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ABSTRACT 

The effect of Phlebiopsis gigantea treatment in control of Heterobasidion parviporum in Norway spruce is less 
effective than that in control of Heterobasidion annosum in pine. It is necessary to apply other fungi, for example, 
Pleurotus abieticola in Norway spruce stands. Thus, it is necessary to assess the activity of major ligninolytic 
enzymes, that is, laccase, lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase (VP) 
produced by P. abieticola, which may be effective in the fast degradation of Norway spruce wood. Three strains 
of P. abieticola (Pa1-3) were grown on pieces of Norway spruce sapwood and heartwood for 50 days in laboratory 
conditions. Enzymatic activity was determined using spectrophotometry. Pleurotus abieticola produced laccase, 
LiP, MnP and VP. The activity of laccase was low, ranging 0–3.696 and 0–0.806 mU/μg of protein in sapwood and 
heartwood, respectively. The highest activity in Pa1 = 3.696 mU/μg of protein in sapwood and in Pa3 = 0.806 mU/μg 

of protein in heartwood was observed after 30 and 50 days of incubation, respectively. The activity of LiP was also 
low, ranging 0–0.188 and 0–0.271 mU/μg of protein in sapwood and heartwood, respectively. The highest activity 
in Pa1 = 0.271 mU/μg of protein in sapwood and in Pa2 = 0.188 mU/μg of protein in heartwood was observed after 
40 and 20 days of incubation, respectively. The activity of MnP ranged 0–17.618 and 0–12.203 mU/μg of protein in 
sapwood and heartwood, respectively. This enzymatic activity peaked at the 50th day of culture on sapwood for the 
Pa3 strain (17.618 mU/μg of protein) and at the 20th day of culture on heartwood for the Pa1 strain (12.203 mU/μg of 

protein). The activity of VP with manganese-oxidising properties was found to be high in all strains of P. abieticola, 
ranging 0–39.19 and 0–59.153 mU/μg of protein in sapwood and heartwood, respectively, whereas the activity of VP 
with guaiacol-oxidising properties was very low for all P. abieticola strains, ranging 0–0.248 and 0–0.225 mU/μg 
of protein in sapwood and heartwood, respectively. The values of released hydroxyphenols in P. abieticola strains 
ranged 24.915–139.766 and 25.19–84.562 µg of protocatechuic acid/ml in sapwood and heartwood, respectively. The 
values of released methoxyphenols for the evaluated strains of P. abieticola ranged 7.225–23.789 and 1.953–20.651 µg 
of vanillic acid/ml in sapwood and heartwood, respectively. Further studies with a higher number of strains of this 
species as well as an optimisation of conditions for the measurement of ligninolytic activity are needed.
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Introduction

The root and butt rot caused by Heterobasidion annosum 
(Fr.) Bref. sensu lato is considered one of the most 
important and destructive diseases affecting conifers in 
the north temperate regions of the world, particularly 
in Europe where annual loses are estimated at least 790 
million euros per year (Woodward et al. 1998; Greig et 
al. 2001; Korhonen and Holdenrieder 2005; Garbelotto 
and Gonthier 2013). 

In 2018, the disease occurred on 85,125 ha of 
Polish National Forest [2,782 and 82,343 ha in the 
first-class age (to 20 years old) and in older tree 
stands, respectively] (Małecka 2019). Three species of 
H.  annosum s.l. are recorded in Poland: H. annosum 
(Fr.) Bref. sensu stricto, which affects mostly Scots 
pine (Pinus sylvestris L.); H. parviporum Niemelä et 
Korhonen, which affects Norway spruce (Picea abies 
(L.) H. Karst.; and H. abietinum Niemelä et Korhonen, 
which affects fir (Abies), rarely spruce and sporadically 
larch (Larix) (Sierota 2001; Łakomy and Werner 2003). 

