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Abstract. Sentiment classification is an important task which gained extensive
attention both in academia and in industry. Many issues related to this task such
as handling of negation or of sarcastic utterances were analyzed and accordingly
addressed in previous works. However, the issue of class imbalance which often com-
promises the prediction capabilities of learning algorithms was scarcely studied. In
this work, we aim to bridge the gap between imbalanced learning and sentiment
analysis. An experimental study including twelve imbalanced learning preprocessing
methods, four feature representations, and a dozen of datasets, is carried out in order
to analyze the usefulness of imbalanced learning methods for sentiment classification.
Moreover, the data difficulty factors — commonly studied in imbalanced learning —
are investigated on sentiment corpora to evaluate the impact of class imbalance.

Keywords: sentiment analysis, imbalanced data, multi-class learning, data diffi-
culty factors, text classification

1. Introduction

Over 500 million tweets are posted online every day, many of which are emotionally
marked. This fact, together with millions of reviews which are available online, creates
a great opportunity for businesses to assess subjective, difficult to measure, yet critical
quality factors of their products and services. Simultaneously, this poses an important
research challenge to create systems which extract emotions from unstructured data.

Sentiment classification, which is an essential part of such systems, aims to auto-
matically detect the sentiment polarity of a given text by assigning it to an appropriate
category (e.g. positive, negative, or neutral). Due to the practical importance of senti-
ment classification, several research works has been conducted to understand the main
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challenges posed by this problem [41, 69, 28]. Negation handling, sarcastic utterances,
adverbial sentiment modifiers and words changing polarity over time are only a few
of the adversities that were noticed and handled by the proposed solutions. However,
the fact that the datasets in sentiment analysis are regularly imbalanced, with positive
opinions overwhelming the negative ones, was noticed only recently [8, 38, 40].

The problem of class imbalance is an essential difficulty in the construction of
learning systems which gained extensive attention in the machine learning commu-
nity [9, 12, 21, 22]. Nonetheless, the works on tackling class imbalance in the area
of sentiment classification are rather scarce and often limited to the comparison of
random resampling methods on a handful of datasets. Similarly, existing works usu-
ally treat this classification problem as a binary one (positive/negative), whereas
frequently the user would like to get more refined information in terms of 5-star ordi-
nal scale or at least by adding the neutral category [28]. Since research on sentiment
analysis is somewhat orthogonal to imbalance learning, there is a lack of experimental
comparison of imbalanced techniques, including recent ones, applied to the problem
of sentiment classification.

Moreover, in the imbalance learning community datasets are frequently analyzed
not only in terms of their global imbalance ratio but also taking into account local
data difficulty factors [5, 50, 35], which are more influential to the overall classifier
performance than the global class imbalance itself [50]. Such analysis of local data
difficulty factors was never performed for sentiment classification datasets and yet
it could bring additional insight into the class-imbalance issue in sentiment analysis,
and provide some guidance in the construction of new feature representations for the
problem.

To address the above-mentioned issues, in this paper we perform an experimental
study on dataset and classifier characteristics that are crucial in tackling multi-class
imbalanced sentiment classification problems. The main goals of this study are:

1. to compare different feature representations used in sentiment classification in
terms of local data difficulty factors;

2. to provide an experimental evaluation of imbalanced learning techniques for
multi-class sentiment classification which include different feature representa-
tions, learning algorithms, and a diverse selection of datasets ranging from col-
lections of full-length reviews to short tweets.

The remainder of the paper is organized as follows. Section 2 provides a review
of related works both in sentiment analysis and imbalanced learning, focusing on a
description of the methods used in the experimental study. Section 3 describes the
feature representations being under investigation together with the selected datasets.
In Section 4, we discuss the results of the analysis of different representations with
respect to local data difficulty factors, whereas Section 5 contains the results of our
experimental comparison of various imbalanced learning methods for sentiment clas-
sification task. Finally, Section 6 provides conclusions and draws lines of future re-
search.
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2. Related Works

In the following subsections, we present the necessary background in sentiment anal-
ysis and imbalanced learning. We also survey the current state of the research which
involves both imbalance learning and sentiment classification.

2.1. Sentiment Analysis

Sentiment analysis, also known as opinion mining, is a relatively young branch of
data mining research which aims at constructing systems which can understand users’
emotions about certain entities, e.g. products or services [41]. The research in this
area gained wide attention in recent years due to the emergence of new opinion data
sources, such as social media, and the increasing interest from the industry which uses
such methods to assess marketing campaigns and to improve product designs. The
analysis of the expressed sentiment proved to be useful in many other areas such as
recommendation systems [51] or stock market analysis [11].

An essential task in sentiment analysis is the polarity detection of a given text,
to which we refer as sentiment classification. Such analysis can be performed at dif-
ferent levels of granularity: document, sentence, and aspect/entity1 levels are usually
distinguished. In this work, we focus on presumably the simplest and most popular
document-level sentiment classification methods. However, such defined classification
task is still of considerable difficulty. For instance, Pang et al. [54] demonstrated
that this task is still significantly more difficult for machine learning methods that
standard text classification problems whose goal is to assign texts to a certain set of
topics. Although the majority of related works deals with binary positive/negative
polarity classification, it has been shown that the implicit modeling of the neutral
class can be beneficial [28]. Additionally, many modern review data sources oper-
ate on 5-star, 10-star or other multi-level ordinal scales, which naturally shifts our
attention towards multi-class methods.

Even a humble overview of machine learning techniques used for sentiment classi-
fication would go beyond the scope of this paper. A wide range of methods for this
task include supervised [40], unsupervised [64], semi-supervised [38] and active [37]
learning techniques. Besides typical classification methods, methods based on matrix
factorization have been investigated [39] and significant research attention gained the
problem of constructing more appropriate feature representations for sentiment anla-
ysis [1]. For the details and review of sentiment classification methods, please refer
to [41].

2.2. Imbalanced Learning

A dataset is called class imbalanced when the numbers of examples representing each
class are not equal [21]. However, when talking about the problem of imbalanced

1assigning a polarity to several different aspects of a product/service assessed in a text
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learning we refer to the situation in which the difference between class cardinalities
in a dataset is somewhat extreme. The class with more examples is typically denoted
as the majority class, whereas the underrepresented class is called the minority class.
To measure class imbalance, the imbalance ratio is often defined as

IR =
N−

N+

where N− and N+ are cardinalities of the majority and the minority classes respec-
tively. There is no clearly defined threshold on the imbalance ratio to consider a
dataset as an imbalanced one, however, sometimes as a rule of thumb IR > 1.5 is
used [14].

Recently, the problem of imbalanced learning gained significant attention from
the research community [9, 21], which resulted in the development of many dedicated
methods and algorithms. The approaches for imbalanced data are often categorized
into algorithmic, data-level, and cost-sensitive ones. While algorithmic methods mod-
ify particular learning algorithms and cost-sensitive methods pose a costs-handling
requirement on the classifier, the data-level methods are more universal since they
modify the underlying data distribution and can be applied with virtually any classi-
fication method. Moreover, data-level methods often play a key role in the construc-
tion of ensemble approaches for imbalanced data which are considered as one of the
most effective for imbalanced classification [16].

