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Abstract. A cover-grammar of a finite language is a context-free grammar that
accepts all words in the language and possibly other words that are longer than any
word in the language. In this paper, we describe an efficient algorithm aided by Ant
Colony System that, for a given finite language, synthesizes (constructs) a small cover-
grammar of the language. We also check its ability to solve a grammatical inference
task through the series of experiments.

Keywords: context-free cover-grammar (CFCG), grammatical inference, Ant
Colony Optimization (ACO), cliques.

1 Introduction

This paper addresses a cover-grammar problem; namely, given a finite alphabet Σ and
a finite subset X ⊂ Σ+, find a compact (the smaller the better) context-free grammar
G such that, if L ⊂ Σ+ is the language represented by G, then L∩Σ≤d = X, where d
is the length of the longest word(s) in the language X. By the size of a grammar we
will mean the number of productions (other measures might also be of interest but
are not studied here). The problem of obtaining the concise description of words is
crucial to the theories of data compression [16], syntactic pattern recognition [2], and
grammatical inference [14]. As far as applications are concerned, it can be applied
to the following areas [13]: robotics and control systems, computational linguistics,
speech recognition, automatic translation, molecular biology, time series prediction,
and data mining.

The concept of covering a finite language is not new. A similar concept has been
studied in the context of automata [3]. Although any n-state deterministic finite au-
tomaton for some finite language L can be converted into a corresponding minimal
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cover-automaton, using only O(n log n) time [17], the construction of a minimal cover-
grammar seems to be intractable, specially in view of the following facts: (1) there is
no polynomial-time algorithm for obtaining the smallest context-free grammar that
generates exactly one given word (unless P = NP) [4]; (2) context-free grammar equiv-
alence and even equivalence between a context-free grammar and a regular expression
are undecidable [15]; (3) for any alphabet of a size of at least 2, the class of context-free
grammars is not polynomially characterizable [12]; (4) the grammar can be exponen-
tially smaller than any word in the language (an example is given in a book [14]). To
our best knowledge there are no published algorithms for a cover-grammar problem
defined as above. There is a work by Chirathamjaree and Ackroyd [5] on the inference
of non-recursive context-free grammars, but their algorithm generates grammars that
produce only a given set of strings (has no ability to generalize). So we decided to
compare our algorithm with a selected grammatical inference algorithm [21].

The paper’s content is organized into seven sections. In Section 2 we present
necessary definitions and facts originating from graph theory, combinatorics on words,
formal languages and a swarm intelligence method called the ant colony optimization
algorithm. Section 3 gives theoretical bases from which the algorithm is developed.
The computationally hardest part of the induction algorithm is to repeatedly find
a large clique in a graph. The way that this is done by means of ACO (the Ant
Colony Optimization) is described in Section 4. Section 5 presents the proposed
procedure of the construction of CFCGs. Section 6 shows the experimental results of
our approach. Concluding comments are contained in Section 7.

2 Preliminaries

In this section, we are going to describe some definitions and facts about graphs, gram-
mars, and meta-heuristics in order to make the notation understandable to the reader.
For further details about the definitions, the reader is referred to the books by Bondy
and Murty [1] (graphs), Hopcroft et al. [15] and Lothaire [18] (words and languages),
Du and Ko [9] (context-free grammars), and Dréo et al. [8] (meta-heuristics).

2.1 Graphs

A graph G is a finite non-empty set of objects called vertices together with a (possibly
empty) set of unordered pairs of distinct vertices of G called edges. The vertex set of
G is denoted by V (G), while the edge set is denoted by E(G). The edge e = {u, v}
is said to join the vertices u and v. If e = {u, v} is an edge of a graph G, then u and
v are adjacent vertices, while u and e are incident, as are v and e. Furthermore, if
e1 and e2 are distinct edges of G incident with a common vertex, then e1 and e2 are
adjacent edges. If v ∈ V (G), then the set of vertices adjacent to v in G is denoted
by N(v). The number |N(v)|, denoted by dG(v), is called the degree of a vertex v in
a graph G.

