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Abstract: In the present article, we deal with a generalization of the logistic function. Starting from 

the Riccati differential equation with constant coefficients, we find its analytical form and describe 

basic properties. Then we use the generalized logistic function for modeling some economic 

phenomena. 
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1 Introduction 

 

Verhulst's logistic growth law has long been used. 

Its mathematical expression is logistic curves, which 

are a particular case of sigmoidal functions, and be-

cause of the characteristic shape, they are called 

S-shaped curves. 

The logistic curve is a popular model for studying 

and forecasting future changes. It is based on the law 

of Nature (Kucharavy and De Guio, 2015). Owing 

to the law of Nature, the S-curve can be used when 

a “genetically stable species” competing for limited 

resources are identified. It means that there should 

be two components: the ability of “species” to multi-

ply and finite niche capacity.  An argument for using 

the model can be made, too, if the data fit well into 

a large section of an S-curve. Nevertheless, the con-

fidence of forecasting will be when the features 

of natural growth are identifying (Modis, 2007). 

The S-curve represents the growth or decline of eve-

ry system in interaction with an environment (Ku-

charavyand De Guio, 2015). Therefore S-shaped 

curves are applied for projecting the performance 

of technologies, to foresee population changes, 

for market penetration analyses, for micro- and mac-

ro-economic studies, for diffusion mechanisms 

of technological and social inventions, for ecological 

modeling, and many others (Kucharavy and De 

Guio, 2011). S-curves are adopted in quantitative, 

qualitative, and both the methods simultaneously. 

These are used in trend impact analysis, curve fitting 

technique, decision modeling based on Fisher 

and Pry model, statistical modeling, text mining 

for technology forecast, life cycle analysis in the 

framework of strategic analysis, theory of innovation 

diffusion, and emerging issues analysis.  

Quantitative methods using S-curve are applied for: 

 extrapolation of previously collected data,  

 examining market, technological, social substitu-

tion dynamics, 

 analyzing annual publications to prove informa-

tive trends, 

 identifying the issues before they reach the trend 

of problem phase for engineering and non-

engineering fields. 

Qualitative methods using S-curve are often put 

in for identifying the stage of a system's evolution, 

and both the methods are simultaneously used for: 

 trend extrapolation, 

 studying the technology adaptation dynamic. 

Traditionally, analyzes using S-shaped curves identi-

fy three stages of phenomenon's development and 

three parameters. These stages are initial growth, 

exponential growth, and deceleration, and the pa-

rameters are saturation level, midpoint, and growth 

rate. The saturation level is the horizontal asymptote 

that limits the chart from above, the midpoint is the 

level that is half the saturation level, and the growth 

rate describes the slope of the curve (Słupiński, Ku-

charavy, 2011). In the interpretation of the curve, 

10–15% saturation is assumed as the level of transi-

tion from slow growth to hypergrowth, and it is as-

sumed that saturation comes after exceeding 90% 

(Johnson, 2012).  
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From a mathematical point of view, the midpoint 

or inflection point is the zero point of the second 

derivative of the logistic function.  

In this article, in contrast to the previous approach, 

we use the zero point of the third derivative, not only 

the second one, in forecasting, and we find it for a 

generalized logistic function using the second differ-

ences of its terms. We take the presentation of this 

approach in economic projections as the goal of the 

article. 

 

2 Definitions and properties  

 

The Riccati equation with constant coefficients is the 

following first-order ordinary differential equation: 

u′(t) = r(u − u1)(u − u2) (1) 

The right-hand side of equation (1) is a quadratic 

function of variable u, with coefficient r of u2, 

having zeroes u1, u2. The constants r ≠ 0, u1, u2 

are real or complex numbers.  

If u(t) is a solution of equation (1), then there is 

known formula for the n-th derivative u(n)(t) (n =

2,3, . ..) of u(t), expressing the derivative as a 

polynomial of the function itself:  

u(n)(t) = rn ∑ ⟨
n
k

⟩ (u − u1)k+1(u − u2)n−kn−1
k=0

 (2) 

where integer number ⟨
n
k

⟩ is the Eulerian number (for 

definitions of specific numbers see Graham, et al., 

1994).  

Formula (2) has been discussed during the 

Conference ICNAAM 2006 (International Confer-

ence of Numerical Analysis and Applied 

Mathematics, September 2006) held in Greece, and 

it appeared with an inductive proof in an article 

by Rządkowski (2006) (see also Rządkowski, 2008). 

