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Can Confirmation Measures Reflect
Statistically Sound Dependencies in Data?
The Concordance-based Assessment

Robert Susmaga, Izabela Szczech *

Abstract. The paper considers particular interestingness measures, called con-
firmation measures (also known as Bayesian confirmation measures), used for the
evaluation of “if evidence, then hypothesis” rules. The agreement of such measures
with a statistically sound (significant) dependency between the evidence and the hy-
pothesis in data is thoroughly investigated. The popular confirmation measures were
not defined to possess such form of agreement. However, in error-prone environments,
potential lack of agreement may lead to undesired effects, e.g. when a measure indi-
cates either strong confirmation or strong disconfirmation, while in fact there is only
weak dependency between the evidence and the hypothesis. In order to detect and
prevent such situations, the paper employs a coefficient allowing to assess the level
of dependency between the evidence and the hypothesis in data, and introduces a
method of quantifying the level of agreement (referred to as a concordance) between
this coefficient and the measure being analysed. The concordance is characterized
and visualised using specialized histograms, scatter-plots, etc. Moreover, risk-related
interpretations of the concordance are introduced. Using a set of 12 confirmation mea-
sures, the paper presents experiments designed to establish the actual concordance as
well as other useful characteristics of the measures.

Keywords: Interestingness measures, confirmation measures, statistical depen-
dency, concordance
1. Introduction

In data mining and knowledge discovery, the discovered knowledge patterns are often
expressed in the form of if-then rules, being consequence relations representing cau-
sation, but also correlation, association, etc., between attributes describing objects.
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To measure the relevance and utility of the discovered rules, quantitative measures,
known as interestingness (attractiveness) measures, have been proposed, studied and
applied (e.g. rule (anti-)support, confidence, gain, lift, xy? or Fisher’s coefficient)
[12, 17, 18, 24, 35]. They allow a reduction in the number of rules that need to be
considered by ranking them and filtering out the useless ones. Among interestingness
measures, an important role is played by a group called confirmation measures (also
referred to as Bayesian confirmation measures). Generally, they express the degree to
which a rule’s premise (the condition part) confirms its conclusion (the decision part)
[6, 10, 11]. The discussion and analysis of various confirmation measures contained
in [3, 14, 35] show the advantages of using confirmation measures for the evaluation
of rules.

To group the measures according to similarities in their characteristics and be-
haviour and thus to help the user choose the best measure for a particular application,
various measure properties have been defined. Among studied properties of confir-
mation measures there are: monotonicity property, EFx; and weak Ex; properties,
logicality L and weak L properties, maximality /minimality, and a group of symmetry
properties (for a survey refer to [3, 6, 8, 14, 15]).

Unfortunately, the property analysis becomes more complex when we assume that
it is conducted upon data that may be erroneous. In practice, the existence of such
possible errors is a real phenomenon and must be taken into account, so that insignif-
icant, accidental conclusions could be eliminated [19, 38]. However, this is not always
the case with the existing confirmation measures, which may indicate either weak
confirmation or weak disconfirmation, while there is actually a strong dependency
between the evidence and the hypothesis, or either strong confirmation or strong dis-
confirmation, while there is only a weak dependency [31]. To examine this aspect
of the confirmation measures, the paper assesses the soundness (significance) of the
dependency between the evidence and the hypothesis in experimental data, and in-
troduces a method of quantifying the level of agreement (referred to as concordance)
between this assessment and the measure being analysed. In this paper the sound-
ness is established with the y2-based coefficient, while the concordance is expressed
as the Pearson correlation coefficient 7. Needless to say, the y2-r combination is
only one of many possible implementations of the proposed approach, chosen here for
the coeflicients’ well-established reliability and popularity. Nevertheless, each applied
coefficient has its inherent limitations and might need adjusted for the task at hand.

As an extension and development of [32], the paper introduces analyses that in-
volve additional characterization of the concordance and its interpretations in terms of
risk. In this respect the measures are classified as (generally) risk-prone or risk-averse,
which may influence their comprehension and future exploitation. Additionally, the
paper shows how the measures can be modified to comply with particular user expec-
tations regarding the risk.

The rest of the paper is organized as follows. Section 2 presents the concept
of (Bayesian) confirmation, defines some popular measures and reviews the basic
properties of confirmation measures proposed in the literature. The central Section 3
presents all the statistical aspects of the analyses: hazards of using the confirmation
measures under observational errors, the y?-based coefficient that allows to assess the
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level of dependency between the evidence and the hypothesis in data, the concordance
between this coeflicient and confirmation measures, further forms of characterizing
and visualizing the concordance and its risk-related interpretations. Section 4 then
provides experimental results for all the selected confirmation measures. Section 5
categorizes confirmation measures in terms of concordance and contains hints as to
how the property introduced in this paper can influence the process of defining new
measures. Final remarks and conclusions are contained in Section 6.

2. Related works on confirmation measures and their proper-
ties

In logic-based environments, one often deals with reality-referring sets of statements
and relations. Now, while the first convey some observations about a larger reality,
the second convey dependencies between those observations. The observations, also
called the pieces of evidence, are basically atomic in nature, e.g. “Socrates is a man”,
while the dependencies basically consist of two parts, a premise and a conclusion, e.g.
“If © is a man, then x is mortal” (which is another way of saying “Every man is
mortal”). Acting together, the observations and the relations allow to infer further
facts about the reality, in particular previously unidentified ones.

In knowledge discovery applications, the facts are often known (observed) but the
relations are usually not known, although their existence is assumed nonetheless. The
discovery is then the discovery of the relations, often done by induction, which is a
process of creating patterns that are true in the universe of the analysed data.

In this paper, we consider evaluation of patterns represented in the form of rules.
The starting point for such rule induction process (rule mining) is a sample of a larger
reality, often represented in the form of a data table. Formally, a data table (dataset)
is a pair S = (U, A), where U is a non-empty finite set of objects called the universe,
and A is a non-empty finite set of attributes describing the object.

A rule induced from a dataset S on a universe U consists of a premise “if E”
(referring to an existing piece of evidence, F), and a conclusion “then H” (referring
to a hypothesised piece of evidence, H). Further on, we shall use the common,
shortened denotation F — H (read as “if E, then H”).

Typically, the number of patterns induced from datasets is quite large. It can
be overwhelming for an expert analysing the data. Therefore, there is a need to
measure the relevance and the utility of the discovered patterns and to filter out those
that are irrelevant, misleading, or do not provide new knowledge. In particular, to
evaluate the induced rules, quantitative interestingness measures have been proposed.
The literature provides a wide spectrum of ordinally non-equivalent interestingness
measures, exploiting different characteristics of the mined rules (see, for example,
[3, 12, 24] for exhaustive reviews of the subject).