Given a graph G, there is a natural way of deriving smaller graphs from G. If v
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is a vertex of G, we may obtain a graph on n − 1 vertices by deleting from G the
vertex v together with all the edges incident with v. The resulting graph is denoted
by G− v, and is an example of a subgraph of G. More generally, a graph F is called
a subgraph of a graph G if V (F ) ⊆ V (G), E(F ) ⊆ E(G). If D is the set of vertices
deleted, the resulting subgraph is denoted by G−D. Sometimes, the focus of interest
is the set Y = V (G) − D of vertices which remain. In such cases, the subgraph is
denoted by G[Y ] and referred to as the subgraph of G induced by Y . Thus G[Y ] is
the subgraph of G whose vertex set is Y and whose edge set consists of all edges of G
which have both ends in Y .

In a graph G, a clique is a subset of the vertex set C ⊆ V (G) such that every two
vertices in C are adjacent. If a clique does not exist exclusively within the vertex set
of a larger clique then it is called a maximal clique. A maximum clique is a clique of
the largest possible size in a given graph.

2.2 Words and languages

An alphabet is a finite, non-empty set of symbols. We use the symbol Σ for an
alphabet. A word (or sometimes string) is a finite sequence of symbols chosen from
an alphabet. For a word w, we denote by |w| the length of w. The empty word
ε is the word with zero occurrences of symbols. Let x and y be words. Then xy
denotes the catenation of x and y, that is, the word formed by making a copy of x
and following it by a copy of y. We denote as usual by Σ∗ the set of all words over
Σ and by Σ+ the set Σ∗ − {ε}. A word w is called a prefix (resp. a suffix ) of a word
u if there is a word x such that u = wx (resp. u = xw). The prefix or suffix is
proper if x 6= ε. Let X,Y ⊂ Σ∗. The catenation (or product) of X and Y is the set
XY = {xy | x ∈ X, y ∈ Y }. In particular, we define

X0 = {ε}, Xn+1 = XnX (n ≥ 0), X≤n =
n⋃
i=0

Xi.

For w ∈ Σ∗, we define the left quotients

w−1X = {u ∈ Σ∗ | wu ∈ X}.

A set of words all of which are chosen from some Σ∗, where Σ is a particular
alphabet, is called a language. A language is said to possess a decomposition [19,25,26]
if it can be written as a catenation of two languages neither one of which is the
singleton language consisting of the empty word. Languages which are not such
products are called primes. Thus, having given a finite decomposable (not prime)
language L, we can determine both factors—such languages L1, L2 that L = L1L2,
L1 6= {ε} and L2 6= {ε}.
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2.3 Context-free grammars

It is very convenient to define languages by grammars. A context-free grammar (CFG)
is defined by a quadruple G = (V,Σ, P, S), where V is an alphabet of variables (or
sometimes non-terminal symbols), Σ is an alphabet of terminal symbols such that
V ∩ Σ = ∅, P is a finite set of production rules of the form A → α for A ∈ V
and α ∈ (V ∪ Σ)∗, and S is a special non-terminal symbol called the start symbol.
For the sake of simplicity, we will write A → α1 | α2 | . . . | αk instead of A →
α1, A → α1, . . . , A → αk. We call a word x ∈ (V ∪ Σ)∗ a sentential form. Let u,
v be two words in (V ∪ Σ)∗ and A ∈ V . Then, we write uAv ⇒ uxv, if A → x is
a rule in P . That is, we can substitute word x for symbol A in a sentential form if
A → x is a rule in P . We call this rewriting a derivation. For any two sentential
forms x and y, we write x⇒∗ y, if there exists a sequence x = x0, x1, x2, . . . , xn = y
of sentential forms such that xi ⇒ xi+1 for all i = 0, 1, . . . , n − 1. The language
L(G) generated by G is the set of all words over Σ that are generated by G; that
is, L(G) = {x ∈ Σ∗ | S ⇒∗ x}. A grammar is said to be admissible if for every
X ∈ V ∪ Σ there exists some u, v, w ∈ Σ∗ such that S ⇒∗ uXv and uXv ⇒∗ w.
Usually grammar means admissible grammar. A language is called a context-free
language if it is generated by a context-free grammar. Assume that G is the unknown
(target) CFG to be identified. An example (a positive word) of G is a word in L(G)
and a counterexample (a negative word) of G is a word not in L(G).