The data-level approaches for binary imbalanced problems can be roughly divided
into under-sampling and over-sampling approaches (and combinations of both). Both
groups of approaches modify the class distribution in a dataset to create a more
suitable data distribution for a further applied learning algorithm. Usually, this means
the creation of a more balanced dataset which may be constructed by either removing
majority examples, artificially adding minority examples, or combining these two
approaches. The first idea is explored by under-sampling methods whereas the second
one is examined by over-sampling methods.

The most popular under-sampling method is Random Under-Sampling (RUS),
which randomly deletes majority examples until the numbers of majority and mi-
nority examples are equal. Other under-sampling methods try to use some data
characteristics to guide the sampling process. For instance, Tomek links [63] were
proposed to steer the sampling process towards majority examples which lie close to
the decision boundary between classes. A Tomek link exists between two data points
if they belong to different classes and are the nearest neighbors of each other. The
resampling method based on Tomek links (TL) detects all of such point pairs in a
dataset and subsequently removes the majority example from each link. On the other
hand, the Edited Nearest Neighbors method (ENN) [70] tries to clear the class over-
lapping region in a different way. For each example from the majority class, k nearest
neighbors are found. If all of them belong to the majority class, then the example
is retained in the dataset and removed otherwise. One-Sided Selection (OSS) [30] is
another popular under-sampling method that, contrary to previously described ap-
proaches, starts with a dataset containing one majority example and incorporates
selected majority instances during its operation. The method starts with a dataset
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containing all minority instances and a single, randomly selected majority example.
Then it re-classifies the original training set with 1-nearest neighbors rule and all
incorrectly classified instances are added to the resampled training set. Finally, it
applies Tomek links to clear the resampled dataset from the borderline and noisy
examples.

Random Over-Sampling (ROS) which iteratively duplicates minority examples in
order to fully balance class cardinalities is the simplest, yet effective, oversampling
method. Another very popular method is the Synthetic Minority Over-sampling Tech-
nique (SMOTE) [10], which generates artificial minority examples. For a given mi-
nority example x, SMOTE finds the example’s k-nearest minority neighbors and ran-
domly selects one of them y. Then, it generates an artificial example which belongs
to the minority class with features given by

xnew = x + r · (y − x)

where r is a randomly generated number from 0 to 1. In other words, the new example
is created as a random linear interpolation of a given minority example with its ran-
domly selected minority neighbor. While SMOTE generates minority examples from
each minority example iteratively, ADASYN [20] is an adaptive sampling method
that focuses on difficult minority examples. The artificial examples are introduced in
the same way as SMOTE does but the number of generated examples is proportional
to the number of majority examples in the neighborhood. Another idea for guiding
the over-sampling process is incorporated in Borderline-SMOTE [19]. This method
generates minority examples only from those examples which: 1) have more major-
ity neighbors than minority ones (potentially error-prone region) and 2) at the same
time do not have all the neighbors from the majority class (presumably noisy exam-
ple). Many other preprocessing methods were proposed in the literature for binary
imbalanced data, including further extensions of SMOTE [13] and combinations of
undersampling with oversampling e.g. SPIDER [62].

As mentioned earlier, data-level approaches are often incorporated into ensemble
approaches such as bagging and boosting to construct ensemble models which are
able to handle imbalanced data distributions. Most notably, there exist both the-
oretical recommendations [65] as well as an empirical evidence [5, 35] which favor
bagging-based ensembles for imbalanced data. One particularly effective example of
an under-sampling, bagging-based ensemble is Roughly Balanced Bagging (RBB) [23]
which, as the name suggests, creates roughly balanced bootstrap samples. In each
iteration of ensemble construction, it samples with replacement N+ examples from
the minority class, and later randomly samples a comparable number of majority
examples. The exact number of majority instances is determined by taking a sample
from the negative binomial distribution with the probability of success p = 0.5 and
the number of successes set to N+. The bootstrap samples created in this way are bal-
anced on average. Furthermore, for high dimensional data which often occurs in text
classification problems, an extension of RBB denoted as RBB+RSM (RBB with Ran-
dom Subspace Method ) was proposed in [35]. In every iteration, this method, aside
from constructing an under-sampled bootstrap, selects a random subset of features on
which the classifier is trained. This operation not only results in the construction of
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less error-prone ensembles, but also increases ensemble diversity. On the other hand,
SMOTEBagging [67] is a notable example of over-sampling bagging. This ensemble
resulted from employing the SMOTE sampling procedure to construct bootstraps.
An extensive comparison of bagging and boosting ensembles can be found in [16].

For a more detailed review of imbalanced learning methods refer to [21].

Multi-class imbalanced data Multi-class imbalanced data received limited at-
tention from the research community which started to change in recent years [12, 72].
In general, multi-class imbalanced problems are considered much more difficult than
their binary counterparts [66], for various reasons. For instance, the class imbalance
in a multi-class dataset can occur in different configurations, i.e., it can contain one
minority class and several majority ones or one majority and several minority classes
etc. Likewise, the methods should try to capture and exploit the relations between
multiple imbalanced classes as well as to be prepared to work with more extreme
imbalances since they are more likely to occur in multi-class datasets.

The most prominent approaches for multi-class imbalanced data are those based on
the decomposition of multi-class problems into a collection of binary ones. The one-
against-rest (OAR) strategy creates an ensemble of binary classifiers in which every
classifier is responsible for detecting one selected class only. For each component
classifier, a binary training set is constructed by copying the original multi-class data
and replacing all but one class labels with one common value. After training each
component classifier on such a dataset, at prediction time the final decision of the
ensemble is exercised by, e.g., selecting the class indicated by the most confident
classifier. Analogously, one-against-one (OAO) decomposition creates a component
classifier to distinguish between each possible pair of classes. The training sets for the
component classifiers contain examples from two selected classes only and the final
decision is given, e.g., by majority voting. In the context of imbalanced data, OAO
and OAR ensembles are often combined with binary resampling methods described
in the earlier part of this section. An extensive comparison of various combinations of
decomposition approaches with data-level methods for imbalanced data can be found
in [14]. Generally, OAO ensembles are usually preferred for imbalanced data since
the binary problems constructed by OAR are even more extremely imbalanced than
the original problem. On the other hand, OAO constructs a quadratic number of
component classifiers which could be problematic and also costly for datasets with a
high number of classes.

Recently, an extension of Roughly Balanced Bagging for multi-class imbalanced
data has been proposed. Multi-class Roughly Balanced Bagging (MRBB) [35] estab-
lishes the cardinality of each class in the bootstrap by taking a sample from the multi-
nomial distribution with uniform event probabilities. After establishing the number
of examples which must be drawn from each class, random sampling with replacement
is performed for each class separately. Contrary to its binary counterpart, which is an
under-sampling bagging technique, MRBB can be parametrized by the bootstrap size
to perform oversampling as well as under-sampling. The authors of [35] investigated
two parametrizations of the ensemble, they set the bootstrap size to 1) the size of the
smallest minority class which results in under-sampling (uMRBB) and 2) to the size
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of the whole training set which results in oversampling minority classes and under-
sampling majority ones (oMRBB). Their experimental study suggests that uMRBB
works better than oMRBB and a straightforward extension of RBB to multi-class
data.