Heterobasidion annosum s.l. infects with 
basidiospores, which germinate on fresh stump 
surfaces after tree cut (Stenlid and Redfern 1998). 
It then spreads via contacts of diseased and healthy 
roots of surrounding trees (Rishbeth 1951a, b; 1957; 
Stenlid and Redfern 1998). One method of control is 
the application of saprotrophic Phlebiopsis gigantea 
(Fr.: Fr.) Jülich – a  competing fungus that produces 
the mycelium and fruiting bodies on the surface of the 
stump surface. The method is successfully applied in 
many countries. However, the treatment of spruce is not 
fully satisfactory, amongst others because of too slow 
wood colonisation process by P. gigantea (Korhonen et 
al. 1994; Holdenrieder et al. 1998; Nicolotti et al. 1999; 
Berglund and Rönnberg 2004; Nicolotti and Gonthier 
2005; Berglund et al. 2005; Rönnberg et al. 2006; 
Drenkhan et al. 2008; Gunulf et al. 2012; Rönnberg and 
Cleary 2012). Thus, the more effective competing fungi 
should be used in the protection of spruce. 

Species of Pleurotus may be taken into 
consideration because of (i) saprotrophic occurrence 
of Pleurotus ostreatus (Jacq.: Fr.) Kummer on wood of 
deciduous trees and of Pleurotus abieticola Petersen 
and Hughes on wood of Norway spruce (Schwarze et al. 
2000; Kodrik 2001; Albertó et al. 2002; Żółciak 2002; 
Szczepkowski and Piętka 2008), (ii) potent ligninolytic 

enzyme system that enables successful degradation of 
lignin and various aromatic compounds in wood (Cohen 
et al. 2002; Stajić et al. 2004; Camassola et al. 2013).

Extremely rare P. abieticola has been first described 
from Far East Russia (Petersen and Hughes 1997) and 
then reported from China (Albertó et al. 2002; Li et al. 
2014; Liu et al. 2015). It can grow on Norway spruce, fir, 
alder (Alnus) and willow (Salix). In Poland, it has been 
found in the Białowieża Primeval Forest on Norway 
spruce (Gierczyk et al. 2015a, b, 2017, 2018; Kujawa et 
al. 2017).

The aim of this study was to assess the ligninolytic 
activity of P.  abieticola strains growing on Norway 
spruce wood blocks of sapwood and heartwood under 
laboratory conditions. The results will contribute to 
the better understanding of metabolic processes of the 
fungus before its potential application for the control of 
Heterobasidion. 

Material and methods 

Three strains of P. abieticola (Pa1, Pa2 and Pa3) obtained 
from basidiospores collected from basidiomata found on 
the stem of three Norway spruces in the Białowieża Pri-
meval Forest were used in the study. Basidiospores were 
placed on 2% malt extract agar (MEA) in Petri dishes. 
Spores were germinated and mycelium grew at 24°C in 
darkness. After 21 days, the 2-cm diameter discs with 
mycelium were transferred to sterile 2% MEA in Petri 
dishes and incubated at 24°C in darkness for another 21 
days. Then, the sterile Norway spruce wood pieces of 
sapwood and heartwood (80 mm × 40 mm × 4 mm) were 
placed on P. abieticola mycelium and incubated at 28°C 
in 12/12 hours day/night rhythm for 50 days. The enzy-
matic activity was analysed in the surface layer of wood 
covered by mycelium of P. abieticola. Samples were col-
lected after 10, 20, 30, 40, and 50 days. Both sapwood and 
heartwood were ground together and enzyme broth was 
extracted. Enzyme activities were measured spectropho-
tometrically (three measurements) in supernatant after 
centrifuging (6,000 rpm. for 5 min at 4ºC). The amount 
of enzyme necessary to oxidise 1 μmol of substrate per 
minute was defined as one activity unit. All activities 
were expressed in units of specific activity (mU/μg of 

protein). The activity of laccase was determined with 
syringaldazine as a substrate (Leonowicz and Grzywno-
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wicz 1981). The activities of lignin peroxidase (LiP) and 
manganese peroxidase (MnP) were determined using the 
method of Wariishi et al. (1992) and Tien and Kirk (1988) 
modified by Matuszewska (2005), respectively. 

