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Abstract: A growing number of economic phenomena are nowadays described with methods known in phys-
ics. The most frequently applied physical theories by economists are: (1) the universal gravitation law  
and (2) the first and second law of thermodynamics. Physical principles can also be applied to the theory  
of financial markets. Financial markets are composed of individual participants who may be seen to interact  
as particles in a physical system. This approach proposes a financial market model known as a minority 
game model in which securities and money are allocated on the basis of price fluctuations, and where selling 
is best option when the vast majority of investors tend to purchase goods or services, and vice versa.  
The players who end up being on the minority side win. 

The above applications of physical methods in economics are deeply rooted in classical physics. However, 
this paper aims to introduce the basic concepts of quantum mechanics to the process of economic phenome-
na modelling. Quantum mechanics is a theory describing the behaviour of microscopic objects and is 
grounded on the principle of wave-particle duality. It is assumed that quantum-scale objects at the same time 
exhibit both wave-like and particle-like properties. The key role in quantum mechanics is played by: (1) the 
Schrödinger equation describing the probability amplitude for the particle to be found in a given position  
and at a given time, and as (2) the Heisenberg uncertainty principle stating that certain pairs of physical 
properties cannot be economic applications of the Schrödinger equation as well as the Heisenberg uncertain-
ty principle. We also try to describe the English auction by means the quantum mechanics  methods.  

Key words: quantum mechanics, minority games, equilibrium, English auction. 

 

1 Introduction 
 

The application of the laws of physics in economic 
theory has become a prominent trend for several dec-
ades. Economists have most often referred to the law  
of gravitation, static physics and the first and second 
law of thermodynamics. Gravitation models were pio-
neered in the early 1900s by J. Q. Stewart who defined 
the concept of demographic force (as an equivalent  
of potential energy) and demographic potential based 
on the theory of the field of gravity. Gravitation models 
became popular in many areas of economic study in the 
early 1960s, e.g. the description of interaction between 
economic centres or international trade exchange.  

The rules of thermodynamics, which generally state 
that the increase of internal energy of a system is equal 
to the difference between the amount of energy deliv-
ered to the system and the amount of energy released 
by the system into the environment, have been applied 
in the theory of economic equilibrium which can be 
expressed in a number of ways. Equilibrium has been 
studied by classical economists such as A. Smith,  
A. Cournot, W. Pareto, and recently by  J. Tinbergen, 

P.A. Samuelson, J.R. Hicks, R. Selten, J.F. Nash,  
R. Lucas and others. 

Static physics, which focuses on electromagnetic inter-
actions, has been applied in the financial markets theo-
ry. A financial market is defined here as a system made 
up of a number of individual participants who interact 
with one another in an electromagnetic-like manner. 
This approach to financial markets developed a minori-
ty game market model, where assets (stocks and mon-
ey) are allocated solely based on price fluctuations:  
if the majority of investors are willing to buy it is more 
profitable to sell and vice versa. Minority players are 
winners.  

So far, we have looked at classical physical concepts 
applied in economic theory. This paper also attempts  
to demonstrate the benefits of applying quantum me-
chanics in economic modelling. Developed around 
1926, quantum mechanics is a theory describing behav-
iours of micro-objects in the framework of its principal 
concept of wave-particle duality. Micro-objects are 
believed to be simultaneously characterised by a wave 
function and properties of elementary particles.
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The key formula of quantum mechanics is one devel-
oped by E. Schrödinger, which determines the proba-
bility of a micro-object’s being in a specific state.  
The other cornerstone of the theory is the Heisenberg 
uncertainty principle which states that no two different 
physical quantities  of a studied object can be deter-
mined with any accuracy at the same time. This paper 
attempts to identify possible economic applications  
of both the Schrödinger equation and the Heisenberg 
principle. Special attention is given to a quantum model 
of English auction. 

The structure of this paper is as follows: Part Two re-
views selected economic concepts where modelling is 
based on laws of classical physics such as gravity,  
the first and second law of thermodynamics and static 
physics; Part Three provides a brief description  
of quantum mechanics, including the presentation  
of the Schrödinger equation and the Heisenberg princi-
ple, and suggests possible applications in economics; 
Part Four presents an attempted description of the Eng-
lish auction  using the laws of quantum mechanics. 

 
2 Review of economic applications of the laws 

of physics 
2.1 Gravitation models 
 
Economic models that use the basic laws of physics 
have been known since the 1960s. The most frequently 
applied are the law of gravity and the first and second 
law of thermodynamics. 

In physics, gravity is the property of matter which con-
sists in a mutual attraction between material bodies. 
The theory of gravity, also known as the Newtonian 
mechanics, is believed to have been first proposed  
by I. Newton (1687). In the Newtonian (classical) me-
chanics, the mass of a material point is defined as  
a positive scalar value which is the measure of the 
point’s inertia. It is agreed that the mass of an object is 
independent of its movement status (it is constant) and 
is not affected by any processes within it.  

This is known as the law of conservation of mass. 
Force is defined as vector value that illustrates  
the measure of mechanical impact of other objects  
on the body at hand. This is the way object may but do 
not have mutually exchange energy. Energy is a physi-
cal scalar value which is the general measure of the 
various forms of movements of matter that are contem-
plated by physics. Classical mechanics observes  
the principle of relativity, which says that the principles 

of mechanics shall be identical for all inertia reference 
systems, i.e. all mechanical processes that occur in the 
same conditions shall progress identically. 

The law of universal gravity is one of the most widely 
known laws of classical physics. It states that every two 
material points shall mutually attract with force which 
is directly proportional to the product of the masses  
of both points and reversely proportional to the square 
of the distance between them, i.e.: 

2
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r
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GF   (1) 

where: 
m1, m2 - are the masses of material points, 

r - is the distance between such points, 

G - is the proportionality constant, 

F - is the force of gravity. 

