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Abstract. This paper addresses the problem of velocity tracking control for var-
ious fully-actuated robotic vehicles. The presented method, which is based on trans-
formation of equations of motion allows one to use, in the control gain matrix, the
dynamical couplings existing in the system. Consequently, the dynamics of the vehicle
is incorporated into the control process what leads to fast velocity error convergence.
The stability of the system under the controller is derived based on Lyapunov argu-
ment. Moreover, the robustness of the proposed controller is shown too. The general
approach is valid for 6 DOF models as well as other reduced models of vehicles. Sim-
ulation results on a 6 DOF indoor airship validate the described velocity tracking
methodology.

Keywords: Marine vehicle, hovercraft, indoor airship, velocity transformation,
nonlinear control.

1 Introduction

Autonomous and remotely operated vehicles are becoming a key component in various
aspects of environment research. To the group of systems belong ships, hovercrafts,
submarines, airships, and others. Accurate trajectory tracking control is one of crucial
problems concerning these vehicles.

A sliding mode control based on the velocity tracking idea for unmanned surface
vessel systems was described in [2]. As it arises from [5] the velocity control system
(for guided motion control system) based on velocity tracking is useful for marine
vehicles. Surge and yaw relative velocity control of ships can be also based on velocity
tracking idea [6]. Some velocity controllers for an autonomous underwater vehicle
were proposed in [8]. Tracking control laws for marine vehicles (underwater vehicles
or surface ships) can be found, e.g. in [10]. Moreover, the tracking control of aerial
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indoor blimp robots is sometimes realized utilizing velocity based simple (not global)
controller [11]. The velocity controllers are also a part of the control system for
an AUV with nonlinear dynamics. Velocity control algorithms are applied for other
systems, for example quad-rotors [22] or unmanned helicopters [24]. The algorithms
are useful for reduction of the velocity error between the desired camera velocity and
the actual velocities in the camera frame [22] or control of steady-state force [24]. In
practical applications the velocity control can be realized by PI controller from gain
tuning formulas based on the identified parameters [30].

The problem of the velocity tracking control for a class of fully actuated vehicles
in the body-fixed frame is addressed in this paper. Fully actuated vehicles are often
considered in the literature, e.g. in for underwater vehicle [9, 12], surface vehicles [26,
28], hovercrafts [13, 25] or airships [20, 29]. The main difference between our velocity
tracking controller and the aforementioned approaches relies on that we include the
vehicle dynamics directly into the velocity control gain matrix. Thus, the strategy
is also different from those solutions because of the different idea of control, namely
taking into the control gain matrix the dynamics couplings of the vehicle. Thanks this
property the matrix is strictly related to the moving system. Comparing with previous
studies concerning underwater vehicles, some surface vehicles and indoor airships
this paper offers different approach to control algorithms. In classical algorithms the
elements of the control gain matrix are selected without taking into account dynamical
and geometrical parameters of the system. The main contribution of this paper is a
velocity tracking control algorithm and its application for an airship model. Novelty
of the presented approach relies on that the control algorithm uses transformation
of the velocity vector based on an inertia matrix decomposition method. Moreover,
each new rate (speed) is regulated separately in the sense that dynamical couplings
of the system are included in it. Consequently, the response of the system is fast
(and always depends on the couplings in the system), what means that the velocity
error decreases quickly. Therefore, the desired trajectory can be reached in short
time. Another benefit arising from the use of the controller relies on that the velocity
gain matrix contains parameters of the system and strictly depends on its dynamics
(for various vehicles the gain coefficients can be quite different). The proposed, in
this work, velocity control algorithm is new. The considered in [16] PD controller
was based on the same equations of motion but its idea was quite different because
the tracking problem was absent. Besides, the obtained controller is universal in
the sense that: 1) it can be applied both for 6 DOF as well as for vehicles moving
in a horizontal or vertical plane, 2) it is appropriate for various system, namely fully
actuated marine vehicles, hovercrafts, and indoor airships. The stability of the system
under the proposed controller using the Lyapunov direct method whereas robustness
to parameter changes is shown in simulation experiment.