Independently, the formula has been considered 

and proved, with a proof based on generating 

functions, by Franssens (2007). Eulerian numbers 

play a significant role in combinatorics, probability 

theory, statistics, and different applications of mathe-

matical analysis. 

It is convenient, for our purposes, to write equation 

(1) as: 

u′(t) =
s

umax − umin

(u − umin)(umax − u), 

 u(0) = u0 > umin (3) 

where t is time or expenditure, u = u(t) is an 

unknown function, and s, umax > umin are constants. 

Constants umax and umin are called the saturation 

level and the initial level, respectively. The integral 

curve u = u(t) of equation (3) meeting the condition 

umin < u(t) < umax is called a generalized logistic 

function. When the initial level umin = 0, equation 

(3) is known as the logistic equation. With a proper 

interpretation of the constant umin, equation (3) can 

also be interpreted as the Bass equation. Both the 

logistics function and the generalized logistics 

function are special cases of the so-called sigmoidal 

functions, also known as S-shaped curves, which are 

widely used to model phenomena in the field of 

economics, sociology, physics, medicine, biology, 

and others. 

Many economic phenomena, including those related 

to management, follow the logistic equation and can 

be modeled with it (see, e.g., Meade and Islam, 

2006; Michalakelis and Sphicopoulos, 2012;  Qian 

and Soopramanien, 2014; Wu and Chu, 2010; 

Yamakawa, et al., 2013).  

A phenomenon described by equation (3) and 

function u(t) has a valuable property that the rate 

of growth u′(t) is proportional to the level already 

achieved, that is, (u(t) − umin). As a result, in the 

initial period, the phenomenon has nearly exponen-

tial growth. On the other hand, if u(t) is sufficiently 

large, then the factor (umax − u) is more and more 

significant, and its influence inhibits further growth 

of function u(t).  

Mathematically, equation (3) is the first-order 

ordinary differential equation, which can be easily 

solved using the method of separation of variables. 

After solving  (3), we get the generalized logistic 

function in the following form: 

u(t) = umin +
umax−umin

1+e−s(t−c)   (4) 

where constant c appears in the integration process 

and is connected with the initial condition u(0) =

u0 = umin +
umax−umin

1+esc , therefore c =
1

s
log

umax−u0

u0−umin
, 

where log stands for the natural logarithm. 
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Figure 1. Generalized logistic function with parameters: umax = 100, umin = 10, and c = 5  

(Source: Own elaboration) 

 

Fig. 1 shows graphs of two exemplary generalized 

logistic functions with parameters umax =

100, umin = 10, and c = 5 for two values of 

parameter s.   At point t = c, the generalized logistic 

function (3) has the inflection point (zero of the 

second derivative), at which its value equals (umin +

umax )/2. In the article by Rządkowski, et al. (2014), 

it is proved that for the logistic curve (i.e., when 

umin = 0), the value of the function at zero of the 

third derivative equals 0.211umax. Hence, it follows 

that for a generalized logistic curve, at the zero of the 

third derivative u′′′,  function (4) takes value umin +

0.211(umax − umin) = 0.789umin + 0.211umax.  

On the basis of the same paper, we can also show 

that:  

 at the minimal positive point t when u(4)(t) = 0, 

function u(t) takes the value: 

0.9083umin + 0.0917umax, 

 at the minimal positive point t when u(5)(t) = 0, 

function u(t) takes the value: 

0.9587umin + 0.0413umax. 

 

3 Logistic time series 

 

In the article by Rządkowski, et al. (2014), it is 

proved by using appropriate examples that for a 

given time series, potentially having a logistic shape, 

the central second differences of its terms (for the 

time series vt, the central second differences are 

defined as ∆2vt = vt+1 − 2vt + vt−1) reach a 

maximum near of the zero point of the third 

derivative at which the second derivative takes its 

maximum. This is actually a special case of the more 

general rule for every smooth function f(t).  

On the basis of the Taylor formula, one can easily 

justify the following formula: 

𝑓(t + 1) − 2f(t) + f(t − 1) =  f"(t) 

+
1

2
∫ (t + 1 − x)2f ′′′(x)dx

t+1

t

 

−
1

2
∫ (x + 1 − t)2f ′′′(x)dx,

t

t−1

 

from which it follows that if at the point t, f"(t) takes 

maximal value, then the value of the second 

difference is also large.  

The sum of both the integrals is positive but rather 

small, because f ′′′(t) = 0 and usually:  

f ′′′(x) < 0 for x < t and f ′′′(x) > 0 for x > t.  