The gravitational force is not a quantity that character-
ises the gravitational field. The gravitational field is 
quantified by the gravitational field strength expressed 
as follows: 
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M
  (2) 

where M is the mass of the source. 

Economic theory also applies the concept of potential 
energy, as described by the following formula: 

r

Mm
GE p   (3) 

Potential energy reflects the work done when a body is 
moved from one level to another. The gravitational 
field is characterised by a potential expressed as fol-
lows: 

m

E
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M
GV p  (4) 

Potential is a physical quantity that specifies energy 
properties of the gravitational field at one point. 

The first attempts at applying gravitational models  
in spatial economic research were made in early 20th 
century. However, the pioneering work in this field 
came from demographer J.Q. Stewart, who defined  
the demographic force concept as a counterpart to po-
tential energy or gravitational field potential (1947). 
Proper gravitational models used in economic theory 
date back to the 1960s. 
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Material points were replaced by ‘centres’ such as cit-
ies, shopping centres and the term ‘gravitation’ was 
replaced by its economic equivalent: interaction. One 
of the initial models was expressed as: 

c
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where: 
Iij - means interaction (impact) between area i and j, 

Pi, Pj  - are masses of two areas which can be measured 
by the size of their populations, 

dij - is the distance between area i and j, 

G - is the equivalent of gravitation force which is re-
ferred to as calibration constant in economics, 

c - is the exponent of the power of the distance.  

Units (masses) can be countries, economic regions, 
administrative provinces, cities or towns. Depending  
on the problem at hand, mass is measured in the num-
ber of households, number of consumption sites, num-
ber of warehouses and outlets, surface of retail  
or storage space, number of hospital beds, newspaper 
and magazine circulation, population etc. Distance is 
measured in kilometres, time of travel or the quotient  
of the product of price and time of travel. The calibra-
tion constant is model-specific and it is assessed so as 
to fit the model to the data. 

There are a number of areas where gravitation models 
can be applied. For example, market researcher  
W. Reilly examined ways of assessing the sales propor-
tion si of the same goods offered by two mutually com-
peting cities M1 and M2 to and smaller town m0 located 
between them. He quantified the impact of city Mi  
(i = 1,2) with mass Pi (mass measured in population 
size) with distant by di on goods available to town m0. 
The relationship wi is illustrated by the formula: 
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Impact wi refers to the concept of gravitational field. 
The sales ratio for two comparable cities is expressed 
as follows: 
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which means that the value of sales in town m0 realised 
by the competing cities is proportional to their impacts.  

 

By substituting values w1 and w2 (formula (6)) you get 
the following expression: 
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Subsequently, the right-hand side of formula (8) is 
compared to 1 and then you quantify the reach of the 
competing market in the following way:  

1
d

d

P

P

s

s
2

1

2

2

1

2

1 







 , 

1

2

1

2

P

P

d

d
  (9) 

If you accept that d12 = d1 + d2 and you substitute the 
relevant values into formula (9) you get the ‘optimum’ 
distances of both cities from town m0: 
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‘Point’ d12  is the point of separation between the two 
trading centres. 

Here is another interesting model that determines trade 
exchange mechanisms between two countries. P. Krug-
man [5] uses the following equation to quantify trade 
between two countries: 
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where: 

A  - is a constant, 

Tij  - means the value of trade between country i and 
country j, 

Dij  - is the distance between country i and j, 

Yj   - is the GDP of country j, 

c  - is exponent of the power of distance. 

Formula (11) entails that the value of trade is directly 
proportional to the product of GDP of the countries  
at hand and it decreases as the distance increases.  
The gravitational model demonstrates that trade be-
tween two countries is dependent on the size of their 
economies and is negatively affected by the distance 
between them. Other gravitational models describing 
spatial economic interactions were proposed by  
W. Reilly, M. Cadwallader, R. Bachi, T. Stanley,  
M. Sewall, P.D. Convers, D.L. Huff (Balicki [1]). 
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2. 2 The law of conservation of energy  
and the theory of economic equilibrium 

 
Another example of fundamental laws of classical 
physics that have found applications in economic theo-
ry and social science is that of the general law of coser-
vation of energy and the first law of thermodynamics. 
The law of conservation of energy says that the energy 
of a body or a system of bodies cannot come from 
nothing or disappear without a trace. One type  
of energy may merely convert into another and the total 
energy in an isolated system remains constant:  
Ec = const.  

The first law of thermodynamics, independently formu-
lated by J.R. Mayer in 1842 and H.L.F. Helmotz 
in 1847, is the law of conservation of energy proper  
in thermodynamics and it says that the internal energy 
of a system is solely the function of its state, i.e. is 
solely dependent on parameters that characterise  
the state of the system’s equilibrium. It does not depend 
on the processes that have caused the system to be  
in that state. The increase of the system’s internal ener-
gy is equal to the difference between the energy sup-
plied to the system and the energy released by  
the system into the environment. 

These laws have for many years been nearly intuitively 
applied in economics, mainly for describing economic 
equilibrium. The concept of economic equilibrium is 
ambiguous. Most commonly it is used to describe  
the balance between supply and demand for all goods 
(general equilibrium) or specific goods (partial equilib-
rium). It is widely accepted that economic systems are 
subject to numerous forces (often disturbing) but their 
overarching property is that they always tend toward 
equilibrium which is not necessarily the same as in the 
past. 