The remainder of this paper is organized as follows. In Section 2, the mathematical
model describing the class of vehicles is introduced. The proposed velocity tracking
controller is presented in Section 3. Simulation results for an indoor airship model
are shown in Section 4. Section 5 consists of concluding remarks about the results
and future research.
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2 Transformed equations of motion

Taking into account the inertial generalized forces, the hydrodynamic effects, the
gravity, and buoyancy contributions as well as the effects of the actuators (thrusters),
the dynamic model of an underwater vehicle (Figure 1) using the notation proposed
by [10] can be written in the matrix form as:

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ, (1)

η̇ = J(η)ν. (2)

The equations of motion can be also used for airships under assumptions that they
moves slowly and the environmental factors are weak. For example the equations
are appropriate for indoor flight of an airship. In (1) and (2) ν = [u, v, w, p, q, r]T ,
η = [x, y, z, φ, θ, ψ]T are vectors of velocities (in the body-fixed frame) and position
and Euler angles (in the earth-fixed frame), respectively. Moreover, J(η) ∈ R6×6 is
the Jacobian transformation matrix mapping the body-fixed frame to the earth-fixed
frame. The matrix M ∈ R6×6 denotes the inertia matrix (including the rigid body
inertia matrix and the added mass matrix), and satisfies M = MT > 0, and Ṁ = 0,
whereas the matrix C(ν) ∈ R6×6 denotes the Coriolis-centripetal matrix due to the
rigid body and the added mass (that satisfies C(ν) = −CT (ν)). Moreover, the matrix
D(ν) > 0 ∈ R6×6, ∀ν ∈ R6, ν 6= 0 denotes the damping, while the vector g(η) ∈ R6 is
the a vector of gravitational and buoyancy forces, and τ ∈ R6 is the vector of control
inputs influencing the vehicle.
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Figure 1. The coordinate system for 6 DOF vehicle.

Remark 1. For the assumed vehicle model the inertia matrix M is constant, sym-
metric, and in general, non-diagonal, i.e. it contains off diagonal elements. As it
arises from the literature, e.g. [10] for a class of vehicle models such approximation
is allowable. The matrix M can be approximated as a symmetric matrix for vessels
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moving with low speed. This condition is fulfilled, for example, for indoor airship
flight because of weak environmental disturbances. For outdoor flying airships the
environmental effects are great and components of the inertia matrix as well as the
added mass coefficients depend strongly on geometry, fluid flow rates and other uncer-
tainties. Similarly, if wind will be taken into account then the equations (1) and (2)
will be inadequate and the proposed control algorithm is insufficient. If the external
disturbances are great (for outdoor airship) then in the Eq.(1) the term defining their
model must be added and consequently the controller have to be built in different
way.
Remark 2. The equations (1) and (2) can be applied for ocean or marine vehicles
as well as for airships during indoor experiments. Such examples can be found: (1)
for underwater vehicles in [12, 17], (2) for surface vessels in [7, 18] or hovercrafts in
[13, 21], (3) for indoor airships in [23, 31].

The control strategy is based on transformed equations of motion with the identity
inertia matrix. Thus, we must decompose the inertia matrix M into two matrices:

M = ΦTΦ, (3)

and next define some new rates:

ζ = Φν. (4)

According to Remark 1 and the assumed decomposition method the matrix Φ in (4)
is upper triangular, invertible and have constant elements only. In such case the time
derivative of ζ is ζ̇ = Φν̇.

There are various decomposition methods of the matrix M . In this paper, we refer
to the method described in [14] which is based on generalized velocity components
introduced in [19] and applied for robotics manipulators in [15]. The decomposition
strategy is easy comprehensible and convenient for numerical implementation. How-
ever, using any other method the general result will be similar but not necessary the
same.