The activity of versatile peroxidase (VP) in the oxi-
dation of manganese ions and guaiacol was assayed us-
ing the method of Sugano et al. (2006). Concentrations 
of methoxyphenolic and hydroxyphenolic substances 
were evaluated using diazosulphanilamide in the DASA 
test (Leonowicz et al. 1968) modified by Malarczyk 
(1984). Detailed methodology is presented in publica-
tions of Żółciak et al. (2008; 2012) and Żółciak and Bo-
hacz (2016).

The data on the enzymatic activity were analysed 
using the Kruskal–Wallis and Mann–Whitney U tests. 
Statistical analyses were performed using Statistica 10 
(StatSoft, Inc.).	

RESULTS 

Three strains of P.  abieticola (Pa1, Pa2, Pa3) whilst 
growing on both sapwood and heartwood of Norway 
spruce produced lignin-modifying enzymes, that is, 
laccase, LiP, MnP and VP (oxidising both manganese 
ions and guaiacol). During the degradation process, 
hydroxyphenolic and methoxyphenolic substances were 
released. 

The activity of laccase was low, ranging 0–3.696 and 
0–0.806 mU/μg of protein in sapwood and heartwood, 
respectively. The highest activity in Pa1 = 3.696 mU/μg of 
protein in sapwood and in Pa3 = 0.806 mU/μg of protein 
in heartwood were recorded after 30 and 50 days of 
incubation, respectively. More often, no activity was 
observed in heartwood than in sapwood, particularly 
in case of Pa1 (Tab. 1). The activity of laccase in three 
P. abieticola strains and at five periods of incubation (after 
10, 20, 30, 40 and 50 days) did not differ significantly. 
Only the median laccase activity in sapwood and 
heartwood was significantly different (Fig. 1). 

The activity of LiP was also low, ranging 
0–0.188 and 0–0.271 mU/μg of protein in sapwood 
and heartwood, respectively (Tab.  1). The highest 
activity in Pa1 = 0.271 mU/μg of protein in sapwood 
and in Pa2 = 0.188 mU/μg of protein in heartwood 
were recorded after 40 and 20 days of incubation, 
respectively. The activity of LiP in Pa1 and Pa3 was 

significantly different (Fig.  2A). The median LiP 
activity in sapwood and heartwood and at five periods 
of incubation (after 10, 20, 30, 40 and 50 days) was not 
significantly different (Fig. 2A). 
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Figure 1. Laccase activity in P. abieticola strains cultured 
on sapwood versus heartwood (different letters denote 
statistically significant differences at p ≤ 0.05)

The activity of MnP ranged from 0 to 
17.618 mU/μg of protein in cultures on sapwood and from 
0 to 12.203 mU/μg of protein in cultures on heartwood 
(Tab. 1). The enzymatic activity peaked at the 50th day 
of culture on sapwood for the Pa3 strain (17.618 mU/μg 
of protein) and at the 20th day of culture on heartwood 
for the Pa1 strain (12.203 mU/μg of protein). Strains of 
P.  abieticola Pa1 and Pa3 exhibited MnP activity in 
cultures on both sapwood and heartwood. In the case 
of Pa2, no manganese activity was noticed. Significant 
differences were observed between the P. abieticola 
strains Pa1 and Pa2 and Pa2 and Pa3 in values of MnP 
activity (Fig.  2B). On the other hand, no statistically 
significant differences were observed between the 
medians of MnP activity in sapwood and heartwood 
as well as in samples evaluated after days of culture of 
P. abieticola. 

