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Abstract. In this work, we introduce a simple multi-agent simulation model with
two roles of agents that correspond to moral and immoral attitudes. The model is
given explicitly by a set of mathematical equations with continuous variables and is
characterized by four parameters: morality, protection, and two efficiency parameters.
Agents are free to adjust their roles to maximize individual gains. The model is
analyzed theoretically to find conditions for its stability, i.e., the fractions of agents of
both roles that lead to an equilibrium in their gains. A multi-agent simulation is also
developed to verify the dynamics of the model for all values of morality and protection
parameters, and to identify potential discrepancies with the theoretical analysis.
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1. Introduction

The story of humans trying to address problems and questions related to morality
and ethics is a long one. From Aristotle to Kant, the endeavor continued to formulate
definitions of morality, identify moral behavior, distinguish right from wrong, decide
what criteria should be used to evaluate one’s actions, and establish one’s responsi-
bility for such actions. Discoveries in evolutionary biology motivated new kinds of
questions, such as whether altruism could emerge spontaneously and what could be
the benefits of moral behavior in terms of the chances of survival and the access to
resources in the environment [3, 29, 10]. Finally, psychological and sociological ex-
periments allowed to perform quantitative and qualitative measurements of human
actions, and perform statistical analyses of various factors to estimate the degree to
which they influence human actions that have a moral dimension [7, 8].
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Recently, investigations regarding morality gained additional motivation due to
the rise of artificial intelligence and the increase in the autonomy of artificial agents.
There is a large body of research discussing what properties should artificial agents
possess in order to behave ethically and be aligned with human values [1, 11, 26, 24, 2,
27, 21, 13, 9, 6]. Apart from philosophical considerations, interest grew in modeling
moral behaviors [14, 12, 18, 20] and applying formal models to describe actions of
abstract agents [23] using mathematical equations or formal logic. Such models often
involve a population of agents, described either as a set of discrete, individual entities,
or as a set of numbers that only capture global properties or statistics of such agents
(their total number, average income, etc.). To model the dynamics of populations
of agents, tools used traditionally in biology, in the analysis of discrete dynamical
systems and their evolutionary stability – such as differential equations and game
theory – are particularly appropriate [16].

Such formal models and descriptions of agents and their behavior facilitate the
simulation of working systems that implement these models, so instead of static,
off-line, numerical analysis of descriptive models, agents take some form of virtual
existence and perform interactions in simulated environments. This allows for the
development of agent-based social simulations (ABSSs) that help investigate social
dilemmas and experiment with potential scenarios. Such applications let researchers
analyze the behavior of the complex system as a whole [19, 4, 5, 22, 12, 15, 28, 25],
including its evolution, stability, and even the inheritance and mutation of agents’
traits. In order to study such phenomena, some authors [1, 5, 26, 27] mention artificial
life [17] as the appropriate or relevant approach.

Motivated by the advantages that multi-agent simulations can offer and by the
scarcity of such models that concern morality – even though quantitative, empirical
studies concerning the morality of human behavior exist – in this work, we follow this
line of research and create a minimalistic, economically inspired multi-agent model
that exhibits non-trivial behavior.

• The minimalism of the model is due to the fact that there are only two roles
of agents (“workers” and “thieves”) that reflect moral and immoral attitudes,
respectively. There are four parameters that will be denoted with capital letters
throughout this article. Two of them have a sociological interpretation that in-
fluences the attractiveness of each role (MORALITY and PROTECTION ), and
two other parameters describe the simulated reality (EFFICIENCY OF WORK
and EFFICIENCY OF THEFT ). Despite the fact that it is very easy to model
complex, diverse phenomena using simulation and multi-agent systems, we keep
the model as simple as possible and refrain from introducing additional agent
roles and parameters in this initial formulation.

• The economic aspect of the model is that all gains in the model are generated by
“workers” only and that the total income is dependent on their number. This
is in contrast to popular game-theoretic models where the payoff matrix can be
arbitrarily adjusted and is usually a modification or extension of the standard
iterated prisoner’s dilemma.

• The non-trivial behavior of the model results from the fact that there are inter-
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esting tradeoffs in agent behavior dependent on the values of parameters and
on the proportion of agent roles, and that the model is in part non-linear.