The history of the concept of economic equilibrium 
goes back to the 17th century. Adam Smith (1723 - 
1790) in his groundbreaking work entitled “An Inquiry 
into the Nature and Causes of the Wealth of Nations” 
stated that an ‘invisible hand of the market’ (force) 
causes interactions between participants of an unbridled 
economy, or free market, to be harmonised, which then 
leads toward a market equilibrium. Thus, he introduced 
the concept of natural equilibrium. Around the same 
time, F. Qusnay (1694 - 1774) presented the Economic 
Table outlining the flows of value between  
the branches of economy, or an economic system 
which is subjected to certain economic factor but is  

in equilibrium. A. Cournot (1801 - 1877) pioneered  
the use of functional relationships in research of eco-
nomic developments, which helped identify the differ-
ences between partial and general equilibrium.  
L. Walras (1834 - 1910), the creator of the price theory, 
applied the general equilibrium system to state that 
there is a close interdependency between the capital 
market, prices and the markets for products and ser-
vices and all of the above affect each other. Any growth 
noted on any of the markets is reflected in the de-
creased potential of another, just like in a thermody-
namic system. W. Pareto (1848 - 1923) claimed the 
existence of a lasting equilibrium to which economic 
systems return, favourable circumstances permitting, 
which offers a clear analogy to the law of conservation 
of energy. 

Equilibrium and the ‘forces’ affecting economic sys-
tems can be expressed in a number of ways in econom-
ic theory. Originally, it was believed that an economy 
in equilibrium could be described with linear equations 
and inequalities. Underlying to this view was an as-
sumption that equilibrium is preconditioned by  
a steadily growing economy.  In such case, finding 
point (vector) of equilibrium X0 would require solving 

system of equations AX = B and inequalities X  0 
with a specified function of objective f (criterion).  
The value of X0 is selected so that the objective func-
tion reaches the least value of all the solutions repre-
senting acceptable decisions. Such a minimum is 
naturally associated with equilibrium as does the mini-
mum position of the pendulum in physics. 

Over time, it was observed that the economic reality,  
as indeed physical reality, is fairly ‘non-linear’. Non-
linear systems are more difficult to analyse than linear 
ones. The economic reality can be described using  
a system of non-linear differential equations and each 
object can have several positions (points) of equilibri-
um. Some of such points will be points of stable equi-
librium and some will be short run, which means that 
there may be a position of equilibrium both with  
a minimum potential and kinetic energy.  

The stability of the point of equilibrium further depends 
on the forces (distortions) operating against a specific 
economic object trying to throw it out of equilibrium. 
They may also change the position of the equilibrium 
point. Generally, the search for equilibrium in non-
linear dynamic systems requires that the evolving tra-
jectory is defined. In specific cases, it may act chaoti-
cally. If this happens equilibrium can only be found  
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by identifying the attractor and the attractor may turn 
out to be strange (Schuster [8]). 

 
2. 3 Financial market modelling using minority 
 games 
 
The last decade saw the rise in popularity of a financial 
market model called the minority game, which operates 
in a similar fashion to a macroscopic system in static 
physics. Market participants whose numbers are high 
(they are often referred to as a ‘continuum’) buy and 
sell securities. They rely on the analysis of the stock 
price fluctuation and other information they receive.  
If the majority of market participants intend to buy  
a stock it makes sense to sell, and vice versa. Minority 
group participants usually win. All market participants 
make decisions based on their experience and certain 
information patterns. There are three types of partici-
pants in a minority game depending on their response 
to available information: players who create infor-
mation noise and make random decisions, producers 
who behave in a deterministic way and speculators who 
seek profit using all methods available. The activities 
of all three groups cumulate and cause qualitative 
change  
of the entire system, as is the case in typical macro-
scopic physical systems where electromagnetic impacts 
are observed in the macro scale. Here, it is unnecessary 
to understand the impacts between elementary particles 
that make up the system because they are too small. 
From the point of view of a market participant it is 
essential to identify such parameters of the system 
which characterise the system’s status in a macro scale. 
Because there are large numbers of participants,  
the laws of large numbers are often used (Challet et al. 
[2], Mosetti et al. [7]).  

Minority games may be described as follows: 

1) The financial market is assumed to be a non-zero 

sum game with N players (N  ). 

2) At any stage of the game (t = 1, 2, ...), each player 
may but does not have to make one of two deci-
sions: ‘buy’ or ‘sell’, which can be expressed as 

1)t(ai   or 1)t(ai  . 

3) The payout (profit) of the i-th player is described  
by the following formula: 

)t(A)t(a)t(g ii  , where 
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
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A(t) denotes the difference between the number  
of players who decided to sell and the number  
of players who buy a stock at time t. If A(t) > 0  

the players who play 1)t(ai   will win and those 

who chose 1)t(ai   will lose. 

4) Strategy si(t) of player i at time t (i = 1, ... N; t = 1, 

2, ...) is assessed based on information {1, ... , ... 
P} obtained by players as the game proceeds. It is 

defined as follows: si(t): {1, ... , ... P}  {-1; +1}.  
In this case, information includes both the game his-
tory, or a string of minority and majority players’ 
decisions in the past and certain information re-
ceived from outside. 

5) While considering both the received information 
and the ‘adaptability’ of individual players the profit 
of the ith  player can be expressed as follows: 
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where  

)t(
i),t(sii i

)t(a)t(a    and  )t(A)t(A )t(  

6) The goal of each market participant is profit maxi-
misation gi(t) (i = 1, ... N) at any stage of game t. 

The problem can solved in a number of ways (Challet 
et al. [2], Mosetti et al. [7]). Financial market research-
ers who concentrated on minority game modelling have 
also focused on examining function A(t). Variance 

2(t) = A(t) of quantity A(t) measures the distribution 
of financial resources in the market. In addition, re-
searchers study: 

 N

P
   

When 1  there is too much information circulating 

in the market and players act randomly. When 1α  
more players join the game and the information re-

ceived is used more efficiently. When  reaches its 
minimum 
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7   

the behaviour of market participants can be compared 
to the description of critical phenomena in static phys-
ics.  
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The probability of each player making a specific deci-
sion is determined as follows: 

 
(t)g(t)g

(t)g

i ii

i

ee

e
1(t)aProb 




  (14) 

Notably, minority games are based on a classic binary 
game called ‘bar’ (El’Farol bar problem) invented  
by W.B. Arthur where participants are obliged to make 
a decision each night whether or not to go to a bar. 