This paper concentrates on a group of interestingness measures called confirmation
measures. According to Fitelson [11], such measures quantify the degree to which the
evidence in the rule’s premise E provides support for or against the hypothesised piece
of evidence in the rule’s conclusion H. Thus, the definition of Bayesian confirmation



44 R. Susmaga, I. Szczech

measures is based on consideration of four particular situations: the rule’s premise
FE holds and so does its conclusion H, the rule’s premise E does not hold, but its
conclusion H holds, the rule’s premise E holds, but its conclusion H does not hold,
and finally neither the rule’s premise E nor its conclusion H holds. As far as the
real-world phenomena described by the rules are concerned, specific information on
whether a given piece of evidence F or hypothesis H holds or not, is often represented
with binary (and thus discrete) variables: a variable reflecting the presence or absence
of the evidence (denoted as VE) and a variable reflecting the presence or absence of
the hypothesis (denoted as VH). In the context of a particular dataset U, these
variables may be collectively processed to reveal four non-negative integers: a, b, ¢
and d, represented in the contingency table (see Table 1), with rows and columns
characterizing the premise and the conclusion, respectively. As an illustration, let
us recall a popular folk statement that “all ravens are black”, formalized as a rule
“if © is a raven, then x is black”, often used by Hempel [20]. With this rule: a is
the number of black ravens, b is the number of black non-ravens, ¢ is the number of
non-black ravens, d is the number of non-black non-ravens. The notation based on
values a, b, c and d shall be used throughout the paper.

Table 1. A contingency table characterization (with header and sum rows/columns)
of the rule’s premise and conclusion

H -H by
E a c a+c
-F b d b+d
> |a+b | c+d n

Reasoning in terms of a, b, ¢ and d is natural and intuitive for data mining techniques,
since all observations are collected in some kind of an information table, describing
each object by a set of attributes. However, a, b, ¢ and d can also be used to estimate
probabilities: e.g. the probability of the premise is expressed as P(E) = (a+c)/n, and
the probability of the conclusion as P(H) = (a + b)/n. Fortunately, a +b+c+d =
n > 0, since n = |U| and U # 0, so both of the above probabilities are always
defined. Additionally, the conditional probability of the conclusion given the premise
is P(H|E) = P(HN E)/P(E) = a/(a + ¢), which, however, is only defined when
a+c>0.

The group of confirmation measures, which we shall present and analyse, consists of
interestingness measures that satisfy the property of Bayesian confirmation. Formally,
for a rule F — H, an interestingness measure ¢(H, E') has the property of Bayesian
confirmation when it satisfies the following (1) conditions (further referred to as the
BC conditions):

>0 when P(H|E)> P(H), equivalentto -2 > 2t®

a+c ’
c(H,E)q =0 when P(H|E)=P(H), equivalentto _% = ath (1)
<0 when P(H|E)<P(H), equivalentto % < “TH’.

Regarding the BC conditions, the confirmation is interpreted as an increase in the
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probability of the conclusion H provided by the premise E. Analogously, the neu-
trality is regarded as the lack of influence of the premise on the probability of the
conclusion, and the disconfirmation as the decrease of the probability of the conclusion
imposed by the premise.

Let us stress that the list of alternative, non-equivalent measures of confirmation is
quite large [6, 10]. It is due to the fact that the BC conditions do not impose any
constraints on the measures except for requiring when the measures should obtain
positive/negative values or zero. Thus, the property of Bayesian confirmation does
not favour one single measure as the most adequate. The commonly used confirmation
measures are presented in Table 2.

The definitions of confirmation measures are often formulated for two of the main
defined situations: that of confirmation and that of disconfirmation. While confir-
mation means P(H|E) > P(H), disconfirmation means P(H|E) < P(H). In the
third possible defined situation, i.e. when P(H|FE) = P(H), the measures default to
0 (for reasons of brevity this situation was omitted from the definitions of measures
provided in Table 2). As opposed to defined situations, undefined ones occur when
the probability P(H|E) = P(H N E)/P(F) is not defined, which, in turn, occurs
when P(F) is zero. Measures of conditional definitions (i.e. definitions with separate
formulae in cases of confirmation and disconfirmation, e.g. Z(H, E)) will always be
assumed to equal zero if neither confirmation nor disconfirmation holds.

For the sake of convenience and comparability of the presented results, the greatest
lower bound (infimum) and the least upper bound (supremum) of all of the analysed
measures have been unified to —1 and 41, respectively. While most of the definitions
of the considered measures could be used directly, the definition of measure C'(H, E)
required a simple transformation. Measure C(H, E) originally obtains values from
—1/4 to +1/4 (regardless of n), thus all further results are presented using the rescaled
C(H,E). Measures Z(H, F) and A(H, E) are defined using a real-valued parameter
p, where p > 0. This parameter influences what is referred to as curvature of the
measure. The (default) value of 1 is assumed for p throughout this paper. Measures
c1(H,E) and co(H, E) are defined using parameters o and 3, where a + 8 = 1 and
a > 0, B > 0. Observe that parameters o and [ can be used to bring the new
measure closer to Z(H, E) or A(H, E) (defined for p = 1). The (default) value of 0.5
is assumed for both a and S throughout this paper.

Below, let us recall the references of the 12 analysed confirmation measures. Mea-
sure D(H, E) has been considered among others by Earman [7]. Measure M (H, E)
has been supported by Mortimer [26]. Measure S(H, E) has been proposed by Chris-
tensen [5] and Joyce [21]. Measure N(H, E) has been considered by Nozick [27] and
measure C(H, E) by Carnap [4]. Measure F(H, FE) has been supported by Kemeny
and Oppenheim [23] and Pearl [28]. Fitelson [10, 11] has also advocated for measure
F(H,E). Measure Z(H, E) has been recently introduced by Crupi, Tentori and Gon-
zalez [6] as a measure resulting from a transformation of measures D(H, E), M(H, E),
S(H,E), N(H,FE) or C(H,FE), and possessing some valuable properties concerning
situations when a rule’s premise entails or refutes its conclusion. Measure A(H, E)
has been presented by Greco, Slowinski and Szczech [15] as a likelihoodist counter-
part of measure Z(H, E), complementing the properties of measure Z(H, E). Finally,
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Table 2. Popular confirmation measures

D(H, ) = P(HIE) - P() =
M(H,E) = P(E|H) — P(E) = aib— a:C
S(H,E) = P(H|E) — P(H|-E) = aic - b%g
N(H,E) = P(E|H) — P(E|-H) = aib* c—&c-d