Given these properties of the model, we want to explore how, precisely, the parameters
influence the choice of roles of agents, what is the nature of all edge cases, and how
stable they are. This is possible because the simplicity of the proposed model allows
for its extensive theoretical analysis and makes it easy to interpret. We verify the
behavior of the model by implementing a multi-agent simulation, performing a series
of computational experiments, and comparing their outcomes with the theoretical
analyses. The detailed description of the model follows below.

1.1. The model and its interpretation

Consider a set of agents (a population of individuals) where each agent can choose
and take one of the two roles: either to gain resources by their own work, or by
stealing from other agents. To capture these characteristics of the two behaviors, we
will call the two subsets of agents workers and thieves. While these particular names
are used to appeal to human intuition, other names could also be used with a similar
interpretation, such as organisms and parasites, the honest and the fraudsters, etc.

In every moment, each agent can change their role. We assume that the choice
of roles is rational and is based solely on the estimated gains for each role. Both
estimated gains depend on the current state of the population (i.e., the number of
agents in each subset) and on the four global parameters of the model: the efficiency
of work, the efficiency of theft, morality, and protection.

Since the set of all agents consists of two subsets, let us denote by workers and
thieves fractions of each role in the set, so

workers+ thieves = 1

The gain of a worker is calculated in the following way:

• The global parameter PROTECTION ∈ [0, 1] determines how much of their
gain each worker allocates to safeguard against attacks of thieves.

• The global parameter EFFICIENCY OF WORK ∈ [0, 1] determines how effi-
cient is the work – i.e., what fraction of the true worth of work is obtained by
the worker.

• As a result, the potential gain of each worker is

potentialgainworker = (1− PROTECTION ) · EFFICIENCY OF WORK

• A part of this potential gain is stolen by thieves; the stolen amount depends
on the global EFFICIENCY OF THEFT parameter, and it is inversely propor-
tional to the protection expenditure made by each worker:

tosteal = potentialgainworker·(1−PROTECTION )·EFFICIENCY OF THEFT
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Note that this means that tosteal is proportional to (1 − PROTECTION )2.
This is because in the model we assume that the amount used earlier to protect
worker’s gain, or some part of this amount (e.g. a reinforced door), must be
destroyed by a thief or requires some investment or effort to break, or additional
risk to be taken – so this part of worker’s gain decreases the effective value of
stolen goods.

• The final gain of a worker is therefore

gainworker = potentialgainworker − tosteal (1)

and if there are no thieves in the set of agents, then gainworker = potentialgainworker.

For thieves, their gain is calculated as follows:

• Since we don’t differentiate between individual agents within a given role, all
thieves get the same fraction of gains that can be stolen from workers (note that
in this model, thieves do not rob other thieves), so each thief expects

gainthief =
workers · tosteal

thieves
(2)

If there are no thieves in the population, gainthief is undefined.

• The global MORALITY ∈ [0, 1] parameter determines the decrease in attrac-
tiveness (value) of gains that were stolen. The gain for a thief that takes into
account the MORALITY parameter is

potentialgainthief =
workers · (tosteal −MORALITY )

thieves+ t1
(3)

where t1 is the fraction of the population that corresponds to one agent (the
agent that considers becoming a thief). In the discrete case where the total
number of agents is known, t1 = 1

number of agents . In the continuous case, t1
is an infinitely small value. When every agent in the population is a thief,
calculating potentialgainthief is not necessary because there are no agents who
are workers and could consider becoming a thief.

As mentioned earlier, each agent decides which role they want to assume in the pop-
ulation by comparing gainworker and potentialgainthief . Since agents (rationally)
want to maximize their gains, they choose the role that yields the higher gain. When
estimating the gain due to being a thief, an agent considers potentialgainthief , i.e.,
the gain of a thief reduced by MORALITY , but when an agent actually becomes a
thief, they earn gainthief .

The total gain in the population is therefore totalgain = workers · gainworker+
thieves·gainthief as long as thieves > 0, otherwise there are no thieves and totalgain =
workers ·potentialgainworker = potentialgainworker. The average gain of an agent
is totalgain divided by the total number of agents in the population, but since the
numbers of agent roles are normalized, the average (weighted by the fraction of both

20 M. Komosiński, T. Zok



roles) gain of an agent in the population has the same value as the total gain of the
population: averagegain = totalgain.