The economic models presented thus far ‘apply’  
the laws of classical physics. The following chapter 
presents the use of quantum mechanics in modelling 
economic phenomena. 

 
3 The application of quantum mechanics  

in economics 

3.1 Basics of quantum mechanics 
 
Quantum mechanics is a theory describing the behav-
iour of elementary particles in atomic scale. The big-
gest accomplishment of quantum physics is the wave-
particle duality. According to this theory, photons  
and electrons, light and matter are both waves and par-
ticles. An object such as an electron is a particle be-
cause of its spatial delineation and a wave because  
the way it moves in space.  The following discussion 
will use the term micro-objects instead of particles.  

Quantum mechanics says that nature can be described 
in approximated terms and each measurement is biased 
with a probability and accuracy. Uncertainty and inac-
curacy are not caused by the inaccuracy of measuring 
equipment but are inherent to the phenomena them-
selves. It should be underlined, however, that quantum 
physics is characterised by an absolute determinism but 
exclusively in the space of states. Indeterminism starts 
when you move to the physical space and ask about  
the coordinates of a micro-object. 

The major accomplishment of quantum mechanics  
is that it has rejected the classical division into the ob-
served and the observer.  In classical physics, the ob-
server cannot influence the state of an object under 
observation or measurement. In quantum mechanics  
it is acceptable to assume that micro-objects may be 
located in several places at the same time by the time  
of observation. Also, they may be so strongly linked 
(quantum entanglement) that they may act as unity 
regardless of the distance between them. This property 
has its economic analogy. For example, strongly linked 
subsidiaries of a major corporation may be located  

in different parts of the world. Despite the distance 
between them they form one big ‘organism’. 

The fundamental concept of quantum physics is a space 
of states of physical systems that forms a vector Hilbert 
space1. The state of a system is represented in quantum 
mechanics by unit vectors. That is known as the pure 
state. The scalar product is used for assessing the prob-
ability of measurement of any physical quantity.  

Each physical quantity is additionally represented using 
a Hermitian operator2. The values of the operator are 
real numbers and this is why they are not interpreted as 
quantities to be obtained through measurement. After 
the measurement is taken, the system is in one of the 
Hermitian operator’s own states which represents  
a given observable, as outlined by J. von Neuman.  
The case described by von Neuman involves a deter-
ministic, i.e. predictable, evolution of the system. Phys-
icist R.P. Feynman claimed that measurement has  
a purely random character. In this approach, it is possi-
ble to determine the probability of a certain value of the 
measured quantity. However, it is not possible to pro-
vide an accurate indication of the state of the system; 
you can only calculate mean values of ‘specific observ-
ables’ or determine the probability of such system mov-
ing to a certain state. Feynman stated also that the 
system with the highest probability moves along a clas-
sical trajectory, i.e. the one postulated by von Neuman. 

According to the fundamental concept of quantum 
mechanics, i.e. the wave- particle duality, each micro-
object is both characterised by a wave function and  
by particle-specific parameters such as mass that can be 
located in a particular state. Beside location, micro-
objects are further characterised by quantum numbers 
that describe the micro-object’s energy states. The main 
quantum number n = 1, 2, 3, ... specifies stationary 
energy states static; orbital quantum number l (l = 0, 1,  
2 ...) describes the micro-object’s momentum; magnetic 

quantum number m (m = 0, 1, 2 ...) specifies the 
orientation of the micro-object’s space; the spin quan-
tum number describes the micro-object’s intrinsic an-

                                                 
1 The Hilbert space is a unitary and complete space on which  
a scalar product has been identified. The completeness is  
a guarantee that each Cauchy string of elements is convergent  
to the elements of that space; furthermore, completeness means 
that while transitioning from one state to another it is impossible 
to go beyond the states that belong to the space at hand. 
2 Operator T is called Hermitian if for each x, yX, where  
X is a Hilbert space, the following is true: (Txy)=(xTy);  
(..) is a symbol for a scalar product. 
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gular momentum. The spin is constant for specific 
types of elementary particles. For example, particles 
with a spin of ½ are called fermions (electron, proton, 
and neutron) as opposed to bozons whose spins are 
equal to 1 (photons) etc. It must be added that no atom 
can have two or more particles with an identical con-
figuration of the four basic quantum numbers. 

One critical concept in quantum mechanics is the 
Planck constant. In classical physics, the energy of any 
system evolves continuously. This means its values can 
be anywhere near each other. In contrast,  quantum 
mechanics allows energy to have only specific discrete 
values that are equal to the total amount of elementary 

portions of energy quanta 0,  = k 0, k = 0, 1, ... 
(Feynman et al. [4]).  

The quantum theory is a generalisation of classical 
physics. It is a broader and more comprehensive theory 
applied in both in the realm of atoms and planets.  
It suggests that objects with great masses and but short 
wavelengths given the distances at hand can be exam-
ined in terms of their evolution using Newtonian me-
chanics or classical thermodynamics. Similarly, econ-
omic theory can assume that the space of goods  
or any other space composed of economic objects is, 
like matter, made up of small indivisible portions.  
These portions do not form regular networks but move 
in all possible directions (it could barely be argued  
that there is continuous evolution of the market prices 
of goods or stocks). The smallest unit of price change is 
one grosz, cent etc., or 0,01 of a currency unit (CU). 
Equally, it may be one gram, piece etc. Economic sys-
tems, including the ‘small’ ones, are subject to market 
cycles with their own length and amplitude, which 
makes them a perfect analogy to waves. 