Recalling [16] we insert (3) and ν obtained from (4) into (1), and pre-multiply both
sides by Φ−T (i.e. (ΦT )−1) we get the transformed equations of motion as follows:

ζ̇ + Cζ(ζ)ζ +Dζ(ζ)ζ + gζ(η) = $, (5)

η̇ = J(η)Φ−1ζ, (6)

where the matrices and the vectors are:

Cζ(ζ) = Φ−TC(ν)Φ−1, (7)

Dζ(ζ) = Φ−TD(ν)Φ−1, (8)

gζ(η) = Φ−T g(η), (9)

$ = Φ−T τ. (10)

Equations (5) and (4) together with (6) describe the motion of the vehicle in terms
of the transformed rates. The dynamical coupling between components of the vector
ν are included in the vector ζ as well as in other terms of (5). This fact allows one
to observe some phenomena arising from the dynamical coupling which are not easy
noticeable for (1) and (2).
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3 Velocity tracking control algorithm

The control objective is to design a velocity trajectory tracking control algorithm in
the body-fixed frame representation. What is important, in the proposed algorithm
the dynamical coupling in the vehicle are included in the velocity gain matrix. Thanks
this property the gain matrix is strictly related to the investigated moving system.
Novelty of the approach arises thus from the main idea, i.e. the use of dynamical
couplings existing in the vehicle for fast vehicle velocity error convergence.

3.1 Nonlinear controller

The controller decoupled in the sense of the vector of the transformed variables ζ is
presented in the proposition given below.
Theorem 1. Consider the vehicle dynamic model (5) and (4) together with the
following controller:

$ = ζ̇r + Cζ(ζ)ζr +Dζ(ζ)ζr + gζ(η) + kDsζ + Φ−T kIz, (11)

where

z =

∫ tk

0

ν̃(t) dt, (12)

ζr = Φ(νd + Λz), (13)

sζ = ζr − ζ = Φ(ν̃ + Λz), (14)

ṡζ = ζ̇r − ζ̇ = Φ( ˙̃ν + Λν̃), (15)

and ν̃ = νd − ν is the velocity error vector, kD = kTD > 0, kI = kTI > 0, and
Λ = ΛT > 0, and t means the time. The equilibrium point [sTζ , z

T ]T = 0 is globally
exponentially stable.
Remark 3. For simplicity we will assume that kD, kI , and Λ are constant and diagonal.
If we use the symmetric matrices, then we select Λ = k−1I kD (for the diagonal matrices
this condition is not necessary). The integral action term is used here to improve
control performance and to obtain correct reaction of the system.
Remark 4. Note that the control algorithm (11) is realized in the vehicle body-frame.
The obtained results can be transformed next into the earth-frame using the kinematic
relationship (6).
Proof. The closed-loop system (5) and (4) together with the controller (11) can be
written as follows:

ζ̇ + Cζ(ζ)ζ +Dζ(ζ)ζ + gζ(η)

= ζ̇r + Cζ(ζ)ζr +Dζ(ζ)ζr + gζ(η) + kDsζ + Φ−T kIz, (16)

what leads to:

ṡζ + [Cζ(ζ) +Dζ(ζ) + kD]sζ + Φ−T kIz = 0. (17)
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As a Lyapunov function candidate the following expression can be proposed:

L(sζ , z) =
1

2
sTζ sζ +

1

2
zT kIz. (18)

Calculating the time derivative of the function L (18) one obtains:

L̇(sζ , z) = sTζ ṡζ + ν̃T kIz. (19)

Recalling the relationship (17) one gets:

L̇(sζ , z) = sTζ [−Cζ(ζ)sζ −Dζ(ζ)sζ − kDsζ − Φ−T kIz] + ν̃T kIz. (20)

Recalling (7), we can write sTζ Cζ(ζ)sζ = sTζ Φ−TC(ν)Φ−1sζ . Denoting now s = Φ−1sζ
we obtain sTζ Cζ(ζ)sζ = sTC(ν)s = 0 because sTC(ν)s = 0 for all s ∈ Rn (the matrix
C(ν) is a skew-symmetric one) [10]. Therefore, taking into account (14) we have:

L̇(sζ , z) = −sTζ [Dζ(ζ) + kD]sζ − sTζ Φ−T kIz + ν̃T kIz (21)

= −sTζ [Dζ(ζ) + kD]sζ − zTΛT kIz.