2.3. Imbalanced Sentiment Classification

The problem of imbalanced data in the context of sentiment classification was ini-
tially overlooked by the research community because typically studied datasets were
purposely prepared to contain the same number of positive and negative reviews (see
datasets [4, 53, 54]). However, the balanced data assumption does not hold in prac-
tice where habitually positive reviews overwhelm negative ones. This phenomenon is
sometimes attributed to marketing actions of product manufacturers and vendors, as
well as to the fact that products with good reviews are more often selected by cus-
tomers, hence, receiving even more, mostly positive, reviews [38]. Burns et al. [8] were
among the first who noticed the problem and showed that using realistic unbalanced
datasets results in the constructions of classifiers that work much better in practice.

Since then, a limited number of works on applying or adopting imbalance learning
methods for sentiment classification has been carried out. In [38] random under-
sampling, over-sampling, one-class learning and a cost-sensitive method were exper-
imentally investigated on four binary datasets. Li et al. [40] proposed a clustering-
based under-sampling approach which performs clustering on majority class instances
and then selects the representatives of the majority class from each detected cluster.
More recently, SMOTE was used to over-sample text representations constructed
by a recursive neural tensor network for English and Chinese sentiment data [74]
and Roughly Balanced Bagging was successfully applied for Twitter sentiment anal-
ysis [33]. Furthermore, a whole pipeline consisting of Multiple Correspondence Anal-
ysis, SMOTE, and OAO decomposition was proposed for multi-class sentiment clas-
sification [29]. Additionally, in [59] resampling was used in the context of matrix
decomposition methods for sentiment analysis which are out of the scope of this
study.

All the above-mentioned works evaluate imbalance learning methods for sentiment
classification on a very limited number of datasets. Especially, the works involving
multi-class imbalanced data [29, 74] use one multi-class dataset each. Another related
empirical study [46] investigates only three under-sampling methods by evaluating it
on three binary datasets. For the above reasons, we believe that there is a need for
a more extensive evaluation of imbalanced learning methods for sentiment classifica-
tion, both in terms of investigated algorithms and evaluated datasets. This need is
particularly evident in the context of multi-class problems, since earlier studies of im-
balance learning methods usually do not take into consideration the multi-class data
which is of special focus of this paper. It is also worth highlighting that the lack of
comparison between methods has resulted the recommendations that are sometimes
contradictory. For instance, some researchers claim that under-sampling is the most
suitable methods for the sentiment classification [38], whereas others claim that it is
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Table 1. Basic characteristics of datasets under study.

# features
Dataset IR # classes # examples base bow mixed cbow

books 2.72 4 2000 30 5305 149594 300
dvd 2.5 4 2000 30 5097 153284 300
electronics 2.12 4 2000 30 2888 101635 300
housewares 3.07 4 2000 30 2585 88828 300
movie aut1 10.08 8 1027 30 3788 102592 300
movie aut2 26.08 10 1306 30 7354 184168 300
movie aut3 11.87 10 902 30 4684 116257 300
movie aut4 52.75 9 1768 30 6833 198032 300
restaurants 3.17 4 1325 30 1004 35530 300
tripadvisor 6.37 5 20491 30 14231 435810 300
tweeter5point 33.31 5 9090 30 2913 104938 300
tweeter3point 3.13 3 9090 30 2913 104938 300

inappropriate and prefer over-sampling [74]. Furthermore, earlier works frequently
investigate the methods’ performance on a single set of features whereas different
feature engineering procedures can result in extremely different text representations
and could change the method recommendation.

3. Datasets and feature representations

3.1. Data description

For this study, we gathered twelve sentiment classification datasets which contain
opinions and reviews on a wide range of topics. We selected corpora of long profes-
sional reviews, as well as collections of brief tweets with informal opinions. The basic
characteristics of each dataset, such as the number of examples, the number of classes
and the imbalance ratio, can be found in Table 1. Given that the imbalance ratio is
defined for a pair of classes and all the selected datasets contain multi-class problems,
we report the highest imbalance ratio among all the classes, i.e., the ratio between the
biggest and the smallest class. The table additionally presents the number of features
generated by different feature engineering procedures which will be described later.

The Movie Review Dataset [53] contains four corpora of full-length movie reviews
written by four different film critics. The reviews were collected from several Web
pages, hence, rating evaluations of different critics are in different scales e.g. in 5-stars
scale (with possible half-stars) or in a 100-point scheme. Besides that, the dataset’s
authors indicate that distinct critics can understand the same rating differently e.g.
for one critic giving 2-stars can mean negative opinion, whereas for another it can
be still a slightly positive review. This led us to evaluate the reviews for those four
authors as separate datasets denoted as movie aut1, movie aut2, movie aut3 and
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movie aut4 — similarly as it was done in earlier studies [53]. The classes with less
than 10 training examples were merged to the closest class on the scale in order to
have enough data for learning and testing. For the same reason, the ratings on the
100-point scale where rounded to a 10-point scale. Each of such prepared datasets has
a highly imbalanced distribution with imbalance ratio ranging from 10.08 to 52.75.

Blitzer et al. [4] collected four review datasets from Amazon which are also used
in our study. Each dataset consist of 2000 reviews from four product categories:
books (book dataset), electronics (electronics), DVDs (dvd), and kitchen appli-
ances (housewares). Although the original datasets contain many additional pieces
of information such as review date or product name, in this study we used only rat-
ing evaluation as the target class and the review text to construct features. The
review system on Amazon originally allows for 5-star evaluation, but the authors of
the dataset excluded 3-star reviews due to their class binarization strategy, hence, the
datasets contain four classes only.

Two datasets under study contain rather short reviews, which typically do not
exceed ten sentences. The tripadvisor dataset [68] contains opinions about hotels
expressed at the TripAdvisor website in a one-month period at the turn of February
and March 2009. This dataset is already preprocessed with simple normalization
and stemming, and has a target class containing 5-star user evaluations. On the
other hand, the restaurants’ reviews collected from the Citysearch webpage by Ganu
at al. [17] were labeled manually. The restaurants dataset contains four classes:
positive, negative, neutral, and conflict class with the last one meaning that the
review contains both positive and negative utterances without a clear winner2.

The last pair of datasets, tweeter3point and tweeter5point, was taken from the
Semantic Evaluation competition [47]. These datasets contain utterances collected
from Twitter expressing opinions about 200 different topics. To annotate the data,
Mechanical Turk and CrowdFlower services were used, with the final class label being
consolidated among several annotators. Since Tweeter’s technical constraints limit the
length of the utterance to 140 characters3, the texts in these datasets are extremely
short.

3.2. Feature representations

Basic feature representation Our basic feature representation (later denoted as
base) consists of features constructed from handcrafted sentiment lexicons. Such lexi-
cons basically provide a list of words with sentiments assigned to them e.g. ”excellent”
will be listed as a word with positive sentiment. Depending on the dictionary, the
sentiment intensity is sometimes expressed numerically, also additional emotions such
as joy or trust can be listed.