One alternative interpretation of agents (instead of workers and thieves) would be
robots that can either gather energy (“energy harvesters” instead of “workers”) or
convert energy (transform it into some other form, store it, or sell – let’s call them
“transformers” instead of “thieves”). In this interpretation, gains can be measured in
energy units instead of representing a monetary value. If there is excessive demand
for energy from transformers, some agents change their role and become energy har-
vesters instead of converting energy. If there is too much energy available, harvesters
change role and become transformers to convert or store energy. In this alternative
interpretation, EFFICIENCY OF WORK would reflect how efficient are energy har-
vesters, EFFICIENCY OF THEFT would be how efficient is energy transformation,
MORALITY would be the threshold of profitability that would convince a harvester
to become a transformer, and PROTECTION would be the fraction of energy used
by energy harvesters and energy transformers for their own functioning. With appro-
priately adjusted parameter values, such a system would tend to self-stabilize, gather
and convert energy without the need for manual control of the roles of these robots.

2. Dynamics of the model: the analytical approach

The primary question regarding the model is how the state of the population depends
on the four global parameters: the efficiency of work, the efficiency of theft, morality,
and protection, assuming that their values are known and constant. Let us determine
stable states, i.e., states where agents will not want to change their roles. There are
two kinds of stable states: uniform when all agents take on the same role, and mixed
when both roles coexist in the population.

No role changes will occur in the population when no agent wants to change their
role, i.e., gains for both roles will be equal:

gainworker = potentialgainthief

The left side of this equation depends, as (1) defines it, on the efficiency of work,
the efficiency of theft, and protection. The right side depends on the same quantities,
and additionally, on the MORALITY parameter and the proportion of thieves (3).
Assuming that the values of the four global parameters are constant, both sides of
the equation depend only on one variable – the proportion of thieves. Therefore,
the requirement for the lack of role changes in the model can be formulated as the
equilibrium equation

gainworker − potentialgainthief (thieves) = 0 (4)

Solving this equation for thieves ∈ [0, 1] shows that there are four possible out-
comes depending on all four global parameters:

A. There is a single solution.
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B. There are infinitely many solutions.

C. There are no solutions, and the left side of (4) is always positive.

D. There are no solutions, and the left side of (4) is always negative.

In the case of A, the solution will describe a mixed equilibrium state. In B, no
role will be preferred in the population independently from the fraction of work-
ers and thieves. This occurs in edge cases when MORALITY = 0 and either
EFFICIENCY OF WORK = 0 or PROTECTION = 1. This combination of pa-
rameter values results in gainworker = 0 and potentialgainthief = 0, so agents do
not change their initial roles. For cases C and D, the population will reach a uniform
stable state, with thieves = 0 for C and thieves = 1 for D. However, a careful analysis
revealed that in order for D to be true, MORALITY should be negative, which is
outside of the valid range for this parameter. With MORALITY ≥ 0, the only other
way for D to occur is to have a system with thieves gaining even when they constitute
the entire population. This is against the definition of our model, where thieves can
only gain by stealing from workers. On the other hand, a uniform stable state for
C (no thieves) is possible – in particular, for specific values of PROTECTION and
MORALITY , as discussed later.

Let us now discuss the influence of the two efficiency parameters (work and theft)
on the behavior of agents in the population. If we assume EFFICIENCY OF WORK =
0, then the gains of both workers and thieves are zero. If EFFICIENCY OF THEFT =
0, then, independently of the values of PROTECTION and MORALITY , there will
be no thieves in the population. We can, therefore, say that for the specific cases
where any of the efficiencies of activities performed by the two roles are zero, the
model becomes degenerate. The remaining cases where the efficiencies are positive
lead to an interesting and non-trivial dynamics of the model. In the following analyses,
we assumed EFFICIENCY OF WORK = 0.6 and EFFICIENCY OF THEFT = 0.9.
Other values of these parameters yield different gains of both roles of agents and
different stable states, but shapes of the functions presented below remain similar,
and without losing generality, one can discuss and examine the consequences of this
particular set of two efficiency values.