Using (8) and denoting a quadratic matrix k∗D = Φ−TD(ν)Φ−1 + kD (this matrix is
positive definite, i.e k∗D > 0 if selection of kD is appropriate, namely the sum of these
matrices gives a strictly positive definite matrix) the two latter terms of (21) may be
bounded by:

−sTζ k∗Dsζ ≤ −λmin{k∗D} ‖sζ‖
2
, (22)

−zTΛT kIz ≤ −λmin{ΛT kI} ‖z‖2 . (23)

Consequently, it also holds that:

L̇(sζ , z) = −
[
‖sζ‖
‖z‖

]T [
λmin{k∗D} 0

0 λmin{ΛT kI}

]
︸ ︷︷ ︸

A

[
‖sζ‖
‖z‖

]
. (24)

Note that the matrix A is positive definite (the matrix λmin{ΛT kI} is composed of
diagonal matrices or λmin{ΛT kI} = λmin{kD}). Thus, assuming λmin{A} > 0 (λmin
is the minimal eigenvalue of the matrix A) one can find an upper bound of the time
derivative. Denoting now x = [‖sζ‖ , ‖z‖]T one can write:

L̇(t, x) ≤ −λmin{A}||x||2, (25)

for all t ≥ 0 and x ∈ R2N .
Therefore, based on the Lyapunov direct method [27], we conclude that the state
space origin of the system (5), (4) together with the controller (11):

lim
t→∞

[
sζ(t)
z(t)

]
= 0 (26)

is globally exponentially convergent.
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3.2 Advantages and properties of the controller

Consider some properties and benefits resulting from the use of the proposed con-
troller. The controller (11) is expressed in terms of the vector ζ. The input signal is
obtained from the relationship (10) calculating τ = ΦT$ (the matrix ΦT is invertible
and symmetric). As a result, the velocity gain matrix in the fifth term is ΦT kDΦ.
Assuming that kD = δ ·I (I denotes the identity matrix whereas δ is a constant value)
we have the following gain matrix KD = ΦT kDΦ = δ ·M .

1. First benefits resulting from the controller is that the gain coefficients (they
depend on the parameter set) are strictly related to the dynamics of the vehicle
hidden in the matrix KD. Consequently, it is not necessary to choose a sym-
metric gain matrix because the matrix KD is a symmetric one. The diagonal
matrix kD serves rather for precise tuning of the controller.

2. The use of the gain matrix KD = ΦT kDΦ, because including the dynamics
of the vehicle, allows one to ensure the same control coefficients even if the
parameters set in not known exactly.

3. The control gains are selected for the tested system that enables to avoid search-
ing their values using experience of the researcher only.

4 Simulation results

In order to investigate effectiveness of the control algorithm, a computer simulation
was performed for the motion of a 6 DOF model of the airship AS500 (assuming
indoor flight). The vehicle parameters based on the report [4] were used also in [1].

The symbols mean: L is length and b is breadth of the vehicle. The body weight
is W = mg, and the buoyancy force B = ρg∇ with ρ = 1.225 kg/m3, g = 9.81 m/s2

where ∇ = 10 m3. The center of gravity is rG = [xG, yG, zG] with xG = −3.6644
m, yG = 0 m, zG = 0.4032 m and the center of buoyancy is rB = [xB , yB , zB ] with
xB = yB = zB = 0 m. The airship parameters are given in Table 1. The maximal
possible forces and torques applied by the control system were assumed as follows:
Fmax x,y,z = 107, 13, 40 N, Tmax x,y,z = 27, 267, 27 Nm. These values were taken from
[3] for the airship AS800 (this airship is bigger but its construction is similar to the
used airship).