C(H,E) = P(E N H) — PE)P(H) = = - W

(E|H) + P(E|=H) ad+ bc+ 2ac
P(-H|E) _  ad—be
CP(-H)  (ate)(etd)
PUHIE) | ad=be
P(H) (a+c)(a+b)

F(H, B) — i(EIH) — P(E|-H) ad — be

in case of confirmation

in case of disconfirmation

P(E|H)-P(E) ad—be
= in case of confirmation
1-P(E) (a+b)(b+d)
P(H)-P(H|-E) ad—be
1-P(H)  (b+d)(c+d)
a+ SA(H,E) in case of confirmation when ¢ =0

aZ(H,E) in case of confirmation when ¢ > 0

in case of disconfirmation

Cl(H, E)

aZ(H,E) in case of disconfirmation when a > 0
—a+ fA(H,E) in case of disconfirmation when a = 0
a+ BZ(H,E) in case of confirmation when b =0

aA(H,E) in case of confirmation when b > 0

H,E) =
o ) aA(H,E) in case of disconfirmation when d > 0

—a+ fZ(H,E) in case of disconfirmation when d =0
A(H,E)Z(H,E) in case of confirmation
—A(H,E)Z(H,E) in case of disconfirmation

03<H7E) = {

min(A(H,E),Z(H,E)) in case of confirmation
max(A(H,E),Z(H,E)) in case of disconfirmation

C4(H, E) = {

measures ¢1(H, F) - ¢4(H, E) have been proposed by Greco, Stowinski and Szczech
[15] as measures derived from Z(H,E) and A(H, E) in such way that they satisfy
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desirable properties.

Choosing a measure for a particular application is usually a difficult task. There
is no indication as to which measure is generally the best, as each of them captures
different characteristics of the data. To group the measures according to similarities
in their behaviour, and this way help to choose an appropriate measure in a particular
situation, various properties of measures have been proposed and studied. Analysis of
measures with respect to their properties is an important research area, because using
the measures that satisfy the desirable properties one can avoid unimportant rules
[14, 35]. Different properties have been proposed and surveyed in [4, 8, 12, 24]. Among
the commonly used properties of confirmation measures there are such properties as:

e property M, ensuring monotonic dependency of the measure on the number of
objects satisfying (supporting) or not the premise and/or the conclusion of the
rule [3, 14, 35];

e property Fxi (and its modification to weak Ex1), assuring that any conclusively
confirmatory rule is assigned a higher value of a measure than any rule which
is not conclusively confirmatory, and any conclusively disconfirmatory rule is
assigned a lower value than any rule which is not conclusively disconfirmatory
[67 15]?

e logicality L (and its modification to weak L), indicating the conditions under
which measures should obtain their maximal or minimal values [6, 11, 15];

e mazimality/minimality property requiring that measures should obtain their
maximal (or minimal) values if and only if c=b=0 (a = d = 0) [13];

e properties of symmetry being a whole set of properties that describe desirable
and undesirable behaviour of measures in cases when the premise or conclusion
in not satisfied, or when the premise and conclusion switch positions in a rule
[6, 8, 16, 34].

The considerations about properties of confirmation measures reveal the lack of a
desirable property that would prevent measures from “presenting radical opinions”
(i.e. obtaining extreme or close to extreme values) on the basis of data that could be
statistically unsound or that could represent observational errors.

3. Using confirmation measures under observational errors

Let us return to the example regarding the black ravens, with the statement (rule)
“if  is a raven, then x is black” decomposed into “z is a raven” (the evidence, E)
and “z is black” (the hypothesis, H). To verify this rule empirically, we would look
for x’s that can be classified as being ravens (F) and being non-ravens (—FE) on one
hand, and as being black (H) and being not black (=H) on the other. These classified
observations can be expressed in terms of the a, b, ¢ and d frequencies, as described
in Section 2.
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Assume a+c¢>0,b+d >0, a+b > 0 and ¢c+d > 0, which means that all possible
situations, e.g. F, -F, H and —H, have occurred. According to one interpretation
of such data, ¢ = 0 implies that the rule described with them can be treated as a
proper implication (notice the similarity between the corresponding contingency table
and the “truth table” of the logical function of implication), while any ¢ > 0 means
that the contingency table represents a relation that is not an implication (although
approximate, or fuzzy, implications could also be considered and applied, [37]). In
such circumstances, as long as no non-black raven is observed, i.e. as long as ¢ = 0,
the rule “all ravens are black” holds. However, it gets conclusively invalidated by
any single non-black raven, i.e. after having observed at least one non-black raven
(¢ > 1), this rule does not hold.

The analysis becomes more complex when we assume that the process of making
observations may be error-prone. In those circumstances, having observed a non-black
raven does not conclusively invalidate the rule (neither does it make it approximate),
instead, it may merely imply that the observation was erroneous.

In real-life situations the existence of such possible errors must be taken into
account, as potentially false conclusions might be drawn otherwise. This assumption
also calls for some additional ones, in particular, the assumption about the errors
being not systematic (which means that they do not concern all the observations),
but being relatively rare and random. Moreover, all types of errors (e.g. registering
a non-raven as a raven) are assumed to occur equally often.

After having assumed the possibility of making observational errors, a single non-
black raven should not conclusively invalidate the “all ravens are black” rule, because
an observational error may be involved. But this is not to say that every possible
number of non-black ravens could be attributed to observational errors, and that
such a rule can therefore never be invalidated. Conclusive invalidations of rules are
certainly possible, but they require that the number of the observations against a given
rule becomes, in a sense, large enough in relation to all other observations. This, of
course, means that the process of invalidating a given rule amounts to determining
whether the number of observations against this rule is actually large enough in
relation to all other observations.

Articulating error sensitivity may be endeavoured with a tool designed to test for
the independency of two discrete-valued variables. This is because while measures of
confirmation and those of independency between variables measure formally differ-
ent things, confirmation and independency are certainly not completely disconnected
notions, especially with discrete variables of low-cardinality domains. This may be
illustrated as follows.

Let VE and VH be binary variables (with {0,1} domains), F be equivalent to
VE = 1, and H be equivalent to VH = 1. In this case, E = H is expressed as
VE=1 = VH=1. However, (E = H) <= (~H = —FE), also expressed as
(VE=1 = VH=1) <= (VH=0 = VE=0). Notice that when VE and VH
are fully dependent, the support of VE=1 = VH=1and VH=0 = VE=0
(and thus of E = H and ~H = —F) will attain its maximum. This is why (as
attempted in this paper) the behaviour of confirmation measures may be approached
similarly to that of the dependency (or independency) measures (well established in
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error-prone environments).