The activity of VP with manganese-oxidising 
properties was found to be high in all strains of 
P.  abieticola, ranging 0–39.190 and 0–59.153 mU/μg 

of protein in sapwood and in heartwood, respectively 
(Tab.  1). The highest activity of the enzyme was 
observed for the Pa3 strain (39.19 mU/μg of protein) 
at the 30th day of culture on sapwood and for the Pa1 
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strain (59.153 mU/μg of protein) at the 40th day of cul-
ture on heartwood. Significant differences were ob-
served between the P. abieticola strains Pa1 and Pa2 
and Pa2 and Pa3 in values of MnP activity (Fig. 2C). 
The activity of VP manganese-oxidising properties did 
not differ significantly amongst cultures of P. gigantea 
strains on sapwood and heartwood or amongst the time 
periods of strain culture.

The activity of VP with guaiacol-oxidising 
properties was very low for all P.  abieticola strains, 
ranging 0–0.248 and 0–0.225 mU/μg of protein in 
sapwood and in heartwood, respectively (Tab.  1). 
The activity of the enzyme peaked for the Pa3 strain 
(0.248 mU/μg of protein) at the 10th day of culture on 
sapwood and for the Pa1 strain (0.225 mU/μg of protein) 
at the 40th day of culture on heartwood. The activity 

Table 1. Dynamics of measured enzymes activity and levels of secreted hydroxyphenols and methoxyphenols in cultures 
of P. abieticola strains (Pa1, Pa2 and Pa3) on Norway spruce wood (S – sapwood; H – heartwood) 

Strain

Days

10 20 30 40 50

S H S H S H S H S H

Laccase activity (mU/μg of protein)

Pa1 0.373 0 0.828 0 3.696 0 0.176 0.340 0.179 0
Pa2 1.134 0.275 1.007 0 0.573 0.170 0.080 0.115 0.035 0
Pa3 0.768 0 0.924 0 0.620 0.346 0 0.781 0.202 0.806

Lignin peroxidase activity (mU/μg of protein)
Pa1 0.051 0.067 0.074 0.105 0.168 0.050 0.071 0.271 0 0.090
Pa2 0.178 0.019 0.188 0.019 0.061 0.022 0.045 0.007 0.030 0
Pa3 0 0 0 0 0 0.054 0.125 0 0.105 0.087

Manganese peroxidase activity (mU/μg of protein)
Pa1 5.421 4.155 9.432 12.203 8.648 9.470 10.072 10.476 6.617 7.494
Pa2 0 0 0 0 0 0 0 0 0 0
Pa3 0.177 9.509 10.003 8.779 8.794 5.662 8.100 6.711 17.618 2.032

Versatile peroxidase activity, oxidising manganese ions (mU/μg of protein)
Pa1 3.863 16.249 14.143 43.057 35.680 37.949 21.376 59.153 30.020 32.898
Pa2 2.020 0 0 0.322 0 0 0 0 0 0
Pa3 2.995 27.504 29.687 44.608 39.190 31.048 31.970 32.019 38.523 9.735

Versatile peroxidase activity, oxidising guaiacol (mU/μg of protein)
Pa1 0.079 0.217 0.229 0.168 0.264 0.155 0.182 0.225 0.160 0.093

Pa2 0.205 0.053 0.089 0.030 0.047 0 0.012 0.012 0.020 0

Pa3 0.248 0.178 0.270 0.137 0.213 0.065 0.082 0.157 0 0.195
Hydroxyphenols (μg of protocatechuic acid/ml)

Pa1 43.968 75.158 77.936 84.562 139.766 71.295 61.372 78.181 58.884 70.181

Pa2 69.891 34.457 66.173 28.976 44.869 25.190 27.083 70.465 24.915 70.099

Pa3 71.540 80.700 89.860 83.860 83.799 63.906 45.632 74.379 77.326 56.242

Methoxyphenols (μg of vanillic acid/ml)

Pa1 9.090 17.749 15.493 21.250 23.789 17.258 13.076 19.170 13.197 15.520
Pa2 18.321 11.743 14.477 9.191 15.514 9.191 7.871 2.242 7.225 1.953
Pa3 14.901 18.779 19.015 20.651 16.369 14.786 8.767 16.301 17.426 11.581
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of guaiacol-oxidising VP did not differ significantly 
amongst the P. abieticola strains as well as the 
P. abieticola strains grown on sapwood and heartwood, 
but statistically significant differences in activity were 
determined amongst samples evaluated after the 10th 
and the 50th day of culture (Fig. 2D). 