Two cases were investigated, namely: nominal parameters set and 50 % weight
reduction.

Case 1 - set of nominal parameters. In the first test the airship nominal parameters
were taken into consideration. For tracking it is assumed the following desired veloc-
ity profile:

νd = [sin(π/20 · t) + 2, 0, sin(π/25 · t), 0, 0, 0.1 · cos(pi/15 · t)]T . (27)
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Table 1. Parameters of the airship and added masses aij i, j = 1, . . . , 6

Symbol Value Unit Symbol Value Unit
L 7.8 m a11 1.247ρ kg
b 1.9 m a15 0 kg
m 18.375 kg a22 17.219ρ kg
Ix 11.7473 kgm2 a24 -1.231ρ kg
Iy 268.1748 kgm2 a26 -56.893ρ kg
Iz 260.0255 kgm2 a33 16.671ρ kg
Jxy 0 kgm2 a35 55.269ρ kg
Jxz -21.7069 kgm2 a44 13.38ρ kgm2

Jyz 0 kgm2 a46 3.658ρ kgm2

a55 311.942ρ kgm2

a66 316.814ρ kgm2

The gain coefficients of the controller (based on calculations using the genetic algo-
rithm) were selected as follows:

kD = diag{20, 20, 20, 80, 80, 80}, (28)

kI = diag{50, 50, 50, 45, 45, 45}, (29)

Λ = diag{0.9, 0.9, 0.9, 0.2, 0.2, 0.2}. (30)

For the classical control algorithm (namely in which the elements of the control gain
matrix were selected without taking into account dynamical and geometrical parame-
ters of the system) the gain matrices (also based on the same genetic algorithm) were
assumed as:

kD = diag{159, 159, 159, 107, 107, 107}, (31)

kI = diag{104, 104, 104, 168, 168, 168}, (32)

Λ = diag{0.03, 0.03, 0.03, 1.83, 1.83, 1.83}. (33)

The chosen sets of control gains are different because in the proposed controller the
parameters of the system are taken into account, and additionally control gains were
found from the genetic algorithm. In the classical controller the gains were calculated
based on the genetic algorithm only. For the same reason values of kD, kI ,Λ are
bigger for the classical controller (with exception of the first elements of Λ). The
results obtained from both control schemes are presented in Figures 2-4. One of
criterion for comparison of different algorithms is the control effort, measured by the
control signals, which should have similar values.

In Figures 2(a) and 2(b) the desired linear and angular velocities are given. Three
profiles are time varying according to different sinusoidal functions.

Figure 3(a) presents linear velocity error for each variable. It is observable that all
linear errors tend to zero quickly (after about 10 second). Similarly, as it arises from
Figure 3(b), the angular velocity errors are reduced in a short time (but more slowly
than the linear velocity errors). Such fast response of the system results from the fact
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Figure 2. Case 1 and Case 2: a) desired linear velocities ud, vd, wd, b) desired angular
velocities pd, qd, rd.
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Figure 3. Case 1 (∆ν ≡ ν̃): a) (proposed controller) linear velocity errors
∆u,∆v,∆w, b) (proposed controller) angular velocity errors ∆p,∆q,∆r, c) (clas-
sical controller) linear velocity errors ∆u,∆v,∆w, d) (classical controller) angular
velocity errors ∆p,∆q,∆r.
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Figure 4. Case 1 - control signals: a) (proposed controller) applied forces Fx, Fy, Fz,
b) applied torques (proposed controller) Tx, Ty, Tz, c) (classical controller) applied
forces Fx, Fy, Fz, b) applied torques (classical controller) Tx, Ty, Tz.
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that in the control process the vehicle dynamics is included (in the velocity gains).
From Figure 3(c) we observe that the classical controller gives similar linear velocity
errors as the proposed one. However, the angular velocity errors (Figure 3(d)) are
bigger and do not tend to zero.