One of the most popular tests for the independency of two discrete-valued vari-
ables is the two-dimensional x? test. The test derives its name from the y2-distributed
coefficient, which allows to test for statistical significance at a pre-defined significance
level o'. Together with its numerous corrections and improvements, y2-distributed
coeflicient has given rise to many significance testing procedures. The popular al-
ternatives include the Cramer’s V' coefficient, the Yule’s @ coefficient, the Fisher’s
coefficient or the Pearson’s @ (also referred to as the Yule’s @) coefficient ([1, 9, 29]).

Given a 2 x 2-sized contingency table [{ §], where a + b+ ¢ + d = n, the x3
n(ad—bc)?

a+b)(ct+d)(a+c)(b+d) "

to the interval [0,n], and are thus n-dependent. To make them n-independent, x3 is

scaled down (divided) by n, producing a value belonging to the interval [0,1]. This

version of the coefficient, formally defined as x3; = @ +b)(c(iili;(l;cji)(b Tay Will be further
29

referred to as the “scaled-down x2” (notice that x3; is the square of the Pearson’s ®
coefficient). In case of both coefficients, values close to minimum/maximum indicate
weak /strong statistical dependency between the evidence and the hypothesis.

coefficient is defined as x3 = ( The values of this coefficient belong

3.1. The property of concordance C

Unrestricted application of a confirmation measure ¢(H, E) to a contingency table is
perfectly acceptable when this is free from observational errors. Unfortunately, this
might not be the case in all circumstances.

Two potentially unfavourable situations that can concern the confirmation mea-
sure applied to a contingency table created from error-stricken data are as follows:

e the value of ¢(H, E) indicates either weak confirmation or weak disconfirma-
tion, while in fact there is a strong dependency between the evidence and the
hypothesis,

e the value of ¢(H, FE) indicates either strong confirmation or strong disconfir-
mation, while there is only a weak dependency between the evidence and the
hypothesis.

The first situation is rather unlikely, as strong dependency between the evidence and
the hypothesis usually implies either strong confirmation or strong disconfirmation.
It is also rather ‘safe’, in the sense that weak confirmation or weak disconfirmation
does not usually entail further user actions.

The much worse second situation can easily occur when the number of observations
is small, because then even fairly few observational errors can turn out to be quite nu-
merous in relation to all other observations. It it also ‘unsafe’; in the sense that strong
confirmation or strong disconfirmation might entail some strong inferences, which, in
turn, might provoke some irreversible (but unjustified, and thus inappropriate) user

IThis ao should not be confused with the o used in the definitions of the measures c1 (H, E) and
c2(H, E).
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actions. Finally, the situation may occur more frequently in practice, since according
to a popular “rule of thumb” high values of a measure are often treated by their users
with more confidence then low ones [30].

To counteract those unfavourable situations, there arises a need to evaluate the
potential concordance between confirmation measures and statistical significance of
the evidence-hypothesis dependency. For such an evaluation to be useful, it should
provide continuous measurements, the higher the more the measure ¢(H, E) ‘agrees’
with the level of dependency between the evidence and the hypothesis. Highly ‘agree-
able’ measures become then autonomous in the sense that high values of the measures
translate to high levels of the above-mentioned dependency, and no additional testing
is required.

More formally, a confirmation measure ¢(H, E) is characterized by:

e high values of concordance C' when extreme values of the confirmation measure
occur only when there is a strong dependency between F and H and neutral
values of the confirmation measure occur only when there is a weak statistical
dependency between E and H,

e low values of concordance C otherwise.

Measures characterized by the desired, high values of concordance will be referred to
as concordant measures.

Let us remark that the evaluation of the concordance may be performed using
different statistical tools (e.g. correlation). Nevertheless, the desirable behaviour of
the measure being analysed is as follows:

e |c(H, E)| is close to 0 whenever the evidence and the hypothesis are roughly
independent,

e |¢(H, E)| grows with the growing dependency between the evidence and the
hypothesis,

e |¢(H,FE)| is close to 1 whenever the evidence and the hypothesis are strongly
dependent.

By |¢(H, E)| we denote the absolute value of ¢(H, F). Taking |c(H, E)| into account
(and thus ignoring its sign) is essential, as it is the absolute value of the confirmation
measure, and not the sign, that determines the ‘strength’ of ¢(H, E) (i.e. the degree
to which the premise of a rule evaluated by the confirmation measure confirms or
disconfirms its conclusion).

Let us remark that the above-mentioned dependencies may be in practice quanti-
fied by any procedure capable of testing for the independency of two discrete variables,
provided it is applied to the two observation-describing (binary) variables: VE and
VH. A very common procedure of such type is the y2-based testing for the indepen-
dency of two discrete variables, which may, in particular, be carried out using the
X2 coefficient or its scaled-down version, x3;. In this context, the concordance be-
tween a confirmation measure and x3, will be referred to as x2,-concordance and the
concordant measures will be referred to as yZ;-concordant.
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Under the assumption of expressing the dependency between the VE and VH
with the y2; coefficient, the relation between this coefficient and a given confirmation
measure ¢(H, F) may be additionally visualized. This is easily done with a scatter-
plot of ¢(H, E) against x2,. Each such scatter-plot will fit a 2 x 1-sized rectangular
envelope, with its axes ranging from —1 to +1 (horizontal, ¢(H, E)) and from 0 to 1
(vertical, x2,), as illustrated in Figure 1, which features three colours: red, green and
blue as well as the graded transitions (reddish-greenish and greenish-blueish) between
them?.

Given a yZ;,-concordant measure c¢(H, E), the points of the c¢(H, E)-versus-x3,
scatter-plot should possibly occupy the greenish region of the figure, while possibly
avoiding both reddish and blueish regions. This is because points located in the
greenish region illustrate good concordance between c¢(H, E) and xZ;, while points
located in the two other regions indicate poor x3;-concordance. In particular, the (two
distinct) reddish regions (marginal lower parts of the envelope) characterize situations
in which the value of |¢(H, E)| is disproportionally large as compared to the value
of x3;. This means that the measure actually presents “radical opinions”, despite
insignificant dependency between the evidence and the hypothesis. On the other hand,
the (two merged) blueish regions (central upper part of the envelope) characterize
situations in which the value of |¢(H, E)| is disproportionally small as compared to
the value of x2;. This means that the measure actually presents “inhibited opinions”,
despite significant dependency between the evidence and the hypothesis.