The values of released hydroxyphenols in the 
P.  abieticola strains ranged from 24.915 to 139.766 
µg of protocatechuic acid/ml in cultures on sapwood 
and from 25.19 to 84.562 µg of protocatechuic acid/ml 
in cultures on heartwood (Tab. 1). The highest value 
of released hydroxyphenols was observed for the Pa1 
strain on the 30th day of culture on sapwood (139.766 
µg of protocatechuic acid/ml) and on the 20th day of 

culture on heartwood (84.562 µg of protocatechuic 
acid/ml). Significant differences were observed 
between the P. abieticola strains Pa1 and Pa2 and Pa2 
and Pa3 in values of released hydroxyphenols (Fig. 2E) 
as well as between samples evaluated after the 20th 
and the 50th days of culture of P. abieticola mycelium 
(Fig. 2F). No significant difference between strains of 
P. abieticola grown on sapwood and heartwood was 
noticed.

The values of released methoxyphenols for the 
evaluated strains of P. abieticola ranged from 7.225 to 
23.789 µg of vanillic acid/ml in cultures on sapwood 
and from 1.953 to 20.651 µg of vanillic acid/ml in 
cultures on heartwood (Tab. 1). The highest values of 
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Figure 2. Activity of (A) lignin peroxidase, (B) manganese peroxidase, (C) versatile peroxidase activity oxidising manganese 
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methoxyphenols were reported for the Pa1 strain at the 
30th day of culture on sapwood (23.789 µg of vanillic acid/
ml) and for Pa3 at the 20th day of culture on heartwood 
(20.651 µg of vanillic acid/ml). Statistically significant 
differences in the values of released methoxyphenols 
were observed between the P. abieticola strains Pa1 and 
Pa2, and Pa2 and Pa3 (Fig. 2G) as well as in samples 
evaluated after the 20th and the 40th, the 20th and 50th 
days of mycelium culture (Fig.  2H). No significant 
difference between strains of P.  abieticola grown on 
sapwood and heartwood was noticed.

Discussion

According to Kamitsuji et al. (2004), Pleurotus spp. has 
been recognised to produce extracellular ligninolytic 
enzymes such as laccase and MnP. Stajić et al. (2006) 
showed that laccase and peroxidases production depends 
on the species and strains of the genus Pleurotus, 
condition of cultivation and carbon and nitrogen 
sources and concentrations. In this study, P. abieticola, 
similar to P. ostreatus, secreted laccase and three types 
of peroxidases, that is, LiP, MnP and VP (Leonowicz 
et al. 1999; Elisashvili et al. 2003; Baldrian et al. 2005; 
Hoegger et al. 2007). 

The results obtained may indicate that P. abieticola 
belongs to groups that produce small amounts of laccase 
(Bollag and Leonowicz 1984; Baldrian, 2005). 

In the present study, the activity of laccase was 
determined by the oxidation of syringaldazine (Harkin 
and Obst 1973; Leonowicz and Grzywnowicz 1981), 
but there are also other methods that may be tested for 
P.  abieticola in future studies, for example, laccase 
production can be stimulated by the presence of a wide 
variety of inducing substances, particularly aromatic 
or phenolic compounds (Farnet et al. 1999), anilines 
(Fåhraeus et al. 1958; Bollag and Leonowicz 1984) or 
2,5-xylidine (Fåhraeus and Reinhammar 1967; Rogalski 
and Leonowicz 1992; Agematu et al. 1993). According 
to Baldrian and Gabriel (2002), copper and cadmium 
increase the activity of laccase in P.  ostreatus. Stajić 
et al. (2013) demonstrated a  stimulatory effect of the 
microelements (Fe, Zn and Se) on the activity of laccase 
in P. ostreatus.