To construct our representation, we used five well-known dictionaries: the NRC
emotion lexicon [45], the Opinion lexicon [24], the NRC Hashtag Affirmative/Negated

2An example of such review is: ”The fish was adequate but inexpertly sliced”.
3Twitter recently changed its policy and doubled the maximal length of a tweet, but it was after

the collection of these datasets.
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Context Sentiment lexicon [27], the Multi-perspective Question Answering corpus [69],
and SentiWordNet [2]. From each dictionary, a feature was created for each listed
emotion or sentiment. The value of such a feature was calculated by taking a sum over
the polarity scores assigned to all words in the text. In the case of lexicons without
numerical polarity scores, the count of words with particular sentiment was used
instead of the sum. Additionally, from the Affirmative/Negated Context Sentiment
Lexicon two more features were calculated by taking (besides the sum) the minimal
and maximal value of word’s sentiment.

Bag-of-words representation The bag-of-words representation (bow) is a classi-
cal feature set for text and its definition can be found in any text mining textbook
e.g. in [58]. Prior to extracting features, we performed some standard preprocessing
of text. The text was tokenized, lemmatized by NLTK Word-Net Lemmatizer [42],
also a hand-crafted stopwords list was applied. Finally, certain symbols such as urls,
numbers, dates etc. that occurred less than five times in the dataset were grouped
according to their meaning using regular expressions. The rest of the tokens that
occurred less than five times was removed from the representation.

Mixed feature representation We have also adopted a mixed text representation
which was previously successfully used by us in SemEval competition [47]. In our
study, this feature collection was intended to represent a typical feature set of an
efficient sentiment classification system. This representation is denominated as mixed
because it contains all the features from bow and base representations. Additionally,
word 2, 3, 4, 5-grams, negation unigrams and bigrams, part-of-speech unigrams, 3, 4, 5-
character-grams and words’ representations from Brown clustering with 1000 clusters
were used as features. For a more detailed description of this representation, please
refer to [33].

Continuous bag-of-words representation Recently, word embeddings have rev-
olutionized the construction of text features. In this study, we adopted vectors from a
classic word2vec model [44] with 300 dimensions which was pre-trained on the Google
News corpus. In order to create a feature representation of the whole text, the text
is preprocessed (just like for bow representation) and, subsequently, arithmetic mean
of vectors corresponding to all text’s words is calculated and used as feature repre-
sentation.

4. The impact of class imbalance on sentiment classification

Initially, high imbalanced ratio seemed to be the main indicator of difficulty in imbal-
anced learning [22]. However, systematic experimental studies performed on decision
trees revealed that for simple, linearly separable problems any amount of class im-
balance is virtually of no harm the final classifier’s predictive performance [25]. It
was also observed that with growing difficulty of the learned concept, the impact of

160 M. Lango



class imbalance rapidly increases and severely degrades the quality of induced classi-
fiers [60]. This led to a conclusion that the real challenge is not the class imbalance
itself but its combination with other data difficulty factors [25, 50, 34, 73].

Several different data difficulty factors were defined and studied in the imbalanced
learning community. Jo and Japkowicz [26] studied the problem of small disjuncts
which is a result of under-represented minority sub-concepts. The decomposition of
the minority class into numerous sub-concepts is often closely related to the previous
one but also to the problems arising from the unequal representation of different sub-
concepts (within-class imbalance). Another important data difficulty factor is class
overlapping [18, 61] which, similarly to other factors, always introduces complications
to the induction of a correct decision boundary. However, in the presence of imbal-
anced data, it always hinders the decision boundary towards better recognition of the
majority class [65]. Finally, it was also noticed that the impact of class imbalance is
more harmful when the sample size is small [21].

Although difficulty factors play an important role in imbalanced learning and their
analysis led to the development of several successful algorithms for class-imbalanced
data [5, 49], to the best of our knowledge, they were never properly analyzed in the
context of sentiment classification. Therefore, we decided to perform an analysis of
data difficulty factors on real opinion datasets.

Measuring data difficulty factors in real datasets is not a trivial task even for binary
datasets. Napiera la and Stefanowski [50] proposed a method based on the analysis of
minority examples’ nearest neighbors to distinguish between four types of examples
which are closely related to several difficulties. The authors of [32] designed a special
clustering algorithm which detects these types of examples together with providing
an estimation of the number of sub-concepts. Recently, an extension of Napiera la’s
method has been proposed for measuring data difficulties in multi-class imbalanced
data [34], which will be the method adopted to our multi-class study. Performing
such analysis will give us an indication about the true impact of class-imbalance on
sentiment classification.

The method consists of measuring the safety of each minority class example and,
as an indicator of class difficulty, the average or median of those values is used. The
safety of an example is given by4

safety(x) =
|{y : y ∈ NNk (x) ∧ Class(y) = Class(x)}|

k

where NNk (x) is a set of k-nearest neighbors of the example x and Class() is assumed
to return the class value of an example. This method, although quite simple, proved
to provide a fairly good estimation of the class difficulty in multi-class imbalanced
datasets in the experiments performed both on artificial and real datasets [34].

Although the method originally was used together with HVDM distance [71] to
calculate example neighborhood, we decided to also run the method with cosine dis-
tance, which is usually considered a more appropriate measure for textual data [58].

4The original method proposed in [34] assumes that expert knowledge on class similarities is
available. Since such information is not available for our datasets, we use this methodology assuming
that the similarity between each pair of classes is equal to 0.
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Table 2. The average safety of minority classes calculated by method described
in [34] with HVDM and cosine distance.

avg. safety (HVDM) avg. safety (cosine)
base bow mixed cbow base bow mixed cbow

books 0.223 0.144 0.143 0.283 0.197 0.234 0.271 0.234
dvd 0.258 0.161 0.153 0.269 0.227 0.209 0.275 0.253
electronics 0.224 0.115 0.181 0.278 0.203 0.213 0.264 0.231
housewares 0.150 0.219 0.163 0.203 0.157 0.196 0.216 0.182
movie aut1 0.078 0.053 0.060 0.125 0.080 0.106 0.122 0.126
movie aut2 0.078 0.035 0.015 0.143 0.083 0.115 0.102 0.165
movie aut3 0.075 0.049 0.053 0.081 0.084 0.073 0.084 0.097
movie aut4 0.134 0.070 0.057 0.174 0.130 0.136 0.179 0.152
restaurants 0.373 0.401 0.359 0.306 0.391 0.417 0.447 0.387
tripadvisor 0.266 0.136 0.119 0.225 0.298 0.181 0.222 0.307
tweeter5point 0.159 0.181 0.142 0.202 0.165 0.216 0.217 0.217
tweeter3point 0.227 0.178 0.102 0.298 0.254 0.266 0.269 0.277
average 0.187 0.145 0.129 0.216 0.189 0.197 0.223 0.219

Since a full report of average safety for each class in the datasets would take a con-
siderable amount of space, Table 2 presents an average of all minority classes’ safeties
on the datasets under study5. We note that a class was treated as a minority one
(and hence included into the average) when its imbalance ratio was higher than 1.5.
Following earlier studies [35, 32], the method was run with the size of the analyzed
neighborhood k = 5.