We write G1 ≡ G2 if L(G1) = L(G2). The definition of a context-free grammar
imposes no restriction whatsoever on the right side of a production. A normal form
for context-free grammars is one that, although restricted, is broad enough so that
any grammar has an equivalent normal form version. Amongst all normal forms
for context-free grammars, the most useful and the most well-known ones are the
Chomsky normal form (CNF) and the Greibach normal form (GNF). Nevertheless,
we will use the less-known, generalized version of the GNF. A grammar is said to be
in (`, k)-normal form if each of its rules is in one of two possible forms:

(a) X → x, x ∈ Σ+, X ∈ V, |x| ≤ `, or

(b) X → xy, x ∈ Σ+, y ∈ V +, X ∈ V, |x| = `, |y| ≤ k.

Wood [27] has proved that if L(G1) is non-empty context-free language without ε,
then there exist a grammar G2 such that G2 is in (`, 2)-normal form and G1 ≡ G2.
For ` = 1 and k = 2 a context-free grammar is said to be in two-standard form.

Assume X to be some fixed finite language. By d we denote the maximal length
of a word in X. A CFG G is a context-free cover-grammar (CFCG) for X iff L(G)∩
Σ≤d = X. (We then also say G covers X.) The grammar G in a certain normal form
is called minimal if no CFCG for X in the same normal form has fewer rules than G.

2.4 Ant colony optimization

Although one of the earliest areas for which an ant colony algorithm was implemented
was the travelling salesman problem (TSP) [6], a significantly large collection of lit-
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erature is now available on almost all kinds of combinatorial optimization problems:
graph colouring, generalized assignment, multidimensional knapsack, constraint sat-
isfaction, sequential scheduling etc. [8].

The idea of the algorithm can be presented in the following general way. Let
U = {u1, u2, . . . , un} be a universum. Suppose that some subsets of U are (maybe in-
complete) solutions to a given problem. Let S ⊆ U be such a subset. We will consider
a set J ⊆ U−S of elements which can be added to S in order to build a more integral
solution. The essential part of an ant colony algorithm relies on selecting a j ∈ J . This
selection is non-deterministic and is repeated until a complete solution is found. The
choice of j is controlled by two parameters, dj (attractiveness) and τj (the amount of
pheromone), which help to maintain balance between diversification/intensification.
By intensification, we understand the exploitation of the information gathered by the
system at a given time. On the other hand, diversification is the exploration of search
space; this aim is achieved by introducing the random perturbation in the system.

The whole process is performed simultaneously for many subsets, starting from
different Sk = {uik} for k = 1, 2, . . . ,m. Exact formulas and a pseudo-code for an ant
colony algorithm adapted to determine a maximal clique are defined in Section 4.
It is worth mentioning, that original formulas (those devised for TSP-like problems)
contain additional parameters: α, β, and ρ controlling the relative importance of the
intensity and the diversity, and the process of evaporation of the trails of pheromone.
Beside discarding those parameters, we stop the algorithm after the first iteration
without improvement, instead of setting a priori the number of iterations. All the
modifications with respect to the original algorithm were intended to simplify our
implementation and to cause that in each subsequent iteration the importance of dj
diminishes, speeding up the convergence of the method. Please note that obtaining
a large maximal clique is an intermediate goal and it is unnecessary to get the largest
one.

3 Cliques and the multi-decomposition of a finite language

Let Σ be a finite non-empty alphabet, and m ≥ 1. A multi-decomposition of some
finite language X ⊂ Σ∗ is a set of concatenations whose union is X:

X =
m⋃
i=1

LiRi, Li, Ri ⊂ Σ∗, Li, Ri 6= ∅, Li, Ri 6= {ε}.