Pleurotus abieticola strains showed a  very low 
ligninase activity. This does not seem to be related to 

the method of measurement as in the case of laccase. 
The enzymatic activity of ligninase was measured 
by the increase in absorbance at 310 nm under the 
oxidation of veratryl alcohol (Wong 2009). According 
to Hammel et al. (1993), veratryl alcohol enhances 
the action of LiP on many substrates, including lignin 
(Lundell et al. 1993; Schoemaker et al. 1994), by acting 
as a mediator (Harvey et al. 1986) or by protecting the 
enzyme against inactivation (Wariishi and Gold 1989). 
Guaiacol, acetosyringone, catechol, vanillyl alcohol 
and syringic acid are other phenolics susceptible to the 
oxidative potentials of LiP (Harvey and Palmer 1990; 
Wong 2009). According to Baciocchi et al. (2001), 
besides the oxidation of non-phenolic substrates, LiP 
has also shown the capability to oxidise a  variety of 
phenolic compounds.

In this study, the activity of MnP was not so high 
for the tested P. abieticola strains (except for Pa2 – no 
activity was noticed). Martinez et al. (1996) reported 
that the secretion of MnP enzymes by different white-
rot fungi is strongly dependent on growth conditions. 
Manganese peroxidase production was observed in 
P. eryngii (DC.) Quél., P. ostreatus, P. pulmonarius (Fr.) 
Quél. and P. sajor-caju (Fr.) Singer in pepton medium, 
but it was not detected in media with other investigated 
nitrogen organic sources (corn-step liquor, malt extract 
and ammonium tartrate). 

According to Giardinia et al. (2000), P. ostreatus 
produces two MnP isoenzymes when grown in solid 
stationary conditions on poplar sawdust, whereas 
a lower production of these same enzymes was observed 
on fir sawdust. Addition of Mn2+ to poplar culture 
resulted in a  threefold increase in the MnP activity; 
the same addition to fir culture was able to increase 10-
fold the MnP production. According to Hatakka (1994), 
Mn2+ ions are a crucial substrate for MnP. This enzyme 
is a  heme glycoprotein that catalyses the oxidation 
of Mn2+ to Mn3+ in the presence of H2O2. However, 
Mn2+ concentration affects the MnP levels; it has been 
reported (Kerem and Hadar 1993, 1995; Camarero 
et al. 1996) that the addition of Mn2+ enhances the 
degradation of lignin during solid-state fermentation 
of different Pleurotus species, without increasing the 
MnP levels. On the contrary, the presence of extra Mn2+ 
strongly increases the production of MnP during solid-
state fermentation on different kinds of wood sawdust 
(Giardinia et al. 2000). 
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In the present study, the activity of VP with 
manganese-oxidising properties for the focal strains 
of P.  abieticola was found to be high in contrast to 
the activity of VP with guaiacol-oxidising properties. 
Versatile peroxidase was first reported in P.  eryngii 
(Martinez et al. 1996) and then in Bjerkandera adusta 
[(Willd.) P. Karst.] and P. ostreatus (Sarkar et al. 1997; 
Heinfling et al. 1998a, b; Mester and Field 1998). 
Versatile peroxidases combine the properties of LiPs 
and MnPs, conferring the catalytic versatility inferred 
by their name (Camarero et al. 1999). According to 
Ruiz-Dueñas et al. (2001), they can oxidise Mn2+ to 
Mn3+ similar to MnPs but can also oxidise non-phenolic 
compounds in the same manner as LiPs.

These preliminary findings on the white-rot fungus 
P. abieticola are, however, not sufficient to evaluate its 
capabilities against root rot caused by H. parviporum. 
Further studies with a higher number of strains of this 
species as well as an optimisation of conditions for the 
measurement of ligninolytic activity are needed. 
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