Regardless of the feature representation and the distance metric being used, all
average safety values are rather low. Napiera la and Stefanowski [48, 50] categorized
binary imbalanced datasets into datasets with safe, borderline, rare and outlier char-
acteristics (from the easiest to the hardest one). Following their labeling methodology,
all the datasets under study fall into two of the most difficult categories. Only the
restaurants dataset could be treated as a borderline one, but usually safety values
for such datasets are higher. It is noteworthy that such low safety values are not a di-
rect result of a multi-class nature of a dataset. The most difficult dataset reported in
the earlier study on multi-class data [34] had the average of minority classes safeties
equal to 0.11. Here, we observe safety values even several times smaller for some
movie review data. This gives some intuition about the general hardness of multi-
class sentiment classification and demonstrates that all considered datasets pose very
difficult imbalanced learning tasks.

Low safety values are associated with datasets with the highest imbalance ra-
tios, which demonstrates the impact of class imbalance on the data quality. These
low values suggest that the application of data preprocessing methods possibly could
improve data quality and, hence, lead to some improvements. They also advocate

5See the full safety reports on accompanying website: http://www.cs.put.poznan.pl/mlango/

publications/imbalanced-sentiment-class.html
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the construction of better feature representations for this problem since potentially
one could create feature spaces with a clearer separation between classes [57]. In-
terestingly, contrary to a common belief that the classification of short utterances is
more challanging [47, 33], there is no apparent correlation between safety values and
the length of a review. Moreover, for datasets with full-length reviews, we report
the smallest values of safety which indicate that the problem of class imbalance is
important in sentiment classification regardless of review length.

The difference between results reported on HVDM and cosine distance is rather
evident. The method with employed cosine measure to neighborhood estimation
seems to generally return higher values for our data. On the other hand, the method
with HVDM returns results which are rather counter-intuitive. For instance, the most
advanced feature representation which contains many specifically designed features for
sentiment classification and which usually achieves quite good results on this task [33]
resulted to be the least safe. The same representation is the safest one according to the
method with cosine distance. This result is also quite interesting since the methods
which label examples based on safety were extensively experimentally studied. It has
been shown that there is no significant impact of using different sizes of neighborhoods
or even of replacing the nearest neighbors method with kernel-based estimation [6, 50].
Here, we found some evidence that the choice of proper distance measure can be
critical for such methods in some domains.

Further analyzing the results for cosine measure which seems to be more appro-
priate, we see that the representation which creates the least safe feature spaces is
our baseline representation. On the other hand, bag-of-words representation is only
slightly more safe overall. However, there are several datasets on which lexicon-based
representation is safer than their bag-of-words counterpart. There is also evidence
that the representations created by continuous bag-of-words are safer than the dis-
crete ones. Interestingly, especially on data with shorter texts, this representation
has quite often comparable or better safety properties than the mixed representa-
tion which uses many additional pieces of information such as part-of-speech tags,
hand-crafted lexicons etc.

Beside our analysis, we also acknowledge that for some domains the availability
of labeled data is very limited. The collection of such data is quite expensive since
its creation requires working with internal human experts [17] or using crowdsourcing
platforms [47] which probably will force the majority of researchers and practitioners
to work with rather small datasets. As a consequence, it further aggravates the impact
of class imbalance on the predictive accuracy of sentiment classifiers.
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5. Comparison of imbalanced learning methods for sentiment
classification

5.1. Experimental setup

In order to evaluate the usefulness of imbalanced learning methods for sentiment
classification, we performed computational experiments with four classifiers combined
with twelve imbalanced learning methods. The experiments were performed in Python
using the scikit-learn [55] and imbalanced-learn [36] libraries.

We measured the prediction capabilities of classifiers in terms of two popular
measures in imbalanced learning. F-measure [33, 47] and G-mean [40, 74, 29] were
studied in many related works for sentiment classification. Both of these measures
were initially defined for binary classification tasks and require an adjustment for
multi-class data. For F-measure macro-averaging is used, i.e., we compute an average
over F-measures calculated for each class separately. F-measure for a given class is
computed as unweighted harmonic mean of its precision and recall. On the other
hand, G-mean is computed as a geometric mean of recall values over all classes. As
it was earlier noticed [32], G-mean can resolve to zero when any of the classes is
completely unrecognised. This can happen quite often while working with multi-
class data with at least one class with an extremely small number of examples in the
training set. To alleviate this issue, we used corrected recall defined as RecallCorr (c) =
max(Recall(c), 0.001) in our G-mean calculations.

As learning algorithms, we decided to use four very popular classifiers, namely
Naive Bayes (NB), Multinomial Logistic Regression (MLR), CART decision trees (DT)
and k-Nearest Neighbors (kNN). The algorithms were tuned by trying out all the com-
binations of the following parameters and selecting the best one (via grid search):

• Naive Bayes — since this classifier has virtually no parameters, we have not
tuned it. However, discrete bag-of-words features were modelled with multino-
mial distribution whereas continuous values were modeled with Normal distri-
bution which can be seen as an implicit form of tuning.

• Multinomial Logistic Regression classifiers were trained with the SAGA opti-
mizer6 because in our preliminary experiments this optimizer was achieving the
best results. In our hyperparameter optimization procedure, we were selecting
the amount of L2 regularization controlled by the C parameter. We experi-
mented with five consecutive values of this parameter on the logarithmic scale,
namely 0.01, 0.1, 1, 10 and 100.

• k-Nearest Neighbors was tested in two variants. The first one was weighting
points by the inverse of their distance (closer neighbors having a greater in-
fluence on the classifier’s decision) whereas the second one was treating all the
neighbors equally. Additionally, we considered 1, 3, 5, 7 and 9 as possible values
of the neighborhood size k. Cosine distance was used as a distance function.

6See scikit-learn documentation for a discussion of this optimizer as well as descriptions of other
parameters mentioned later in the text.
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• Decision Tree — for this classifier we controlled the maximum depth of the
induced tree. The following depths were tested: 10, 20, 40, 80, plus the con-
struction of a full tree.

All the other parameters that are not mentioned above were set to default values in
the scikit-learn package.

The results were calculated using stratified 5-fold cross validation (CV) with the
hyperparameter optimization performed in every iteration. During each iteration
of CV, the subset of data intended for the training was additionally divided into
training (90%) and validation (10%) parts. The whole tuning process was performed
using only those training and validation parts, with the final evaluation performed on
the previously unseen testing examples. Note that in each CV iteration, the training,
validation, and testing sets were different and the whole hyperparameter optimization
was run.

We incorporated to our study eight well-known preprocessing techniques for im-
balanced data which are implemented in imbalanced-learn package [36]. Half of them
being oversampling techniques: namely Random Over-Sampling (ROS), SMOTE
(SMT), Borderline-SMOTE (BS), ADASYN (ADA), and another half being under-
sampling-based methods: Random Under-Sampling (RUS), Edited Nearest Neigh-
bors (ENN), One-Sided Selection (OSS) and Tomek links (TL). Those methods were
proposed in the literature for binary datasets, hence, their simple adjustments imple-
mented in imbalanced-learn package [36] for multi-class data were used. For the sim-
plest methods such as ROS or RUS, these adjustments consist of applying resampling
on each class independently. For more advanced methods requiring neighborhood
analysis, the amendments additionally consist of using a one-against-rest approach
during k-nearest neighbors estimation (all the necessary statistics are computed by
treating all the other classes as one).