 
3.2 The Schrödinger equation  

and its applications in economics 
 
Another key concept in quantum mechanics is system 
evolution. Systems can evolve in two ways. First, de-
terministic evolution as described by a unitary operator: 
states of the system change in a predictable manner. 
Secondly, random evolution upon measurement:  
the only prediction that can be made is the probability 
of the system finding itself in a given state. The wave 
function plays a critical role in quantum mechanics. Let 

(x, y, z, t) be a wave function where x, y, z are loca-

tion coordinates of an object in space 3, and t is time.  

The square of function  specifies the probability  

of the micro-object located at point with coordinates  

(x, y, z) at time t. Formally, 2  meets the following 
condition: 

p
2*    (15) 

where: 

* - is a dual wave function of , 

p - is probability. 

Effectively, it can be demonstrated that the probability 
of the micro-object finding itself in an element with 

volume V = xyz of space equals: 

 P = pV = pxyz  (16) 

By definition, the integral of the density of the proba-
bility throughout the volume of the space holding the 
object will equal 1:  





33

1dxdydzdV
22   (17) 

This, a wave function allows you to determine  
the probability of objects taking specific positions  
in a space. Consequently, it does not make sense  
to look for objects in locations where the square of the 
‘probability wave’ amplitude modulus equals 0. Micro-
objects will normally take fuzzy positions in a given 
portion of space and, since there are an infinite number 
of points in any small area, the probability assigned  
to each one of them cannot be a finite number (Feyn-
man et al. [4]). In addition, the wave function provides  
a solution to a differential equation called the Schrö-
dinger equation, expressed as follows: 





)t,z,y,x(U
m2

ĥ

t
ĥi  (18) 

where  

 - is the Laplace operator, i.e. 

2

2

2

2

2

2

zyx 










  

m - is the mass of the micro-object, U(x, y, z, t) is the 
micro-object’s potential energy dependent on its posi-
tion, 




2

h
ĥ , h is the Planck constant (h = 6,62610-34 Js),  

1i   is the imaginary unit. 

Additionally, it is accepted that function  is finite, 
unique and continuous.  
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In case function U is not dependent on time 





 



0
t

U   

the equation takes the following form: 

0)UE(
ĥ

m2
2

  (19) 

where  

E - is the kinetic energy of the micro-object.  

The equation is solved by finding wave function   
and energy value E. There is no relationship to the 
distribution of potential energy that may be interpreted 
to affect the micro-object. 

Economic systems are observed to be subject to market 
cycles. Hence, it is possible to ascribe wave properties 
to them. Further, they have their own mass (e.g. popu-
lation of a country), as discussed in Section 2.  
The length of a wave related to market cycles is usually 
comparable to ‘units’ describing the mass of an eco-
nomic system. Consequently, applying the rules  
of quantum mechanics in economics seems logical.  
It must be added that while he developed his equation 
for the micro-world, Schrödinger looked for inspiration 
in the macro-world, specifically on the propagation 
properties of light waves. Quantum effects become 
relevant where the object-related wavelength is compa-
rable to distances, which is often the case in economic 
systems. Wave function can prove useful in forecasting 
as it allows to determine the probability of a certain 

object finding its way into a given area (x+x, y+y, 

z+z).  

The Schrödinger equations could be applied for making 
projections of economic phenomena which evolve cha-
otically and do not follow a uniform curve, i.e.  
the system’s evolution trajectory is an attractor,  
an often strange one (see e.g. Schuster [8]). Forecasting 
future values of such phenomena is fairly challenging. 
Only short-term forecasting is possible for strange at-
tractors. Hence, instead of short-term projections it 
seems to make more sense to calculate the probability 
of a specific system findings itself in a given area 

(x+x, y+y, z+z), and this is feasible using the wave 
function. This method may be seen as an alternative  
to existing forecasting methods which are not always 
correct and may generate major inaccuracies.  

The Schrödinger equation helps identify an ‘area’  
in which the object is most likely to find itself in the 
future. An economic version of the equation is not easy 
but possible to construct. First, an equivalent  

to the Planck constant must b identified. If you examine 
a price or money related problem, the Planck constant 
may be 1 grosz, 1 cent etc. Depending on the problem 
at hand, it may be 1 gram, 1 piece etc. Secondly, if the 
trajectory of the economic system’s evolution behaves 
chaotically the attractor related that trajectory should be 
spatially located and current coordinates should possi-
bly be determined for the object’s location. It does not 
make sense to search for future values of the phenome-
non at hand outside the attractor area. Projections may 
use the ‘closest neighbour’.  

Presenting the  wave function may be the hardest 
part. In fact, methods known in the world of physics 
may prove helpful in building such functions for eco-
nomic models (see Feynman et al. [4]), p. 288-290  
and 299-301). After you have dealt with the challenges 
of identifying all the variables contained in equation 
(11) you may take to trying to solve it, i.e. find the 

location of an area (x+x, y+y, z+z) (x, y, z  
0), for which the square of the absolute value of func-

tion  is the largest. Such location will correspond to 
the best forecast of an economic phenomenon under 
study.  

 
3.3 Schrödinger’s cat paradox 

 
The loss of the ability to forecast events while they 
transit from one state to another was described  
by Schrödinger in 1935. He presented a case of cat 
trapped in a box in which it may die as a result of elec-
tromagnetic discharge or it may survive. There is a fifty 
per cent chance of survival. Schrödinger claimed  
that according to quantum mechanics the ‘state’ of a cat 
in a box, before the box is opened, would be defined as 
both composed of a cat which is alive and dead, which 
can be expressed as: 

cat =  alive  +  dead  (20) 

where  

1
22   

After the box is opened (i.e. after a measurement of the 
system is taken) an external observer would see either  
a living or a dead cat. This thought experiment may be 
taken to a higher level by placing an internal observer 
in a secure corner of the box. The observer would see 
the situation from within and track the cat’s state im-
mediately after the discharge that leads to the reduction 

of the state cat to one of its constituents: alive  or 
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dead , which will express itself as the following states, 

respectively: happy  or  sad . On the other hand,  
the external observer describes the system (containing 
the internal observer) using a linear superposition: 

cat = 1 alive  happy + 1 dead   sad 
 (21) 

where 1
2

1
2

1   

The external observer will lead towards the reduction 
of the superposition only after the box is opened.  
In essence, the experiment points to the fact that while 
the cat is still a superposition of a dead-alive cat for the 
external observer (prior to opening the box) the internal 
observer is already happy at the cat’s survival or sad  
at the cat’s death. 