The equilibrium equation (4) depends only on the proportion of thieves. Similarly,
gainthief and the most interesting variable – averagegain – depend only on thieves.
Therefore, identifying a solution to the equilibrium equation (4) (which would de-
termine a mixed stable state), or demonstrating the lack of such a solution (which
would determine a uniform stable state) unambiguously describes all the properties
of the model given constant global parameter values. This allows one to describe the
dynamics of the system using plots shown in Fig. 1.

2.1. The discontinuity for maximal protection

The general discussion of the characteristics of the model will be provided in Sect. 4;
below, we focus on specific boundary conditions that need to be examined in detail.
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Figure 1: Analysis of the model and the dependence of its various quantities on
PROTECTION and MORALITY . The range of [0, 1] for PROTECTION and
MORALITY is divided uniformly into 63 intervals, so each plot presents 64 · 64
values. In Fig. 1c some data points are missing because gainthief is undefined
when thieves = 0. The thick black lines in Figs. 1b-1e and their projections in-
dicate the highest gain achievable for each MORALITY value given the optimal
PROTECTION .

23Morality, protection, security and gain: lessons from a minimalistic...



Fig. 1a demonstrates a clear discontinuity for PROTECTION = 1. This is where
the value of thieves, independently from MORALITY , reaches the global maximum
of 1. This exceptional case causes discontinuity, because for PROTECTION < 1, the
proportion of thieves is equal or close to zero. This difference is due to the fact that
spending the entire gain of a worker on security (PROTECTION = 1) results in their
lack of gain (gainworker = 0) and, as a consequence, the lack of gains that can be
stolen (tosteal = 0). In this case, solving (4) requires finding the zero of the function
potentialgainthief (3), which occurs if and only if (i) workers = 0 and thieves = 1,
or (ii) MORALITY = 0.

The (i) case is a stable uniform state. Note that we earlier excluded states where
thieves = 1, because thieves cannot gain anything when they are the only agents in
the population. This current conclusion does not contradict previous considerations,
because, in the currently considered specific situation, nobody gains at all – including
workers – and this is what causes the discontinuity visible in Fig. 1a. The (ii) case
with PROTECTION = 1 and MORALITY = 0 is a quasi-stable state described in
the beginning of this section. In such a case, agents will not want to change their
roles in the population, so the analytical result of thieves = 1 for this case that is
shown in the plot is just one specific value from the infinite set of values that are all
solutions to (4).

2.2. The role of morality

Solving the equilibrium equation (4) for thieves allows one to reveal interesting aspects
of the model. It turns out that thieves = 0 if either

MORALITY > EFFICIENCY OF WORK · EFFICIENCY OF THEFT (5)

or

PROTECTION > 1−
√

MORALITY

EFFICIENCY OF WORK · EFFICIENCY OF THEFT
.

(6)
Tracking the thick black line in Fig. 1d for PROTECTION = 0 confirms that it repre-
sents a range of MORALITY ∈ (0.54, 1], as predicted by (5). The other inequality (6)
can be used for the remaining values of MORALITY to better understand the model
dynamics. For example, MORALITY = 0.2 allows one to predict that there will be
no thieves if only PROTECTION & 0.392; this can be verified by looking at Fig. 1a
and noticing that at PROTECTION ≈ 0.4 and MORALITY ≈ 0.2, the value of
thieves starts to be positive.

These two inequalities demonstrate the unique role of the MORALITY parameter.
Given the values of EFFICIENCY OF WORK and EFFICIENCY OF THEFT , one
can predict whether a system can stabilize in a uniform state of thieves = 0 with
zero expenses on protection, or – if not possible – what is the minimal value of
PROTECTION to eliminate all thieves.

Additionally, (6) clearly shows that thieves are inevitable only in a system with
MORALITY = 0 (the only exception here is maximal PROTECTION = 1). Any
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positive value of MORALITY guarantees that a system without thieves is possible
given sufficient, non-extreme protection.