There is also a very limited number of resampling methods designed especially for
multi-class imbalanced data. Zhou and Liu [75] proposed a class weighting schema
rooted in cost-sensitive learning framework which sometimes is referred in the lit-
erature as Global-CS method. The multi-class ROS which is included in our study
is a realization of this weighting strategy. Fernández-Navarro et al. [15] proposed a
generalization of SMOTE, called Static-SMOTE, which similarly to the SMOTE im-
plementation used in our study also iterates over classes and applies one-against-rest
strategy during neighborhood estimation. This similarity together with not partic-
ularly encouraging earlier experimental results [14] were the reasons why we have
abandoned the direct implementation of Static-SMOTE.

Other, presumably much more popular, approaches for multi-class imbalanced
data based on multi-class decomposition ensembles were incorporated to the study.
According to an earlier experimental study [14], one-against-one ensembles outper-
form one-against-rest ensembles on imbalanced data. Hence, we restricted our study
to two combinations of one-against-one ensembles with preprocessing methods: ran-
dom under-sampling (OAO+RUS) and random over-sampling (OAO+ROS). We also
experimented with Multi-class Roughly Balanced Bagging in its two versions: oMRBB
and uMRBB which were described in Section 2, each of them using 100 component
classifiers. Both versions were combined with the random subspace method, as rec-
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ommended by MRBB authors for high-dimensional data [35].

5.2. Comparison of preprocessing methods

We start the discussion of experimental results by trying to identify the best classifier-
preprocessing pair. Table 3 presents the best classifier-preprocessing combinations in
our study7. The best approaches were selected by calculating its average rank across
all dataset representations, an approach taken from the procedure of the Friedman
test, with the lowest rank meaning the best result. For both measures, all the strongest
approaches were based on the logistic regression classifier. The further analysis of
rank values suggests that the choice of a classifier is much more important than the
choice of a preprocessing method. The highest ranks were clearly assigned to logistic
regression, followed by Naive Bayes. At the end of the ranking, kNN and decision
trees take mixed positions, without a clear winner.

Table 3. The best combinations of classifiers and preprocessing methods for the
datasets under study.

F-measure G-mean
No. Class. Preprocessing

method
Avg.
Rank

Class. Preprocessing
method

Avg.
Rank

1 MLR RUS 5.08 MLR ENN 9.83
2 MLR ENN 5.66 MLR ROS 10.16
3 MLR One Sided Selection 5.75 MLR One Sided Selection 10.41
4 MLR Borderline-SMOTE 6.50 MLR Borderline-SMOTE 11.33
5 MLR Tomek Links 6.83 MLR No preprocessing 11.50
6 MLR SMOTE 7.08 MLR Tomek links 12.16

For logistic regression, under-sampling approaches seem to be the best ones for the
optimization of F-measure - especially RUS, ENN, and OSS. Also, all the imbalanced
methods outperformed the baseline (no pre-processing). This did not happen for G-
mean where the baseline was better than half of the preprocessing methods, including
RUS which was the winner for F-measure. In general, G-mean seems to be more
stable and difficult to optimize by the learners which can be observed by looking at
the top ranks in Table 3. The best method for F-measure, on average, ranks around
the fifth position for a considered dataset whereas the winner for G-mean ranks on
the tenth position on average which indicates that it is more difficult to identify the
outperforming method for that measure. Nevertheless, if we compare the results on
the two measures, ENN and OSS under-sampling approaches seem to give a good
trade-off between these two measures.

7Since our experiment includes four classifiers, eight preprocessing methods (plus lack of prepro-
cessing) and four representations on twelve datasets taking two measures into account, the table
with all the results would occupy several pages. Instead, we preferred to present several summaries
of this data in the text. The reader is welcome to check out the full results on the accompanying
website http://www.cs.put.poznan.pl/mlango/publications/imbalanced-sentiment-class.html.
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In order to evaluate the overall performance of preprocessing methods for imbal-
anced data, we calculated the highest possible result for each method and dataset
i.e. assuming that the best-performing classifier and dataset representation were se-
lected a posteriori. Tables 4 and 5 presents the results of this computations for
F-measure and G-mean, respectively.

Table 4. The best values of F-measure obtained for a given dataset and preprocessing
method.

Dataset Orig. ROS SMT BS ADA RUS ENN OSS TL

books 0.504 0.510 0.506 0.503 0.502 0.510 0.497 0.498 0.506
dvd 0.489 0.494 0.497 0.499 0.502 0.494 0.492 0.507 0.500
electronics 0.521 0.511 0.507 0.529 0.523 0.525 0.524 0.524 0.508
housewares 0.499 0.511 0.497 0.501 0.504 0.514 0.514 0.496 0.499
movie aut1 0.233 0.223 0.214 0.225 0.220 0.223 0.223 0.224 0.225
movie aut2 0.210 0.217 0.221 0.235 0.208 0.213 0.239 0.229 0.221
movie aut3 0.126 0.124 0.152 0.137 0.135 0.142 0.142 0.154 0.135
movie aut4 0.410 0.385 0.412 0.374 0.372 0.373 0.409 0.404 0.379
restaurants 0.682 0.675 0.677 0.681 0.674 0.696 0.676 0.692 0.680
tripadvisor 0.539 0.540 0.543 0.541 0.541 0.544 0.543 0.545 0.545
twitter3point 0.539 0.544 0.542 0.537 0.538 0.542 0.538 0.538 0.541
twitter5point 0.339 0.336 0.342 0.343 0.345 0.345 0.344 0.333 0.346

Table 5. The best values of G-mean obtained for a given dataset and preprocessing
method.

Dataset Orig. ROS SMT BS ADA RUS ENN OSS TL

books 0.435 0.435 0.431 0.437 0.432 0.430 0.427 0.423 0.423
dvd 0.424 0.429 0.435 0.437 0.426 0.429 0.441 0.466 0.423
electronics 0.456 0.453 0.464 0.464 0.457 0.461 0.461 0.456 0.451
housewares 0.398 0.404 0.405 0.400 0.417 0.412 0.399 0.393 0.384
movie aut1 0.113 0.090 0.077 0.101 0.097 0.125 0.082 0.111 0.101
movie aut2 0.080 0.130 0.074 0.078 0.096 0.100 0.093 0.093 0.114
movie aut3 0.046 0.052 0.063 0.050 0.047 0.048 0.064 0.055 0.056
movie aut4 0.216 0.205 0.223 0.193 0.190 0.182 0.221 0.219 0.188
restaurants 0.656 0.649 0.646 0.653 0.643 0.670 0.646 0.667 0.653
tripadvisor 0.502 0.506 0.507 0.505 0.506 0.510 0.508 0.509 0.510
twitter3point 0.513 0.515 0.514 0.507 0.509 0.515 0.508 0.507 0.510
twitter5point 0.372 0.365 0.369 0.358 0.351 0.353 0.366 0.360 0.373

A Friedman test performed on the results presented in Tables 4 and 5 does not
indicate any statistically significant differences between the preprocessing methods.
For both measures, the best performing method is Random Under-Sampling. Taking
G-mean into account, RUS (rank equal to 4) is followed by SMOTE (4.42), ROS
(4.75) and, ex aequo, OSS and ENN (4.83). ADASYN (6.09) oversampling is the
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only method which performed worse than the baseline (5.42), which in turn was only
slightly outperformed by Tomek links and the BS method (5.33). ADASYN was
also the least effective method in terms of F-measure and, together with ROS, was
one of the methods which did not perform better than the baseline. The top of the
approaches’ ranking with respect to this measure was dominated by under-sampling
methods: RUS (3.75), OSS (4.5), Tomek links (4.58) with SMOTE in the second half
of the ranking.