1

0.5

-1 -0.5 0 0.5 1

Figure 1. The desirable (greenish) and undesirable (reddish, blueish) regions of the
c(H, E)-versus-x3, scatter-plot

What is specific about the property of concordance C' is that it is a representative of
continuous-type properties: it can be quantified as the level of dependency between
two continuous entities, provided the quantification is properly applied to a given
¢(H, E) (the first continuous entity) and the measure of dependency between VE and
VH (the second continuous entity). In particular, if we assume that the dependency
between VE and VH is expressed with the x2, coefficient, the dependency between
this coefficient and the confirmation measure ¢(H, F) may be represented, e.g., as
the linear Pearson correlation®, denoted as r, between x2, and the |c(H, E)|. If the
measure ¢(H, E) is to be x2,-concordant, then |c(H, E)| should be strongly, positively

20wing to the journal’s printing policy, the version of the paper with colour rendering of the
figures is available only at the journal’s online web pages.
3Given two variables (in practice: two vectors), x and y, the Pearson correlation coefficient r can

T
be expressed as r(x,y) = m, with ||z|| denoting the (euclidean) norm of the vector z.
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correlated with x2,, otherwise |c(H, E)| can be uncorrelated to, or even negatively
correlated with x2,.

The linear Pearson correlation is only one possible way of representing the de-
pendency between x3; and |c(H, E)|, one that will be used throughout this paper®.
Further possibilities include other, potentially non-linear correlation measures, as well
as dependency measures, like principal curve based measures [2], mutual information
based measures [1], etc. Also the y2-based way of expressing the dependency between
VE and VH is not the only possibility. Its alternatives include the corrected x?
coefficient or the Fisher’s test-based coefficient.

In order to provide additional characterization of the dependency between x3, and
|c(H, F)|, we shall also use the Spearman rank correlation coefficient®, denoted as s,
similarly applied to X3, and |c(H, E)|. The important thing is that the coefficients r
and s differ in that s ignores the particular differences between the compared vectors
and obtains maximal value (i.e. 1) as long as these vectors are equivalent ordinally. In
particular, while r is not sensitive to any linear (but strictly positive) transformations
of the vectors, which means that given a positive value a, the same value of r is
produced for x and y as well as for x and z, where z; = ay;, s is not sensitive to any
non-linear (but strictly monotone) transformations of the vectors, e.g. given a strictly
monotone function f(z), the same value of s is produced for x and y as well as for x
and z, where z; = f(y;). This ordinal independency may actually prove advantageous
in experiments, in which the confirmation measures are used in machine learning
algorithms.

The presented property of y2;-concordance (as quantified by the Pearson corre-
lation coefficient) is different from and functionally independent of the previously
discussed (see Section 2) properties of the confirmation measures. In particular, it is
neither directly implied by nor directly implies any of those properties.

3.2. Risk-related interpretation of the property of concordance C

The character of a given dependency, especially a functional one, may allow for some
very specialized inferences about this dependency [22, 25]. Given a criterion, a func-
tion referred to as the utility function expresses functional dependency between the
values of this criterion (the function’s domain) and what is called the utility of these
values (the function’s value set), as viewed by a particular decision maker. The char-
acter of the utility function u(z) created by the decision maker in an iterative process
may be assumed to reveal the risk attitude of this decision maker. Three basic forms
of the decision maker-specific risk attitude, or decision maker profiles, are often dis-
tinguished in this case (potentially for some subintervals of the function’s domain):

e the utility function u(z) is convex: the decision maker is ‘risk-prone’,

4 As far as the confirmation contexts is concerned, the Pearson coefficient has been used to assess
similarity between different measures in [36].

5Given two variables (in practice: two vectors), x and y, the Spearman correlation coefficient s
can be expressed as s(x,y) = r(R(x), R(y)), where r(x,y) is the linear Pearson correlation, while
R(z) denotes a vector of ranks of the elements of vector z.
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e the utility function u(z) is linear: the decision maker is ‘risk-neutral’,
e the utility function u(z) is concave: the decision maker is ‘risk-averse’.

Essentially similar reasoning may be applied to the c¢(H, E)-versus-x2; dependency.
In case when this dependency exists in a functional form, i.e. when there exists a
function f : [—1,+1] — [0,1] satisfying f(c(H,E)) = x3;, the following measure
profiles can be distinguished (potentially for some subintervals of the confirmation
measure’s domain):

e the function f(z) is convex: the measure ¢(H, E) is ‘risk-prone’,
e the function f(z) is linear: the measure ¢(H, F) is ‘risk-neutral’,
e the function f(z) is concave: the measure ¢(H, E) is ‘risk-averse’.

In many practical situations no functional dependency between c¢(H, E) and x2; will
exist. In such cases the approximate dependency may be visualized with scatter-plots
(as introduced in subsection 3.1), and the profiles established by observing whether the
points of the scatter-plot are situated below (‘risk-prone’) or above (‘risk-averse’) of
the |c(H, E)| = x2, line. In this context, the following situations may be distinguished
(potentially for some subintervals of the confirmation measure’s domain):

e all points of the ¢(H, E)-versus-xZ, scatter-plot are situated below the |c(H, E)| =
X2, line: the measure ¢(H, E) is ‘risk-prone’,

e all points of the ¢(H, E)-versus-y2; scatter-plot are situated on the |c(H, E)| =
X2, line: the measure c¢(H, E) is ‘risk-neutral’,

e all points of the c¢(H, E)-versus-x2, scatter-plot are situated above the |c(H, E)| =
X2, line: the measure c¢(H, E) is ‘risk-averse’.

If most, but not all points of the scatter-plot are located below, on, or above the
|c(H, E)| = x3; line, the measures are referred to as predominantly ‘risk-prone’; pre-
dominantly ‘risk-neutral’ or predominantly ‘risk-averse’, respectively. Now, it may
be especially interesting as well as useful to provide some aggregated forms of the
information conveyed by the scatter-plots. Counting points of the c(H, E)-versus-x3,
scatter-plot constitutes only one possible kind of such an aggregation, in which it is
the numbers of points that lie below or above the |c(H, F)| = x2; line that are ac-
tually taken into account, while the distances between this line and the given points
are ignored.

4. Evaluating the concordance of confirmation measures

The following experiments have been carried out to evaluate how the 12 selected

Bayesian confirmation measures reflect statistically significant dependencies®.