3. Dynamics of the model: multi-agent simulation

In order to verify the behavior of the model in a more realistic setup, a multi-
agent computer simulation was implemented and performed. In a simulated two-
dimensional world, there is a constant number of agents each located at some (xi, yi)
coordinates, and each agent can freely change its state (being either a worker or a
thief). Agents can change roles in random intervals of time. The expected length
of these intervals is a global parameter and can be adjusted; the shorter the inter-
vals, the faster the convergence of the population. Agent choices are rational – each
agent wants to maximize their gains based on perfect and accurate information about
gains of both roles available to each agent. Following the equations that describe
the model, gains of both roles depend on the number of worker agents, the number
of thief agents, and the four global parameters of the model. When some agent be-
comes a thief, they locate the nearest worker and move to that location in order to
commit a theft. Apart from visualization, these spatial properties do not influence
gains or decisions of agents, because the model assumes a homogeneous distribution
of resources in the simulated world. Nevertheless, contrary to the analysis performed
in the previous section, in this simulation we deal with individual, discrete agents, so
the variables that describe the state of the system are no longer continuous.

The primary goal of the investigation of the multi-agent simulation is to identify
the proportion of thieves such that the equilibrium condition (4) would hold. In the
simulation, the number of thieves in the population is initially set to some value,
and then it can change. The fundamental question now is whether the system will
ultimately converge to the same state for any initial number of thieves, and if it will,
whether this state will be consistent with the state that resulted from the theoretical
analyses described in the previous section.

Since the four global parameters of the model and fractions of both agent roles
in the population are expressed as real numbers that are within the range [0, 1], and
the definition of the model is mostly based on addition and multiplication, particular
attention was paid to boundary conditions, which may cause some variables to become
zero or to grow to positive or negative infinity.

The results of the multi-agent simulations are shown in Fig. 2. Compared to
theoretical analyses from the previous section, there is only one clearly visible differ-
ence, which is the dependency of the proportion of thieves on PROTECTION and
MORALITY , but only in the specific case when PROTECTION = 1. Note however
that the plots based on the multi-agent simulation visualize a completely different un-
derlying process – here, the numbers that are visualized correspond to virtual entities,
and the system needed some time to stabilize and converge to a stable state (possibly,
with micro-fluctuations where one agent would oscillate between the two roles), while
in the previous section, they were the numerical solutions to mathematical equa-
tions. To obtain data shown in Fig. 2, the simulation was repeated independently for
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Figure 2: The dependence of various quantities of the model on PROTECTION and
MORALITY resulting from the multi-agent simulation. In Fig. 2d some data points
are missing because gainthief is undefined when thieves = 0.
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65 ·65 combinations of different values of PROTECTION and MORALITY , and each
simulation was run until the proportion of agent roles in the simulated environment
converged to a stable value, as Fig. 3 illustrates.

A more careful comparison of Figs. 1 and 2 reveals a subtle difference – plots
based on numerical analysis are more smooth, while plots based on the results of
the simulation have limited resolution in vertical axes because they are based on
individual, indivisible agents. For plots presented in Fig. 2, the simulation consisted
of 125 agents; the lower is the number of agents employed in the simulation, the more
pronounced is the difference between both approaches.

We will now investigate the discrepancy in the proportion of thieves for PRO-
TECTION = 1 in more detail, leaving the general discussion of the characteristics of
the model to Sect. 4.

3.1. The discontinuity for maximal protection

The particular case where protection is maximal was discussed in detail in Sect. 2.1,
where this situation was analyzed theoretically. Let us now compare earlier theoret-
ical results with the outcomes of the multi-agent simulation. When workers spend
everything on protection (PROTECTION = 1), in consequence they profit nothing
(workergain = 0). However, the situation of potential thieves is not so straightfor-
ward. Workers might be indifferent and look at the prospect of becoming a thief as
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Figure 3: Dynamics of changes in the proportion of thieves in time for multi-agent
simulation with 200 agents, depending on the initial proportion of thieves in the
population, for PROTECTION = 0.1 and MORALITY = 0.4. Minor oscillations are
due to a few agents changing their role in the same way in a single simulation step;
this may happen since the expected gains of both roles are calculated once in every
simulation step.
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neither better nor worse than their current state. Alternatively, due to the morals
guiding workers, they might see the thief profession as even worse than having zero
income. These two cases are reflected by scenarios (I) potentialgainthief = 0 and (II)
potentialgainthief < 0, respectively.