The applied forces are depicted in Figure 4(a). They are quickly reduced below
20 N. Next as it arises from Figure 4(b) the applied torque Ty has the maximal value
over 100 Nm what means that the dynamical couplings in this direction are stronger
than for other directions. From the conducted test it is observable that the control
goal, namely velocity error reduction, is realized in short time. It results from two
reasons: directly relationship between the system dynamics and the control gain ma-
trix because of KD = ΦT kDΦ and the use of the integral action term. Moreover,
the applied forces and torques are related to the dynamical couplings between the
velocity variables. As it arises from Figures 4(c) and 4(d) the control effort for the
classical control algorithm is comparable with the effort for the proposed controller.

Case 2 (robustness test) - 50 % weight reduction (both the mass and inertia were
reduced). In this test sensitivity to the parameter changes of the controller was inves-
tigated. The set of controller gains as well as the desired velocity profiles were the
same as in Case 1. The difference relies on that the airship weight has been reduced
to 50 percent (it can mean loss of gas in the blimp or not exact knowledge of its
parameters).

Note that the linear velocity errors given in Figure 5(a) have similar time history
as for Case 1. The same observation can be made if we consider the angular velocity
errors presented in Figure 5(b). It can be concluded that in spite of great reduction of
the airship mass the controller still works correctly and gives satisfactory performance.
Comparing these errors with the analogous errors for the classical controller, i.e.
Figures 5(c) and 5(d), we can observe than the linear velocity errors are only slightly
bigger than before. But from Figure 5(d) it results that the angular velocity errors
have great values. Hence, we conclude that the classical algorithm is more sensitive
for the inertia reduction than the proposed one.

The Figures 6(a) and 6(b) show the forces and torques obtained from the controller.
It is noticeable that their the signal values are similar as in Case 1. Comparing the
system response with the response in Case 1 it is also observed that the linear velocities
are less sensitive for weight reduction than the angular velocity errors. We observe
that even by very great weight decreasing realization of the velocity tracking task is
possible. Moreover, from Figures 6(c) and 6 (d) we see that the control signals have
similar values for both controllers.

Taking into account the results of the test it can be concluded that the control
algorithm is robust to inertial parameter changes. This means that the algorithm, by
taking into account the vehicle dynamics in control gains, can work despite significant
changes in the system inertial parameters.
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Figure 5. Case 2 - 50 % weight reduction (∆ν ≡ ν̃): a) (proposed controller)
linear velocity errors ∆u,∆v,∆w, b) (proposed controller) angular velocity errors
∆p,∆q,∆r, c) (classical controller) linear velocity errors ∆u,∆v,∆w, d) (classical
controller) angular velocity errors ∆p,∆q,∆r.
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Figure 6. Case 2 - 50 % weight reduction, control signals: a) (proposed controller) ap-
plied forces Fx, Fy, Fz, b) (proposed controller) applied torques Tx, Ty, Tz, c) (classical
controller) applied forces Fx, Fy, Fz, b) (classical controller) applied torques Tx, Ty, Tz.
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5 Conclusions

In this paper a control algorithm for velocity tracking control is proposed. The non-
linear controller is designed after the velocity transformation. The main property
of the algorithm is that the dynamical and geometrical parameters of the vehicle are
included in the velocity gain matrix. Consequently, the control coefficients (composed
of the control gains and the set of vehicle parameters) are related to the vehicle (they
are dependent on its dynamics). The algorithm is universal in the sense that it can
be applied for various fully actuated vehicles as marine vehicles, hovercrafts or indoor
airships moving with low velocity. Moreover, from its form some simpler controllers
can be concluded including the classical form. The formal stability proof was made
using Lyapunov direct method. The robustness issue was investigated in the simula-
tion experiment. Simulations for a 6 DOF airship model illustrate the performance
of the velocity controller. In the future extension of the controller for underactuated
vehicles could be considered.
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