 
3.4 The Heisenberg uncertainty principle  

and major formalisms of quantum mechanics 
 
Another important law of quantum mechanics is Hei-
senberg uncertainty principle which says that it is not 
possible to determine two different physical quantities 
of a studied object at the same time with any accuracy. 
It is applied both in classical as in quantum physics, 
often in connection with the accuracy of measurement. 
In physics, measurement is process of interaction be-
tween the instrument and the object during which cer-
tain information about the properties of the latter  
is obtained. Measurement often affects the process  
and this can be used for assessing a number of phe-
nomena.  

The Heisenberg principle says that the product of errors 
(in the sense of standard deviation) while measuring 
two physical quantities is not bigger than the Planck 
constant (or its multiple). The following inequalities 
describe the principle: 

2/ĥpx x  , 2/ĥpy y  , 2/ĥpz z   

   (22) 

where  

x, y, z - are the ranges of the object’s locations,   

px, py, pz - are projections of momentum onto coor-
dinate axes. 

Symbols x, y, z, px, py, pz mean root means 
squares of the deviation of coordinates and momentum 
projects from their mean values, i.e.: 

 

222 xxxx  , where x is a physical 

symbol of a mean quantity. 

It follows from Heisenberg’s relation (22) that the 
product of the uncertainty of the measured momentum 
and the micro-object’s location is never smaller than 
the Planck constant. The uncertainty principle may 
further be applied to energy and time. If a micro-
object’s energy is E then the accuracy of energy meas-

urement E will depend on the time of measurement 

T, as in the inequality: 

2/ĥET   (23) 

Inequality (23) says that the product of the uncertainty 
of the time an object remains in a certain state and its 
energy are not bigger than Planck constant. The energy 
of a micro-object which remains in a stationary state is 

precisely specified and it equals E = 0.  

Similar relations are found in classical physics in the 
description of a macro-scale wave movement. In gen-
eral terms, the product of the uncertainty of a pair  
of canonically coupled quantities (e.g. [px, x], [T, E] are 
canonically coupled) is not smaller than Planck con-
stant.  

The uncertainty relations with respect to location  
and momentum stipulate that no object can simultane-
ously have accurately specified coordinates and related 
momentum constituents. This property means that the 
concept of a micro-object’s trajectory in phase space is 
losing in importance as it is not described by any time-
parameterised and ‘strictly specified’ line but rather  
by a fuzzy area. Similarly, the trajectory of a large 
number of economic phenomena evolves chaotically. 

  
3.5 Major Theories of Quantum Mechanics  

and Differences Between Classical Physics  
and Quantum Mechanics 

 
To summarise, here are the main formulations of quan-
tum mechanics: 

1) A state function must be used for the description  
of any system. 

2) A physical system is in a certain state with a certain 
probability. 

3) For each dynamic quantity a form of description is 
used and it is called a linear operator. 

4) State functions fulfil a state-specific Schrödinger 
equation. 
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5) Every physical object is characterised using a wave 
function. One property of the wave function is that 
its root square is the probability of the object  
at hand having a specific spatial location. 

6) A quantum object exhibits all the properties of  
a particle (mass) and a wave (frequency); it is repre-
sented by states which can be characterised using 
quantum numbers.  

7) Quantities that characterise a quantum object,  
for example energy, do not have a specific value  
at a certain point in time but are characterised  
by a set of possible own values which can be calcu-
lated using Schrödinger equation. 

8) The uncertainty principle is a consequence of the 
lack of commutation of canonically coupled opera-
tors such as location or momentum. 

Note:  

 a commutator is an operator which gives an indica-
tion to what extent matrix multiplication or opera-
tions of operators fail to be communitative, i.e.  

[A B] = AB - BA  0, 

 in quantum mechanics, operators that define physi-
cal quantities (observables) do not have to be com-
mutative. 

To sum up, differences between classical and quantum 
physics are significant. The classical theory says specif-
ically where a given micro-object is located at  
a given point in time, or what its trajectory is. Howev-
er, there is no experimental proof or disproof of such 
calculations. The quantum theory does not say anything 
about a specific location of a micro-object in space. 
Instead, it makes a projection of the probability  
of the micro-object’s location at a point in time.  

The superiority of quantum over classical physics is 
that its projections are confirmed by experimentation. 
Furthermore, classical physics says that ‘all things 
physical’ can be measured with any accuracy. In con-
trast, the Heisenberg uncertainty principle can be inter-
preted as a formulation of limits to accuracy. Classical 
physical methods cannot be helpful in recreating reality 
because reality is more than a set of defined elements. 

 
3.6 Suggested applications of certain quantum 

mechanics principles in social sciences 
 
The uncertainty principle is a universal law which can 
be applied in a number of disciplines. We believe it can 
also be applied in social sciences. The observation  

of economic processes appears to be an insufficient 
method of measuring and quantifying such phenomena, 
let alone making decisions under such uncertain condi-
tions. Researchers use various statistical methods  
and mathematical models based on such formalisms as 
neuron networks, genetic algorithms or the theory  
of chaos. These methods return approximate results. 
For example, the interpretation of statistical data is 
affected by the method of data collection, data quantifi-
cation or thought experiment planning, sampling, elim-
inating distortions or uncontrolled variables  
and many other factors. Similarly, neuron networks, 
though capable of learning and generalising knowledge, 
are nothing but approximations. In this case, approxi-
mations are even greater and contradicting signals may 
generate contracting decisions.  