Scenario (I) occurs when either (Ia) MORALITY = 0 or (Ib) thieves = 1, and
in this scenario (I) neither agent sees any benefit in changing their role. Therefore,
the initial population of agents does not change over the course of the simulation.
Case (Ia) occurs because agents cannot choose their role based on incentives, and
they lack any moral guidelines to follow. An example of (Ia) is evident in Fig. 2a as
a sudden peak of 0.5 (which was the initial fraction of thieves in the simulation) for
PROTECTION = 1 and MORALITY = 0. On the other hand, (Ib) corresponds to
a hypothetical system in which everyone is a thief. They rob nobody and have zero
gain, but at the same time, they reject the idea of becoming workers. It is important
to notice that the decision to become a thief requires morality sufficiently low, but
the opposite decision – to become a worker – is not influenced by morality. Thieves
become workers only if it clearly benefits them, and in a system where all gains are
spent on protection, this is never the case. To demonstrate (Ib), a system with initial
thieves = 1 was simulated and Fig. 2b clearly shows the final state with thieves = 1
for PROTECTION = 1 and any value of MORALITY .

Scenario (II) occurs when MORALITY > 0 and thieves < 1. This scenario corre-
sponds to a population with at least a few workers who gain nothing. Nevertheless,
the idea of becoming a thief is rejected because, for agents, it is even worse than
having zero profits (as the potential gain of a thief is negative). In consequence,
the final state of the system has thieves = 0. This scenario can be seen in Fig. 2a,
where initially thieves was 0.5 < 1 on the whole line where PROTECTION = 1 and
MORALITY > 0.

This analysis of the multi-agent simulation shows that PROTECTION = 1 con-
stitutes the only case where the final number of thieves in the system depends on the
initial number of thieves. In particular, when initially thieves = 1, the results of the
simulation are fully consistent with theoretical analyses, as Fig. 2b demonstrates.

4. Discussion and conclusions

Sects. 2 and 3 discussed the behavior of the model in detail, paying particular attention
to boundary cases. While such corner cases are technically interesting and needed
to be examined, in realistic scenarios the system will operate outside of its extremes
– individuals will not spend their entire income on protecting against thieves, not
everybody will be perfectly moral or immoral, the efficiency of work and theft will be
neither 0% or 100%, etc. Let us investigate the most general and practical conclusions
that the model reveals within its typical range of operation.

Ignoring the extremes of PROTECTION = 1, the most obvious observation from
Figs. 1a, 2a and 2b (these plots present consistent characteristics) is that for some
combinations of PROTECTION and MORALITY , there are no thieves in the popu-
lation. The role of a thief is unattractive either because the morality of each agent is
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too high to become a thief, or because the amount of goods that can be stolen (which
is inversely proportional to the workers’ expenditure for protection) is too low – or
because of the non-linear interaction of the two discouraging factors.

When there are no thieves, the population consists only of workers, so the average
gain of a worker and the average gain of the population, and also the total gain of the
population (due to the normalization of the number of agents) are all the same, as
demonstrated in Figs. 1d and 1e, and also 2e and 2f. When high morality of agents
is sufficient to discourage them from becoming thieves, expenditures for protection
are just losses – reflected in a linear decrease in gainworker and averagegain. The
highest, optimal gain is achieved with no spending on protection needed thanks to
sufficiently high morality, as the thick black line in Fig. 1e demonstrates.

When the morality drops and agents are tempted to become thieves, the highest
gains (albeit lower than the optimum ones) can be achieved by progressively increasing
expenditures for protection (see the middle section of the thick black dropping line in
Fig. 1e). This allows the population to stay free from thieves at the cost of spending
resources on protection.

Finally, when the morality further decreases and agents are not discouraged from
becoming thieves, some of them actually become thieves (Figs. 1a, 2a and 2b) and
gain by stealing from workers, because the prospect of becoming a thief yields higher
gains than being a worker (compare Figs. 1b and 1d, and analogously Figs. 2c and
2e). This is when workers should start spending slightly less on protection (even
though morality drops) – for workers, the cost of protecting against thieves is higher
than the cost of being robbed. For extremely low morality, decreasing expenditures
for protection ensures the highest gain of workers and also the highest gain of thieves,
and therefore the highest gain of the entire population – see the lowest section of the
thick black line in Fig. 1e. This is because for low morality, moderate protection is
unable to discourage agents from becoming thieves, yet it decreases gains that can be
achieved by both workers and thieves.

