 d2 Xiskd1 Ysjkd2 

Z_01 F1 P1 C1 M1 S3 S1 5.000 5.000 

Z_01 F1 P1 C2 M1 S2 S1 5.00 5.00 

Z_11 F1 P1 C2 M3 S2 S2 15.00 15.00 

Z_02 F1 P2 C1 M2 S3 S1 10.00 10.00 

Z_12 F1 P2 C1 M4 S3 S2 20.00 20.00 

Z_03 F1 P3 C1 M3 S3 S2 25.00 25.00 

Z_04 F1 P4 C1 M4 S3 S2 30.00 30.00 

Z_05 F1 P5 C1 M5 S3 S1 10.00 10.00 

Z_06 F2 P6 C2 M1 S2 S1 15.00 15.00 

Z_07 F2 P7 C3 M2 S3 S2 20.00 20.00 

Z_08 F2 P8 C2 M3 S3 S2 15.00 15.00 

Z_08 F2 P8 C3 M3 S3 S1 10.00 10.00 

Z_09 F2 P9 C2 M4 S2 S1 30.00 30.00 

Z_10 F2 P10 C2 M5 S2 S2 1.00 
20.00 

Z_10 F2 P10 C2 M5 S3 S2 19.00 

Z_10 F2 P10 C3 M5 S3 S1 10.00 10.00 

 
 

i s d Xbi,s,d i s d Xbi,s,d 

F1 C1 S3 5 F2 C2 S3 33 

F1 C2 S2 1 F2 C2 S3 2 

F2 C2 S2 4     

 
 

s j d Ybs,j,d s j d Ybs,j,d 

C1 M1 S1 1.00 C2 M3 S2 3.00 

C1 M2 S1 1.00 C2 M4 S1 6.00 

C1 M3 S2 4.00 C2 M5 S2 3.00 

C1 M4 S2 4.00 C3 M2 S2 1.00 

C1 M5 S1 3.00 C3 M3 S1 3.00 

 M1 S1 2.00 C3 M5 S1 3.00 
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Example E8 Fcopt = 24359 

Name i k s j d1 d2 Xiskd1 Ysjkd2 

Z_01 F1 P1 C1 M1 S3 S2 

19.00 

4.00 

Z_11 F1 P1 C1 M3 S3 S1 1.00 

Z_11 F1 P1 C1 M3 S3 S2 14.00 

Z_01 F1 P1 C2 M1 S3 S1 6.00 6.00 

Z_10 F2 P10 C1 M5 S3 S2 30.00 30.00 

Z_02 F1 P2 C2 M2 S3 S2 
30.00 

10.00 

Z_12 F1 P2 C2 M4 S3 S2 20.00 

Z_03 F1 P3 C1 M3 S3 S1 

50.00 

3.00 

Z_03 F1 P3 C1 M3 S3 S2 22.00 

Z_13 F1 P3 C1 M5 S3 S2 25.00 

Z_14 F1 P4 C1 M1 S3 S2 
58.00 

28.00 

Z_04 F1 P4 C1 M4 S3 S2 30.00 

Z_14 F1 P4 C2 M1 S3 S1 2.00 2.00 

Z_15 F2 P5 C2 M2 S2 S2 6.00 
30.00 

Z_15 F2 P5 C2 M2 S3 S2 
34.00 

Z_05 F2 P5 C2 M5 S3 S1 10.00 

Z_06 F1 P6 C1 M1 S3 S2 
30.00 

15.00 

Z_16 F1 P6 C1 M3 S3 S1 15.00 

Z_17 F2 P7 C1 M4 S3 S2 20.00 20.00 

Z_07 F2 P7 C2 M2 S2 S2 2.00 
20.00 

Z_07 F2 P7 C2 M2 S3 S2 18.00 

Z_08 F2 P8 C1 M3 S3 S1 
50.00 

25.00 

Z_18 F2 P8 C1 M5 S3 S2 25.00 

Z_09 F2 P9 C1 M4 S3 S2 30.00 30.00 

 
 

i s d Xbi,s,d i s d Xbi,s,d 

F1 C1 S3 8.00 F2 C2 S2 1.00 

F1 C2 S3 1.00 F2 C2 S3 3.00 

F2 C1 S3 8.00     

 
 

s j d Ybs,j,d s j d Ybs,j,d 

C1 M1 S2 4.00 C2 M1 S1 1.00 

C1 M3 S1 10.00 C2 M2 S2 6.00 

C1 M3 S2 4.00 C2 M4 S2 1.00 

C1 M4 S2 7.00 C2 M5 S1 3.00 

C1 M5 S2 12.00     

 
 

 

 