In the case of a generalized logistic function (4), 

the coordinate of the point t0, where u′′(t0) takes the 

maximum value, satisfies the equation: 

u(t0) = umin +
umax − umin

1 + e−s(t0−c)
 

= umin + 0.211(umax − umin), 

from which we calculate:  

t0 = c −
1.319

s
. 
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Then using (2), we get: 

u′′(t) = (
s

umax−umin
)

2
((u − umin)(umax −

u)2 − (u − umin)2(umax − u)), 

and substituting t = t0   and  u(t0) = umin +

0.211(umax − umin) in the above equation, we 

calculate maximal value of the second derivative: 

u′′(t0) = 0.09622 s2(umax − umin)  (5) 

Suppose that a time series derived exactly from a 

generalized logistic function: 

u(t) = umin +
umax−umin

1+e−s(t−c) ,    t = 1,2,3, … , n (6) 

has been influenced by random disturbances (white 

noise) of the form at + b + εXt to get a new time 

series: 

U(t) = u(t) + at + b + εXt;  t = 1,2,3, … , n,   (7) 

where a, b, ε are constants and (Xt), t = 1,2,3, … , n 

are independent random variables with the same 

normal standard distribution, Xt~N(0,1).  

Then if ε is small enough compared to the value 

of u"(t0) in (5), then the maximum value of the cen-

tral second differences ∆2Ut = Ut+1 − 2Ut + Ut−1  

is taken at a point only slightly different from t0. 

This will be indicated by the following example. 

Example 1 

Let umax = 20, umin = 4, s = 0.3, c = 30, a = 0.1,

and b = 0 in equations (6) and (7). Fig. 2 shows 

the function u(t) and Fig. 3 its second derivative 

u"(t).      

We have performed the Monte Carlo simulations 

for two values: ε = 0.01 and ε = 0.001 (Figs. 4–7).

 

 

 Figure 2. Graph of u(t)  Figure 3. Graph of u"(t)  

 (Source: Own elaboration)  (Source: Own elaboration) 

 

 

 

 Figure 4. Points of a realization  Figure 5. Points of a realization of the second 

 of the time series U(t) for  ε = 0.001  differences  ∆2U(t) for ε = 0.001  
 (Source: Own elaboration) (Source: Own elaboration) 
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 Figure 6. Points of a realization  Figure 7. Points of a realization 

 of the time series U(t) for  ε = 0.01  of the second differences  ∆2U(t) for ε = 0.01 

 (Source: Own elaboration)  (Source: Own elaboration) 

 

After performing 50 Monte Carlo simulations, we 

obtained the following mean values and standard 

deviations for both the coordinates of the maximum 

point of the second differences ∆2U(t) (Fig. 5 and 

Fig. 7): 

 for ε = 0.001, the mean horizontal coordinate is 

25.66 with a standard deviation of 0.479 and the 

mean vertical coordinate is 0.138 with a standard 

deviation of 0.002, 

 for ε = 0.01, the mean horizontal coordinate is 

25.4 with a standard deviation 1.07 and the mean 

vertical coordinate is 0.16 with a standard devia-

tion of 0.014. 

The example indicates that the maximum of the sec-

ond differences in the disturbed logistic series be-

haves stable when the value of ε is relatively small. 

Therefore, this point can be used to estimate the satu-

ration level of the logistic curve.  

 

4 Applications 

 

S-curves have long been used for a long time to ana-

lyze economic phenomena. The strong assumption 

in these analyses is that all businesses have a life 

cycle; they develop, mature, and then die. Over time, 

all markets and all products climb to a peak; they 

then wane and sometimes disappear entirely.  

Unlimited growth is impossible. So the fundamental 

question is: How far along on the S-curve is the 

business, market, technology, and so forth? (Harri-

son, 2011). 

Example 2 - The diffusion of mobile telephones  

in Poland 

In the recent years, many articles devoted to the 

mathematical modeling of diffusion of mobile tele-

phones in various countries have been published 

(see, e.g., Junseok, et al., 2009; Michalakelis and 

Sphicopoulos, 2012; Wu, et al., 2010; Yamakawa, 

et al., 2013). In this article, we applied S-curve 

for mobile telephones subscriptions in Poland and 

showed its utility for market penetration.  

Table 1 presents the number of mobile telephones 

subscriptions in Poland in 1992–2012 per 100 inhab-

itants. The data were taken from the website of In-

ternational Telecommunication Union (ITU; 

http://www.itu.int).  