Looking at Table 4 we observe that there are no substantial differences between
different preprocessing methods and the baseline. Even though for one dataset
(movie aut1) all the preprocessing methods were worse than the baseline, the im-
provements were usually pretty small. The highest observed improvements were
those for longer texts, i.e.: movie aut2 and movie aut3 (around 3%) and for dvd,
restaurants, housewares (around 1.5%). Similarly, the highest improvements for
G-mean were on a similar set of datasets: movie aut4 and dvd (approx. 4%) as well
as restaurants, housewares, movie aut1 and movie aut3 (above 1%). Notably,
two of the datasets (dvd and restaurant) on which we get improvements on both
measures, were the ones with the highest safety levels calculated in Sec. 4. Another
such dataset (movie aut3) seems to suffer from the difficulty of small sample size (it
is the smallest one in our study).

Table 6. Comparison of the best results achieved for different text representations.

F-measure G-mean
Dataset base bow mixed cbow base bow mixed cbow

books 0.371 0.491 0.510 0.485 0.348 0.437 0.430 0.435
dvd 0.390 0.507 0.507 0.474 0.367 0.466 0.442 0.441
electronics 0.390 0.504 0.529 0.481 0.352 0.464 0.464 0.442
housewares 0.376 0.491 0.514 0.460 0.331 0.417 0.412 0.369
movie aut1 0.172 0.223 0.214 0.233 0.081 0.125 0.076 0.113
movie aut2 0.148 0.208 0.186 0.239 0.059 0.059 0.056 0.130
movie aut3 0.126 0.135 0.135 0.154 0.044 0.040 0.040 0.064
movie aut4 0.211 0.323 0.412 0.286 0.111 0.151 0.223 0.150
restaurants 0.571 0.642 0.696 0.609 0.495 0.617 0.670 0.588
tripadvisor 0.433 0.522 0.545 0.533 0.355 0.485 0.510 0.494
twitter3point 0.443 0.539 0.544 0.514 0.416 0.515 0.515 0.491
twitter5point 0.252 0.344 0.346 0.334 0.184 0.247 0.202 0.373

Finally, we compared the performance of four text representations. Table 6 presents
the values of F-measure and G-mean for each dataset and representation, assuming
that the best classifier and preprocessing method were selected.

The performed Friedman test indicates that there are some statistically significant
differences between the representations for both measures (p−value < 0.01). The
Nemenyi post-hoc analysis indicated that bow, cbow and mixed representations are
better than base representation, however, they are not distinguishable between each
other for F-measure. A similar analysis for G-mean indicates that only the bow
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representation is distinguishable from the base representation.

5.3. Comparison of ensemble methods

We start the discussion of the performance of ensemble methods dedicated to imbal-
anced data for sentiment classification by looking at the best pairs of a component
classifier and ensemble strategies. Table 7 presents the top-ranked pairs on both
classification measures used in this study. Similarly to the ranking of preprocessing
methods, this ranking is also dominated by logistic regression. MLR and OAO with
Random Under-sampling is clearly the best combination for both measures with the
rank values being close to 1, which means that it was the best method for the vast
majority of datasets and feature representations. The bagging ensemble combined
with logistic regression did not outperform a single classifier with no preprocessing
on F-measure, however, it definitely outperformed it on G-mean (the rank of a single
MLR is 9.91).

Table 7. The best combinations of classifiers and ensemble methods for the datasets
under study.

F-measure G-mean
Avg. Avg.

No. Class. Ensemble method Rank Class. Ensemble method Rank

1 MLR OAO+RUS 1.33 MLR OAO+RUS 1.08
2 MLR OAO+ROS 3.25 MLR OAO+ROS 3.41
3 MLR Single classifier 4.08 MLR oMRBB 3.91
4 MLR oMRBB 5.33 NB OAO+RUS 4.50
5 MLR uMRBB 6.58 MLR uMRBB 4.66

The results of ensemble methods on different datasets are shown in Table 8. By
using an ensemble we can improve the result on any dataset by at least 1% on F-
measure and by at least 3% on G-mean. By picking the best OAO approach for a
dataset, we are able to improve F-measure by 2.3% and G-mean by 8.8% on average.
Bagging ensembles again show not so good results in this comparison. Always taking
the best variant of MRBB we get an average improvement of G-mean by 4% and
degradation of F-measure (approx. 1%).

Comparing OAO approaches, the variant with Random Over-Sampling is always
giving the same or better value of F-measure than its under-sampling counterpart.
Particularly significant differences can be found on datasets such as twitter5point

(6.7% improvement in comparison with OAO+RUS), movie aut1 (4.4%) and
movie aut3 (3.4%). In the contrast, OAO with under-sampling works better in
terms of G-mean, obtaining even higher increases e.g. 10% on movie aut2, 8% on
housewares, 7% on movie aut4. A similar observation can be made on MRBB, where
oMRBB works better on F-measure and uMRBB provides better results on G-mean.

This interesting relationship can be also observed in Table 9, which presents the av-
erage ranks of F-measure and G-mean values computed in the same way as previously
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Table 8. The best values of F-measure and G-mean obtained for a given dataset and
ensemble method. oMR and uMR are abbreviations from Over-sampling / Under-
sampling Multi-class Roughly Balanced Bagging. RUS and ROS denotes OAO ap-
proaches combined with Random Under-Sampling and Random Over-Sampling.

F-measure G-mean
Dataset Single oMR uMR ROS RUS Single oMR uMR ROS RUS

books 0.504 0.477 0.480 0.515 0.499 0.435 0.470 0.474 0.463 0.506
dvd 0.489 0.496 0.479 0.516 0.516 0.424 0.495 0.476 0.475 0.521
electro. 0.521 0.480 0.490 0.538 0.544 0.456 0.459 0.449 0.491 0.548
housewa. 0.499 0.487 0.476 0.520 0.512 0.398 0.435 0.437 0.445 0.528
movie 1 0.233 0.229 0.216 0.265 0.220 0.113 0.242 0.177 0.233 0.248
movie 2 0.210 0.232 0.198 0.256 0.256 0.080 0.205 0.209 0.156 0.264
movie 3 0.126 0.148 0.152 0.171 0.136 0.046 0.094 0.144 0.122 0.134
movie 4 0.410 0.322 0.220 0.375 0.360 0.216 0.187 0.201 0.184 0.255
restau. 0.682 0.646 0.649 0.701 0.699 0.656 0.626 0.632 0.688 0.713
tripadv. 0.539 0.469 0.470 0.561 0.537 0.502 0.476 0.479 0.549 0.552
twitter3. 0.539 0.526 0.526 0.559 0.552 0.513 0.531 0.518 0.552 0.572
twitter5. 0.339 0.335 0.302 0.384 0.317 0.372 0.397 0.387 0.393 0.427

Table 9. Average rank (as in Friedman test) of ensemble methods with different
component classifiers. oMR and uMR are abbreviations from Oversampling / Under-
sampling Multi-class Roughly Balanced Bagging. RUS and ROS denotes OAO ap-
proaches combined with Random Under-Sampling and Random Over-Sampling.