6Source code files (MatLab scripts) are available at http://www.cs.put.poznan.pl/iszczech/
publications/MatLab_scripts_FCDS_2018.zip.
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The experimental data generally consist of a set of contingency tables, each of
which contains four integer entries: a, b, ¢ and d, a + b + ¢+ d = n, as introduced in
Section 2. Given n > 0 (the total number of observations), the dataset is generated
as the set of all possible [ ] contingency tables satisfying a + b+ ¢+ d = n. The
set is thus exhaustive and non-redundant, as it contains exactly one copy of each
contingency table satisfying a + b+ c+ d = n.

The exact number of tables ¢ in the set is given by ¢ = (n + 1)(n + 2)(n + 3)/6
(thus, O(n?)). These values grow quickly (although polynomially, not exponentially).
Unfortunately, the number ¢ can become considerable: for n about 1000 (a typical
number of objects in a benchmark classification dataset) ¢ exceeds hundreds of mil-
lions. At the same time, the exhaustive and non-redundant set of contingency tables
has the decisive advantage of being essentially regular. As such, it covers the unit sim-
plex fairly uniformly (see [31, 33]). Consequently, the data and the results produced
from them may successfully be interpreted in probabilistic terms.

4.1. The experimental set-up

After having set the total number of observations n, the following operations were
performed:

e the exhaustive and non-redundant set of [§ ] contingency tables satisfying a +
b+ ¢+ d = n was generated (there exist exactly ¢ = 22,632, 705 such tables for
n = 512),

e the values of the 12 selected confirmation measures ¢(H, E): D(H,E), M(H, E),
S(Hv E)’ N(H»E)a C(Hv E)» F(Ha E)> Z(Hv E)v A(Ha E)a Cl(H7E)7 C2(]:17 E)a
cs(H,E), cy(H, E) for all the generated tables were computed,

e the values of the x3; coefficient for all the generated tables were computed.
Thereupon the following coefficients were computed (see Table 3):

e the linear Pearson correlation coefficient r(|c(H, E)|, x3;),

e the Spearman rank correlation coefficient s(|c(H, E)|, x3;).

The values of coefficients change with n. Fortunately, as n grows infinitely, they
converge, and the differences between their values generated for n and n + 1 actu-
ally become negligible after n exceeds 512, assumed to produce the values quoted
in Table 3. The actual convergence of the linear Pearson correlation coefficient
r(lc(H, E)|,x%,) and the Spearman rank correlation coefficient s(|c(H, E)l|,x3;) is
illustrated in Figures 2 and 3.

By definition, the resulting correlation coeflicients characterize the relation be-
tween any given measure and x3; only in an aggregated, i.e. scalarized (and thus
simplified) way. The more complex nature of these relations may be conveyed by
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Figure 2. The convergence of r(|c(H, E)|,x3,) for n = 4..512
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Figure 3. The convergence of s(|c(H, E)|,x3;) for n = 4..512
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Table 3. The coefficients characterizing the y2;-concordance of the 12 selected con-
firmation measures

c(H,B) | r(le(H E)l,x31) s(lc(H, E)l,x3)

D(H,E) 0.723 0.830
M(H, E) 0.723 0.830
S(H,E) 0.918 0.964
N(H, E) 0.918 0.964
C(H,E) 0.913 0.958
F(H,E) 0.737 0.826
Z(H,E) 0.718 0.799
A(H,E) 0.718 0.799
c1(H,E) 0.717 0.799
co(H, E) 0.717 0.799
cs(H,E) 1.000 1.000
cs(H,E) 0.958 0.960

other tools, e.g. by scatter-plots or specialized histograms. For each of the 12 se-
lected confirmation measures the following graphical tools” were deployed:

e a triple-colour scatter-plot of c¢(H, E) against x2,, with the colours: red, green
and blue (and graded transitions between them), corresponding to the points
situated below, on, or above the |c(H, E)| = x2, line, respectively (see Figure 4),

e a triple-colour histogram of ¢(H, E), with the colours: red, green and blue,
corresponding to situations in which the values of |¢(H, E)| are higher, equal or
lower than the values of x3;, respectively (see Figure 5).

4.2. The experimental results

The conducted experiments revealed results of both generic and specific nature, by
which we mean results concerning all the 12 selected confirmation measures or results
concerning only particular measures, respectively.

The following remarks concern the x3;-concordance (as quantified by the Pearson
correlation coefficient r) of the measures (see Table 3):

e the measure c3(H, E) enjoys an ideal y2,-concordance, which is due to the fact
that |e3(H, E)| = x3;,

e the concordances of the other measures range from 0.957 (measure c4(H, E))
down to 0.694 (measures Z(H, E) and A(H, E)), in result of which all of them
can be referred to as approximately concordant,

7Owing to the journal’s printing policy, the version of the paper with colour rendering of the
figures is available only at the journal’s online web pages. Independently of that, n = 32 was always
assumed when rendering the scatter-plots to reduce the size of the resulting graphics files.
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Figure 4. Triple-colour scatter-plots of the 12 selected confirmation measures against
X2, (left-hand column: measures D(H,E), M(H,E), S(H,E), N(H,E), C(H, E),
F(H,E); right-hand column: measures Z(H,FE), A(H,E), c1(H,E), c2(H,E),
CB(HaE), C4(Ha E))

e the levels of concordance are also generally reflected by the values of the s
coefficient, although the ordering of the measures according to s is not exactly
the same as that produced by r (e.g. measures S(H, F) and ¢4(H, E)).

As far as more detailed relations between the measures ¢(H, E) and x2,, as visualized
by the scatter-plots of c¢(H, E)-versus-x2,, are concerned, the following remarks can
be made (see Figure 4):

e The c(H, E)-versus-x2, scatter-plots are symmetric with respect to the vertical
axis.

This results from the fact that each of the selected measures ¢(H, E) is symmet-
ric with respect to 0 and in the exhaustive and non-redundant set of contingency
tables there exist two different contingency tables producing opposite values of
c(H,E) and the same value of x3;. This also causes the histograms of the
measures to be symmetric with respect to 0 (see Figure 5).
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Figure 5. Triple-colour histograms of the 12 selected confirmation measures ¢(H, E)
in relation to x3; (left-hand column: measures D(H, E), M(H, E), S(H,E), N(H, E),
C(H,E), F(H,E); right-hand column: measures Z(H,FE), A(H,E), ¢1(H,E),
C2(H7 E)? CB(Hv E)v C4(H7 E))

e The following pairs of confirmation measures generate the same ¢(H, E)-versus-
X2, scatter-plots: D(H,E) and M(H, E), S(H,E) and N(H, E), Z(H, E) and
A(H,E), c1(H,FE) and c3(H, E).