On the other hand, genetic algorithms emulate evolu-
tion. They test certain rules and select a set of such 
rules which optimise a given function. In order to make 
predictions based on genetic algorithms it is essential 
that a large body of input data should be collected, 
which is not always feasible and mistakes can be made 
at a very early stage of a research project.  

The theory of chaos relies on the principles of the evo-
lution of deterministic systems which may behave cha-
otically in certain situations. They are normally non-
linear systems and most of them cannot be precisely 
described, particularly if they relate to economic situa-
tions. While it is possible to apply Takens’ delay em-
bedding theorem the use of another approximative 
method makes the uncertainty of decisions or conclu-
sions even greater.  

To sum up, data collection, statistical and predictive 
methods are equivalents of measurement in physics. 
Overlapping approximative results generate a number 
of errors which cumulatively lead to a bias which is not 
smaller than a certain constant quantity that character-
ises the phenomenon at hand. This constant may be 
interpreted as an economic constant equivalent to 
Planck constant. Indeed, it may be Planck constant 
under certain circumstances (see Section 4). 

There are more general considerations with regard  
to the application of quantum mechanics formalisms. 
According to Stapp H., the universe, and everything  
in it, may be presented as a universal wave function 
which evolves in time according to Schrödinger wave 
equation and determines the probabilities of events.  
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In other words, every alternative option is represented 
by an evolving wave function3. 

Schrödinger equation is believed by many physicists  
to be a nearly ideal representation of quantum physical 
phenomena and can prove a good predictive tool  
in social sciences. Notably, Schrödinger construed his 
equation using existing laws of the macro- rather than 
micro-world. He used the properties of heat waves  
and focused on issues linked to turbulence. The equa-
tion has been applied on numerous occasions, e.g.  
in atomic and hydrogen bomb programs.  

The following section will seek analogies between the 
classical auction model and quantum mechanics laws. 

 
4 Analogies between the rules of English  

auction and the laws of quantum mechanics 
 
Auctioning is one of the oldest method of exchanging 
goods and currency. They are economic mechanisms 
designed to effectively allocate goods and money 
through bidding. Auction rules are normally prede-
fined, which means they can be interpreted as the rules 
of the game, the game being the auction itself. Normal-
ly, the winner of an auction is the buyer, a player who 
offers the highest price for the auctioned goods. Auc-
tions are mainly used for non-homogenous and uncon-
ventional goods, services and other benefits.  

There are many types of auctions and they are usually 
classified by the form of delivery and method of trans-
acting business. There are oral and written auctions. 
Oral auctions include English auctions, where partici-
pants present their price bids in an ascending order.  
The auction ends when the price is so high that no other 
bidder can ‘outbid’ and the bidder offering the highest 
price wins.  

Another oral type if the Dutch auction where the price 
of a good is effectively reduced until a buyer is found. 
This type of goods and money allocation is used  
by second-hand shops and for selling perishable goods. 
Written auctions include first and second dealed bid 
auctions. The first dealed bid auction, also known as 
first-price sealed-bid auction (FPSB) is a process where 
bids are place in writing, e.g. in sealed envelopes.  

                                                 
3 This is quoted after A. Scott (1999), Schody do umysłu 
(Stairway to the Mind), WNT Warsaw. This book is not listed  
in references because it has not been used in this publication. 
However, it is entirely dedicated to applications of quantum 
mechanics in biology. 

The highest bid wins and the price of goods paid by the 
buyer is equal to the bidding price. The second dealed 
bid auction, also known as Vickrey auction4, is a pro-
cess where the highest bid wins but the price paid  
by the buyer is the second highest.  

There are other types of auctions and new types are 
being developed. The auction theory is one of the most 
vibrant areas of research combining economic  
and games theory formalisms. New mathematical auc-
tion models are based mainly on the games theory (see 
Drabik [3]). These models utilise the classical probabil-
ity calculus. However, it often proves insufficient  
in addressing the nuances of auctioning. Therefore, 
attempts will be made to describe auctioning in the 
language of quantum mechanics. The main focus will 
be to present analogies between auction rules and quan-
tum mechanics laws. 

Without loss of generality, it can be assumed that buy-
ers act rationally, which means they will stop short  
of buying goods above a predefined resignation price  
(a price of their own choice). Furthermore, it can be 
comfortably assumed that “purchase” and “sale” are 
equivalent concepts because selling goods also means 
buying money.  

Let us consider an English auction with N buyers 

(players 1... N) and one seller (player 0). Let 5k be 
the vector of Hilbert space uniquely identifying the 

strategy or state of the kth buyer. Function (x) = 

x defines the amplitude of the probability of wave 

function . According to quantum theory, as briefly 
summarised in Section 3 above, it is accepted that the 

root square of probability amplitude modulus x2 
is the density of the probability of the measure of quan-
tity x of random variable X representing the state of the 
system. 

                                                 
4 William Vickey received a Nobel prize in economics  
in 1994, inter alia for his work in the area of auction theory.  
5 Strategies k  ( k = 1,... N) are elements of Hilbert space H. 
Formula : HH  C, known as a scalar product for any , 
’, ’’H, C has the following properties: 
1)   0, 

2)  = 0   = 0,  

3) ’+’’ = ’ + ’’,  
4)  =  , 5) ’ = ’*, where the asterik 
denotes entaglement. 
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Since Hilbert space is the major formalism of quantum 
theory the probability amplitude should be standardised 
to 1 according to the following formula (Piotrowski 
[8]): 

k

k

k
ΨΨ

Ψq
Φq   (k = 1,... N) (24) 

where 

 




 dxxx )()(  

Expression (24) defines a standardised amplitude to the 
strategy that defines the commitment of the kth buyer  
to purchase the goods at price q. Expression: 

 

0

0in

0in
ΨΨ

Ψp
Φp    

is the seller’s (player 0) commitment which is to speci-
fy reservation price pin, i.e. to specify a price under 
which the goods must not be sold. Reservation price pin  
is a measurement concept. 