For the data (not including items 20 and 21, because 

the points seem to form a new generalized logistic 

curve), using the nonlinear least squares method, we 

found a logistic function (assuming umin = 0) best 

describing changes in the number of subscriptions. 

We have received the following form of the 

regression curve: 

u(t) =
131.9

1 + exp (−0.484(t − 13.17))
 

with parameters: 

umax = 131.9, s = 0.484, and  c = 13.17.  

In Fig. 8, the regression curve, that is, the logistic 

function, is marked in red and subscriptions are 

marked in blue. 
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Table 1. Number of subscriptions of mobile telephones per 100 inhabitants in Poland in the years 1992-2012 

(Source: ITU,  http://www.itu.int) 

No (t) Year 
Number of subscriptions  

per 100 inhabitants, y(t) 
Second differences ∆2 

1 1992 0.007 
 

2 1993 0.035 0.0378 

3 1994 0.101 0.02894 

4 1995 0.196 0.27426 

5 1996 0.565 1.1828 

6 1997 2.117 1.39996 

7 1998 5.069 2.29338 

8 1999 10.315 2.03268 

9 2000 17.593 1.24125 

10 2001 26.112 1.67588 

11 2002 36.307 -1.0091 

12 2003 45.493 5.74175 

13 2004 60.421 0.99075 

14 2005 76.339 3.94934 

15 2006 96.207 -7.6964 

16 2007 108.378 -5.5284 

17 2008 115.021 -4.3499 

18 2009 117.315 3.30763 

19 2010 122.915 2.77762 

20 2011 131.294 0.67138 

21 2012 140.343 
 

 

 

 

Figure 8. Logistic function as the regression curve (Source: Own elaboration) 
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The coefficient of determination is close to 1 and 

equals to R2 = 0.9977, which indicates an excellent 

explanation of the phenomenon. 

If you look at the values of the second differences in 

Table 1, the upward trend leading to their maximum 

value is not visible. The phenomenon is affected by 

random fluctuations, which can be, to some extent, 

eliminated, for example, by the exponential 

(delayed) smoothing 

yt
∗ = αyt + (1 − α)yt−1

∗ ,   y1
∗ = y1. 

Assuming the value of the smoothing constant α =

0.5, we get the following results for the smoothed 

values and their second differences. 

 

Table 2. Exponentially smoothed values for the data of Table 1  

(Source: Own elaboration) 

No (t) Year Smoothed values yt
∗ Second differences ∆2 

1 1992 0.007 
 

2 1993 0.021 0.02594 

3 1994 0.061 0.027439 

4 1995 0.129 0.150848 

5 1996 0.347 0.666822 

6 1997 1.232 1.033391 

7 1998 3.151 1.663384 

8 1999 6.733 1.848031 

9 2000 12.163 1.544643 

10 2001 19.137 1.610262 

11 2002 27.722 0.300585 

12 2003 36.607 3.021167 

13 2004 48.514 2.005957 

14 2005 62.427 2.977648 

15 2006 79.317 -2.35939 

16 2007 93.848 -3.9439 

17 2008 104.434 -4.14688 

18 2009 110.875 -0.41963 

19 2010 116.895 1.178996 

20 2011 124.094 0.925189 

21 2012 132.219 
 

 

On the basis of Table 2, we can clearly estimate 

the value of the inflection point at about 70, and 

hence, the saturation level of the phenomenon could 

be estimated at 140. The maximum amount of the 

second difference is assumed for 2003, and in this 

case, the predicted saturation level is 36.607/0.211 = 

173.5. 

5 Conclusions 

 

In this article, starting from the Riccati equation, 

we have built an analytical form of a generalized 

logistic function. Thus, we presented a useful tool 

for forecasting different phenomena, in which the 



92 Grzegorz RZĄDKOWSKI, Lidia SOBCZAK  

 

role of the explanatory variable is played by the time 

variable, synthesizing according to Nazarko (2018), 

and the impact of many factors affecting the phe-

nomenon. This method can be used with good results 

in forecasting, for example, economic phenomena.  

Its undoubted advantage is the possibility of fore-

casting with a small number of points in a time se-

ries. We claim that by anticipating the logistic 

development of the phenomenon, we are able to 

effectively forecast its saturation level and the time 

of its achievement at its early stage of development. 

We postulate the use of the third derivative of the 

logistic function and the maximum of the central 

second differences in terms of a given time series. 
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