This results from the fact that for each of those pairs, in the exhaustive and non-
redundant set of contingency tables there exist contingency tables producing the
same values of the respective measures and the same value of x3;. This also
causes the histograms of the respective pairs of measures to be the same (see
Figure 5).

e The c¢(H, E)-versus-x3, scatter-plot of the confirmation measures Z(H, E) and
A(H, E) are special cases of the scatter-plots of ¢ (H, E) and co(H, F) generated
for a — 1.0.

This results from the fact that for « — 1.0, ¢y (H, F) — Z(H, E) and co(H, E) —
A(H, E), thus the scatter-plots of all four measures converge in this case.
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Let us observe that for a — 0.0 the ¢(H, E)-versus-x2, scatter-plots of the con-
firmation measures ¢y (H, F) and co(H, E) tend to resemble in some respects
the scatter-plot of c3(H, E)-versus-xg;, which of course does not imply that
c(H,E) = ¢s(H,E) or co(H,E) — c3(H, E). Generally, the scatter-plots of
c1(H,E) and co(H, E) consist of three segments that correspond to intervals
[-1,—a), (—a,+a) and (+a,+1]. For o — 0.0 the interval (—a, +«) degener-
ates to a single value, so the respective segment of the scatter-plot degenerates
to a vertical line. At the same time, the remaining segments of the scatter-plots
of ¢;(H, E) and co(H, E) converge to the scatter-plot of c3(H, E).

Moreover, relations between the 12 selected confirmation measures and y2, can have
the following, risk-related interpretations (see Figure 5):

e every confirmation measure is risk-neutral whenever it obtains values equal to 0
(this concerns also measures other than the 12 selected confirmation measures
being analysed in this paper),

e the confirmation measures D(H, E), M(H,E), C(H,E) and F(H, E) are pre-
dominantly risk-prone,

e the confirmation measures S(H, E) and N(H, E) are risk-prone in (—1,0) U
(0,+1) and risk-neutral for —1 and +1,

e the confirmation measures Z(H, E) and A(H, E) are never risk-averse,

e the confirmation measures ¢1(H, E) and c¢o(H, F) are predominantly risk-prone
in (—a, +a), risk-prone in (—1, —«) U (4a, +1) and risk-neutral for —1 and +1,

e the confirmation measure c3(H, E) is always risk-neutral,
e the confirmation measure c4(H, F) is never risk-averse.

It it important to notice that the measures c¢;(H, E) and c3(H, E) depend on the
value of the a parameter, i.e. the free parameter that is used to define these measures
(the 8 parameter is, on the other hand, constrained, as 8 = 1 — «). This necessarily
influences the relations between these measures and the x3; coefficient.

In particular, the parameter « influences the risk-related properties of ¢; (H, E)
and co(H, E). Firstly, the value set of measures ¢;(H, F) and co(H, E) is [-1, —a) U
(—a, +a) U (+a, +1], which means that these measures are never equal to either —«
or +a (see [31]). Now, the size of the intervals in which the measures are risk-prone,
ie. (—1,—a) and (4a, +1), is directly controlled by «. However, it should be stressed
that the values of ¢1(H, F) and c3(H, E) belong to these intervals only when ¢ = 0
or when b = 0, respectively, which strongly limits the number of such cases. In sets
of all contingency tables satisfying a + b+ ¢+ d = n, as used in the experiments, this
number is given by (n + 1)(n + 2)/2, and thus grows slower than the total number
of tables t — see Table 4. This means that the situation will hardly ever happen for
large n, e.g. for n =512, (n+ 1)(n+2)/2 = 131,841 <« t = 22,632, 705.
Correspondingly, the profiles of the measures ¢, (H, E) and co(H, E) are mostly de-
termined by their behaviour in the interval (—c, +«), which contains the majority of
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Table 4. The percentages of the contingency tables of n observations characterized
by ¢ = 0, with n changing according to n = 2*, where ¢ = 1..10

n t |(c=0) 100L=0 o
2 10 6 60.00

4 35 15 42.86

8 165 45 27.27
16 969 153 15.79
32 6,545 561 8.57
64 47,905 2,145 4.48
128 366,145 8,385 2.29
256 2,862,209 33,153 1.16
512 | 22,632,705 131,841 0.58
1,024 | 180,007,425 525,825 0.29

points (for n > 3). In result, e.g. for @ = 0.50, about 64% of all the points of the
c(H, E)-versus-x3, scatter-plots are situated below the |c(H, E)| = xZ; line (so the
measures are predominantly ‘risk-prone’ for this o). Moreover, as it can be observed
in Figure 6, ¢1(H, F) and c3(H, E) are predominantly risk-prone for o % 0.3 and pre-
dominantly risk-averse for @ 3 0.3. This means that the o parameter can be directly
used to control the profiles of these measures.

100

80

60

40

20

% o2 o04 06 08 1
Figure 6. The percentages of points (the vertical axis) of the c(H, E)-versus-x3;
scatter-plots situated below the |c(H, E)| = x3; line for ¢;(H, E) and c2(H, E) for «
ranging from 0 to 1 (the horizontal axis)

Another interesting observation concerns the confirmation measure c3(H, E). This
measure happens to satisfy |c3(H, E)| = x&;, which implies |c3(H, E)| -n = x3, - n,
so |x3;|-n = x3. The assumed n > 0 means that the distribution of |c3(H, E)| - n is
known, as being equal to the distribution of 2, which is approximately y2-distributed
(with df = 1 degree of freedom), so it is possible to test for the statistical significance
of both |e3(H, E)|-n and |c3(H, E)|. The testing procedure is thus analogous to that
of testing for the independency of two discrete-valued variables.
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5. Concordance-driven exploitation of confirmation measures

As far as the broadly-taken concordance with the x3, coefficient is concerned, con-
firmation measures (including measures other than the 12 selected measures being
analysed in this paper), as analysed in the context of possibly erroneous observa-
tional data, may be generally categorized into two groups:

e autonomous,
e non-autonomous.

Measures referred to as autonomous are measures with distributions that are known
to be identical (or at least similar) to the distribution of y;. A general result of the
study indicates that this identity (or similarity) makes it possible to explicitly conclude
about the significance of the dependency between the evidence and the hypothesis,
which may directly translate to the usefulness of the measures (as their values have
straightforward interpretations). It also allows to draw immediate conclusions as far
as the risk-related profile of measures is concerned.