As mentioned in Sect. 2, the two efficiency parameters of the model (the efficiency
of work and the efficiency of theft) influence the output parameters such as the number
and the gains of workers and thieves, but they do it in a gradual way. The most
interesting and complex behavior of the system results from the intermediate values
of the two efficiency parameters. The extreme values (0.0 or 1.0) of these parameters
simplify the model – for example, for maximal efficiency of work (1.0) and minimal
efficiency of theft (0.0), no agent wants to become a thief independently of the values
of PROTECTION and MORALITY , and gains of workers (and therefore gains of
the entire population) are inversely linearly dependent on PROTECTION only.

Superrational agents would choose to be workers even for non-extreme values of
the efficiency of work and the efficiency of theft. Independently from the level of
MORALITY , this would allow such agents to entirely avoid spending on PROTEC-
TION, thus ensuring maximal gains equal to EFFICIENCY OF WORK . In this
regard, maximum morality in the model (or morality high enough to make stealing
unattractive for specific efficiency parameter values and no protection) yields the same
effects as superrational behavior.
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5. Summary

This work introduced a minimalistic, economically inspired multi-agent model that
featured two parameters with sociological interpretation, namely “morality” and “pro-
tection”. We have explored how the parameters of the model influence the choice of
roles of agents, what is the nature of all edge cases, and how stable they are. We have
confirmed that the multi-agent simulation produced consistent results with the theo-
retical analysis of the model; the only difference was the case of maximal protection,
where the results of the multi-agent simulation depended on the initial proportion
of agent roles in the population. This behavior was consistent with the goals of the
model, and in this particular regard, the discrepancy demonstrated the advantage of
the simulation over the analytic, continuous approach. The simulation is closer to
reality because it models individual agents and their behaviors, while the analysis
deals only with aggregated or averaged characteristics of the population. The multi-
agent simulation can also model temporal dynamics of the population along with
instabilities or oscillations (illustrated in Fig. 3) that are due to the discrete nature
of agents.

One of the conclusions from this particular model is that a highly moral population
leads to the highest total and individual gains without the need of protection expen-
ditures, and for less moral agents, some amount of protection is required to achieve
optimal gains. Whether the conclusions should influence decisions made by humans
depends on how accurately this model reflects reality; it was, however, constructed
primarily with simplicity in mind. It was intended to be interpretable and easy to in-
vestigate analytically, including the ability to visualize the results for all combinations
of protection and morality parameter values. Considering this as a starting point, we
avoided the use of complex, non-linear functions, yet the model can be easily extended
and enriched with additional functional dependencies and parameters. The values of
the global parameters, the number of agent roles, their behaviors, and interactions
can be further adjusted to be consistent with psychological and sociological findings
and with the nature of human behaviors.

The primary areas for improvement and further development are: turning MORAL-
ITY and PROTECTION into probability distributions (or, in case of the multi-agent
model, individual properties of agents that can differ) instead of global parameters,
making the influence of MORALITY and PROTECTION more realistic by introduc-
ing complex non-linear relationships that follow empirical results [7, 8], performing
sensitivity analyses, and expanding the influence of morality – currently, the value
of MORALITY deters thieves from stealing amounts lower than this value (3) so it
acts like a temptation threshold, while the opposite mechanism would also be justi-
fied, likely requiring the introduction of another parameter. Another extension of the
model would be to consider the topology of the environment and restrict information
flow that influences agent decision making and interactions to their neighborhood,
and to make such local interactions stochastic.

After calibration of the model and verification of its consistency with empirical
results based on studies of human behavior, such simulations can be used for the pre-
diction of possible moral choices and the evaluation of their outcomes before decisions
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are actually made. To facilitate further developments, the sources of the implemen-
tation are published both in java and javascript, and the working program itself is
available for experimentation at http://en.alife.pl/morality.
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