According to quantum mechanics formalisms, the den-
sity of the probability of a specific value of a random 
variable which characterises the kth auction participant 
(player k) is equal to the root square of the modulus  
of a strategy standardised to one: 

k

2

k2
kk

q
P




  (25) 

The auction is won by the kth buyer if his/her price is 
the highest which makes the probability of reaching 

state out the highest as well. Thus: 

out

2

outk

out

2

out1 q
...

q










.  

The equality sign means that strategies of auction par-
ticipants may be entangled. In quantum theory, entan-
glement means a certain form of a correlated quantum 
state of two or more particles or other quantum sys-
tems. In other words, entangled quantum states provide 
an indication of an existing correlation between states 
despite the lack of proximity. The assumption of a sin-
gle buying and selling price in auction theory is equiva-
lent to the entanglement of quantum phenomena.  

Bidding is process of dynamic transitions from one 
state to another or bidding higher and higher prices  
by buyers: 

outi
i

iinoutin qq   , 

 k21 q....qq   (26) 

where qi means price bid by the ith buyer. It can be 

assumed they correspond to base states ei, ijjiee   

and ijji  . 

Note:  
According to quantum mechanics, a transition from 

state  to state  may be expressed as a sum after  
the system of base states of the product of amplitudes 

of transition from state  to the following base states 

up to state : 

 
i

ii . 

The transaction is complete if one of the buyers (kth) 
bids an amount which is not topped up by any other 
auction participant and pays for the goods not more that 
the resignation price. This is now the player wins  

the auction. Buyers 1, ... k-1 (k  N) drop out from  
the auction because having bid too low a price they fail 

to reach the final state out. – in accordance with Pauli 
exclusion principle there is no free space for them 
there. The Pauli principle says that no two micro-
objects can be in the same state at the same time.  
The principle is responsible for the stability of matter. 
For auctions, it is responsible for an uninterrupted pro-
cess. 

Thus, a transaction really means a transition from  
the states of initial strategies adopted by participants 

in  to final state out.:in  = T out  (27) 

where 


ij

jAiin
qjjTiiqpT   

is transaction operator,  

pin - is the asking or reservation price, 

TA - is an inter-state transition operator, 

qi - is the price offered in bidding. 

Buyers often lack the ability to put a specific value  
on an item of goods (specify the price at which they 
would give up the purchase).  
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The price may evolve as a result of information contin-
uously received by the buyer. This situation corre-
sponds to the Heisenberg principle. For English 
auctions with numerous buyers, the Heisenberg princi-
ple may be formulated as follows: the product of two 
dispersion measures - purchase and sale - may not be 
smaller than Planck constant. Planck constant h corre-
sponds to the lowest risk appetite of the player.  
This principle holds for any pair of players (i, j), ipso 
ergo: 

)k,....,1,0j,i,ji(hcqq ji   

where c is a certain constant, c  0. 

In addition, a rational strategy known from auction 
theory, which is not to bid a price above your own val-

uation: ii
vqq  , where vi is goods valuation  

of the ith bidder is also in line with the Heisenberg un-
certainty principle.  

Many more similar analogies can be found. At least one 
more deserves increased attention - the Schrödinger’s 
cat paradox, as outlined in Section 3.3. 

The seller’s state (k = 0) immediately before the trans-
action is closed (prior to measurement) can be ex-
pressed in the following form: 

0 =  transaction closed   + 

 transaction fails  (28) 

where 1
22  . 

The state of the kth (k = 1, 2,... N) buyer is characterised 
as follows: 

k =  

1satisfied with transaction   

 transaction closed  +  

1 uncomfortable with transaction failure   

 transaction fails  (29) 

where 1βα
2

1

2

1   

It may be observed that the states described by formu-
lae (28) and (29) correspond to ‘diagnoses’ of the ex-
ternal and internal observers in the Schrödinger’s cat 
paradox. When an auction is completed the outcome 

state kout is reduced to state: transaction completed 

 or transaction fails , but no doubt the kth buyer (k = 

1,... N) fees satisfied  when he/she succeeds in pur-

chasing the goods on favourable terms or feelsun-

comfortable . 

 

5 Conclusion 
 
The modelling of economic phenomena based on quan-
tum theory provides more precise descriptions than 
using the classical probability calculus. In addition, 
there are a number of analogies between quantum me-
chanics and social sciences. In both cases, finding  
the precise ‘location’ of an object requires taking nu-
merous measurements (identifying waves of different 
frequencies).  

This is the only way, with a high degree of uncertainty, 
to identify a more or less precise location of an object. 
A non-zero correlation the variables corresponding  
to specific economic phenomena proves their depend-
encies which may be compared to the concept of sys-
tem entanglement in quantum theory. It is further 
understood that the evolution of a quantum system ‘is 
determined’ by the unitary operator affecting any given 
state at a point in time.  

A similar role is played by the transaction operator  
in auction theory, as expressed in formula (17).  
The uncertainty and inaccuracy inherent to the descrip-
tion of a broad range of economic phenomena are not 
caused by the failure of statistical and forecasting 
methods but are inherent to such phenomena them-
selves.  

A similar situation is found in quantum mechanics -  
the complicated nature of phenomena plays a bigger 
role than the accuracy of measuring instruments. Con-
sequently, both social and physical phenomena may 
only be described (identified) in approximative terms 
under the uncertainty principle. 

A market described with the use of quantum mechanics 
tools is likely to multiply its closed transactions.  
For example, one can multiply profit by holding several 
auctions simultaneously. The Pauli exclusion principle 
does not prevent participation in other auctions.  
By applying a certain (well designed) strategy in  
a number of places at the same time does increase  
the probability of profit, which has recently been  
so evident in online auctions.  
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