On the other hand, measures referred to as non-autonomous are measures of un-
known distributions. However, another general result of the study indicates that
‘parallel” analysis of such measure and the x3; coefficient may also be useful, as com-
puting the value of x2, for the same data for which the measure was computed and
testing the significance of this coefficient may also provide ample characterization of
the measure. Additionally, a further comparison of the measure with the x3, coeffi-
cient (e.g. in the form of a scatter-plot) may effectively reveal the risk-related profile
of the measure. This, in turn, allows to identify its potentially non-neutral (in terms
of risk) values. In result, the confirmation measure may be successfully handled,
despite the fact that its actual distribution may remain unknown.

The above-mentioned idea of ‘parallel’ analysis of a confirmation measure and the
X2, coefficient may also be further exploited to deliver a new definition of whether
a hypothesis is confirmed/disconfirmed by the evidence or not. Given a significance
level ag, a hypothesis H is:

e confirmed by the evidence E, when ¢(H, E) > 0 and xZ; is significant at «y,

e neither confirmed nor disconfirmed by the evidence E, when x2, is not significant
at ag (regardless of the value of ¢(H, E)),

e disconfirmed by the evidence E, when ¢(H, E) < 0 and x3, is significant at ap.

On the other hand, the definition of a given confirmation measure may be modified
directly to influence its properties. This modification may increase the concordance
of the measure (as quantified e.g. by the Pearson correlation coefficient). In result,
the measure will be more autonomous, which means that its values will have better
interpretations in terms of risk. In particular, possible operations performed on single
confirmation measures include:

e applying powers®,

8 Applying powers is used in the very definition of Z(H, E) [6].
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e multiplying by x3, or by 1 — p, where p = P(x? > |x3;| - n).

As an example, let us consider S3(H, E) = (S(H, E))? and S (H,E)=S(H,E) X3,
computed for n = 128 (see Table 5). Notice that the dependencies between the
modified measures and the x3; coefficient are generally better (i.e. higher as far as
the 7 and s correlations are considered) than those between the original ones and x3;.

Table 5. Correlation r and s coefficients of the original and modified confirmation
measures c(H, F)

C(H7E) ‘ T(‘C(HﬂE)‘vxgl) 5|C(H7E)|7X%1)

S(H,E) | 0.912 0.960
S3(H,E) 0.928 0.960
Sy, (H, E) 0.975 0.995

At the same time, possible operations performed on multiple confirmation measures
include:

e additive aggregation of confirmation measures,
e multiplicative aggregation of confirmation measures.

As an example, let us consider ¢ (H, E) and c¢3(H, E) computed for n = 128 (see
Table 6). Measure ¢;(H, E') has been created as a basically additive, while measure
c3(H, E) as a basically multiplicative aggregation of Z(H, E) and A(H, E). Also here
the dependencies between the resulting measures and the y2, coefficient are better, i.e.
higher as far as the r and s correlations are considered (although the differences are
rather low in the case of ¢1(H, E)) than those between the component ones and x3;.

Table 6. Correlation r and s coefficients of the component and modified confirmation
measures ¢(H, E)

c(H,E) | r(le(H,E)l,x51) s(|le(H, E)|,x31)
Z(H,E) 0.694 0.782
A(H,E) 0.694 0.782
c1(H,E) 0.697 0.783
cs(H, E) 1.000 1.000

6. Conclusions

The paper considers a group of interestingness measures, called (Bayesian) confirma-
tion measures. Given data patterns, such as decision rules, these measures express
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the degree to which the rules’ premises confirm their conclusions. In result, they allow
to evaluate and rank the rules according to their interestingness, thus identifying the
best ones (as well as the worst ones). Such an evaluation is a valid and useful step
in approaches like data mining, in which different types of procedures, like model
regularization and preference modelling meet.

The choice of an interestingness measure for a particular problem is a non-trivial
task that should be preceded by thorough analyses of the measure’s properties. Being
aware of the measure’s behaviour in particular situations (expressed by its properties)
helps making such choice properly. Thus, the analysis of confirmation measures with
respect to their properties is an active research area.

However, virtually all the studies of properties were confined to environments that
had been explicitly or implicitly assumed to be free from observational errors. In real-
life situations, however, the existence of such errors must be taken into account (as
potentially false conclusions might be drawn otherwise) and this is what is assumed
in this paper. The assumption about the environments being potentially error-prone
requires a new rule evaluation approach, which amounts to determining whether the
number of observations for or against a given rule is large enough in relation to all
other observations, so that accidental conclusions could be eliminated. This goal,
generally achievable with different tools, is in this paper particularly accomplished
with the two-dimensional x2 test, commonly used to test for the dependency of two
discrete-valued variables.

The actual amount of how much a confirmation measure ‘agrees’ with the level of
dependency between the evidence and the hypothesis is quantified with the Pearson
correlation coefficient between the measure and an introduced y2; coefficient. High
agreement is termed as concordance, and confirmation measures of high agreement
with the coefficient are referred to as concordant ones. Thus, for each particular
measure, it is the concordance that carries the actual answer to the question asked in
the title of the paper.

The relations between a given confirmation measure and x3; are additionally quan-
tified by the Spearman rank correlation coeflicient and illustrated by scatter-plots
and specialized, triple-colour histograms. They are also interpreted in terms of risk.
Following this interpretation, a confirmation measure that under-estimates the depen-
dency between the evidence and the hypothesis is referred to as risk-averse, while a
confirmation measure that over-estimates this dependency is referred to as risk-prone.

To quantify the concordance of confirmation measures in practical cases, a set of
12 particular measures has been selected and experimentally evaluated on pre-defined
data. These data consist of all possible contingency tables having the same number of
observations, constituting an exhaustive and non-redundant dataset of tables. Being
exhaustive and non-redundant, this purposefully generated set of data ensures fairly
uniform covering of the underlying space and natural interpretations of the results
in probabilistic terms, while being deterministic, it ensures full repeatability of the
results.

For the exhaustive and non-redundant dataset, the paper presents various forms of
quantifications and illustrations of the relation between the measures and x3,. After
determining the actual relations between a given confirmation measure and the y2,
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coefficient, the measures have been categorized into more or less concordant, and
the less concordant measures extensively characterized in terms of risk. Additionally,
possible transformations of measures aimed at improving their concordance have been
presented and discussed.

We postulate that all of the analyses introduced and described in this paper are
general enough to be applied to basically all newly defined confirmation measures,
which potentially could improve the general comprehension of the measures and, as
such, may positively influence the way in which they will be defined in the future.

Potential further lines of investigations could include: considering alternative forms
of testing for the dependency in data as well as alternative forms of expressing the
concordance, designing a batch of real-life data experiments aimed at verifying the
practical usability of concordant measures and extending the concordance analyses
beyond the Bayesian confirmation measures.
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