F-measure G-mean
Comp. Single oMR uMR ROS RUS Single oMR uMR ROS RUS

DT 4.00 1.75 1.75 3.25 4.25 3.83 3.25 1.67 3.92 2.33
kNN 3.67 1.25 2.67 3.25 4.17 4.92 2.67 1.92 2.75 2.75
MLR 2.92 3.92 4.42 1.25 2.50 4.58 3.08 3.42 2.83 1.08
NB 2.83 3.50 4.17 1.75 2.75 3.75 3.50 3.42 3.25 1.08

but treating each learning algorithm separately. Clearly, for F-measure oversampling
approaches have lower ranks where the opposite is true for G-mean.

Additionally in Table 9, one can observe two groups of component learners with
similar ensemble methods rankings. Decision Trees and kNN obtain the highest results
while working with MRBB, whereas with the weakest decomposition approach they
obtain results that are worse than a single classifier (for both measures). On the
other hand, for Logistic Regression and Naive Bayes, the decomposition approaches
are most beneficial. Such a result can be explained by bagging’s ability to reduce the
prediction variance [31], hence, they are most beneficial while using unstable classifiers
like decision trees.

We have also performed a comparison of the performance of different dataset
representations, similar to that performed for preprocessing methods. However, we
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Figure 1. The visualizations of Nemenyi post-hoc test for the ensemble’s training
time (left) and model size (right).

skip its discussion here since the results and conclusions were quite analogous.
Dedicated ensembles for imbalanced data visibly improved the predictive capabil-

ities of induced classifiers for sentiment classification, thus, it can be purposeful to
use them in practice to advance current systems. For this reason, we believe that
an additional analysis taking into account two important practical considerations,
namely the training time and the model size, was necessary. The model size was mea-
sured by serializing a fitted model to a file using pickle library, which is a standard,
general-purpose serialization library in Python. Such type of measurement should
not favor any type of models, at the same time taking into account all the neces-
sary factors. Both time and memory measurements were averaged over all models
constructed during cross-validation without taking into account models induced dur-
ing hyperparameter optimization. The time of hyperparameter optimization was also
omitted since in our setup it is rather a property of a component learner algorithm
than of the ensemble method.

The gathered measurements were analyzed by Friedman test which rejected the
hypothesis about the lack of significant differences for both training time and model
size (p−value < 0.01). The results of Nemenyi post-hoc analysis are presented on Fig-
ure 1. uMRBB is better than other algorithms both in terms of time and model size.
Interestingly, on average it constructs smaller models and is faster even than a single
model trained on the original dataset. Even though uMRBB constructs 100 compo-
nent classifiers during training, each of them is trained on a small, under-sampled
dataset which permits fast model construction. Taking into account this property
of random under-sampling, it is not surprising that OAO with under-sampling also
allows for faster training than its counterpart with over-sampling. The additional
difference in time and memory usage between OAO and MRBB approaches can be a
consequence of the random subspace method used by the latter. On average, training
a uMRBB classifier took 2.8 seconds whereas the training of a single classifier took
4.2 s, OAORUS and OAOROS was constructed in 4.7 s and 10.2 s. In terms of model
size, a single model was on average 1.85 bigger than that constructed by uMRBB and
models of OAORUS and OAOROS were 6 and 12 times bigger, respectively.

6. Conclusions

In this work, we discussed the class imbalance issue in sentiment classification. We
carried out an analysis of data difficulty factors typically studied in the imbalance
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learning community. The analysis of example safety [34] demonstrated that all the
datasets under study, ranging from professionally written reviews to informal opin-
ions expressed in tweets, pose a substantial challenge for standard learning algorithms.
According to this analysis, all the datasets were identified to have rare and outlier
characteristics, both of which are considered the most difficult in imbalanced learn-
ing [50, 61].

Moreover, this analysis was also performed to compare different feature represen-
tations in the context of imbalanced learning. Not surprisingly, the mixed represen-
tation consisting of many specialized features for sentiment detection such as negated
n-grams or polarity values from handcrafted lexicons resulted to be most safe with
respect to safe leveles [34, 50]. Furthermore, the continuous bag-of-words representa-
tion resulted to be safer than the classic bag-of-words representation. Nevertheless,
all the representations happen to obtain low safety levels which encourages further
research in the construction of better, more suitable features representations.

In a quite extensive experiment, eight popular preprocessing methods for imbal-
anced data were studied. None of the preprocessing methods achieved results signifi-
cantly better then the baseline. We see two possible reasons which could explain such
a result.

Firstly, the datasets typically studied in imbalanced learning have a very limited
number of features. For instance, in one of the most extensive experimental studies of
ensemble methods for imbalanced learning [16], among the 44 datasets under study
none of them had more than 20 features. Even the most simple feature representation
considered in this work has one and a half times more features. The high-dimensional
imbalanced data are still not sufficiently well studied as, to the best of our knowledge,
this is one of the first studies concerning imbalanced learning problems with hundreds
of thousands of sparse features8.

Secondly, the preprocessing methods for multi-class imbalanced data are also in-
sufficiently studied. The methods used in this work, similarly to the majority of the
methods proposed in literature [12], are extensions of binary preprocessing methods
which can fail to exploit complex class interrelations in multi-class datasets as sug-
gested in [34]. For instance, they fail to capture that a class can be a minority one
with respect to majority classes but at the same time act as a majority one in the
context of other minority classes.

On the other hand, the ensemble methods specifically designed for multi-class
imbalanced data proved to be useful in our experiment. Those methods allowed
for achieving significantly better results in terms of both G-mean and F-measure.
Multi-class Roughly Balanced Bagging provided the best results for decision trees
and k-nearest neighbors as component learning algorithms, whereas one-against-one
decomposition with resampling worked best with multinomial logistic regression and
naive Bayes. Additionally, the under-sampling version of Multi-class Roughly Bal-
anced Bagging constructs the smallest models and within the shortest training time.

In conclusion, we think that at the intersection of sentiment analysis and imbal-

8Several works on high-dimensional imbalanced data were performed in the area of bioinformatics.
However, the representative work [3] still considers datasets with a smaller number of dimensions
than ours with mixed representation.
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anced learning there is plenty of research problems which should be studied more
deeply. In addition to those mentioned in the previous paragraphs, sentiment clas-
sification of the data from social media could be additionally treated as a stream
classification task [7]. Taking the aspect of time and order fully into account could be
profitable, though dealing with the class imbalance in non-stationary data streams is
still an open research problem.
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