It is easy to see that every non-empty finite languageX which satisfiesX∩(Σ∪{ε}) = ∅
has a multi-decomposition, since for a singleton {w}, w = w1w2 · · ·wk, k ≥ 2, we can
write {w} = {w1}{w2 · · ·wk}. Let X = {x1, x2, . . . , xn} (n ≥ 1) be a given language
with no words of size 0 (the empty word) or 1. All possible word-splittings are denoted
by xi = uijwij , i = 1, 2, . . . , n, j = 1, 2, . . . , |xi| − 1. The prefix uij consists of the j
leading symbols of xi, while the suffix wij consists of the |xi| − j trailing symbols of
xi.

This section shows how the multi-decomposition of a finite language X ⊂ ΣΣ+ is
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connected with the cliques of an undirected graph. Consider the graph G with vertex
set

V (G) =
n⋃
i=1

{(uij , wij) | j = 1, 2, . . . , |xi| − 1}

and with edge set E(G) (E for short) given by:

{(uij , wij), (ukl, wkl)} ∈ E ⇔ uijwkl ∈ X ∧ uklwij ∈ X.

Let X =
⋃m
i=1 LiRi be a multi-decomposition. One can readily verify that any con-

catenation LiRi ⊆ X is represented by the corresponding clique:

{(ut1 , wt1), (ut2 , wt2), . . . , (utr , wtr )},

where ti ∈ {1, . . . , n} × {1, . . . , d− 1}, d = maxx∈X |x|, and

Li =
r⋃
j=1

{utj}, Ri =
r⋃
j=1

{wtj}.

Example: Let us consider the language X = {ab, acc, bb, bcc, ccc}. A graph built
based on X is shown in Figure 1. It has 8 + 11 + 6 + 1 (its vertexes, its edges, its
triangles, and one 4-vertex clique) cliques, but only three maximal cliques:

C1 = {(b, cc), (a, cc), (b, b), (a, b)},
C2 = {(ac, c), (bc, c), (cc, c)},
C3 = {(b, cc), (a, cc), (c, cc)}.

In order to minimize the number of concatenations in a multi-decomposition, it is
recommended that only the ones that are represented by large cliques be chosen.
Take C1 and C2 for instance: X = L1R1 ∪ L2R2, where:

L1 = {a, b}, R1 = {b, cc},
L2 = {ac, bc, cc}, R2 = {c}.

4 The Use of Ant Colony System

It is a well-known fact that finding a maximum clique is an NP-hard optimization
problem as is covering the vertexes of a graph by the minimum number of cliques [11].
What is more, the number of maximal cliques possible in a graph G can be as large as
4.3[|V (G)|/3]−1 [20]. Hence, as regards the minimization of concatenations in a multi-
decomposition (which leads in turn to a decrease in the number of production rules),
a randomized routine presented in Figure 2 is proposed. As for line 2, the graph is
constructed in exactly the same way as described earlier in the previous section. We
say that a word x ∈ X is covered if it has been added to a set Y (initiated in line 3). It
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(b, b)

(b, cc)

(a, b)

(a, cc)

(c, cc) (ac, c)

(cc, c)

(bc, c)

Figure 1: The graph G for X = {ab, acc, bb, bcc, ccc}.

1: procedure Cover(X)
2: G := a graph built based on the language X
3: Y := ∅ . the set of covered words
4: while Y 6= X do
5: H := the copy of G
6: randomly select a vertex v = (u,w) ∈ V (H) such that uw 6∈ Y
7: H := H[N(v) ∪ {v}]
8: if H is not a clique then
9: H := mClique(H)

10: LR := a concatenation determined by H
11: for x ∈ LR do
12: Y := Y ∪ {x}
13: report LR as a next concatenation

Figure 2: An algorithm for the multi-decomposition process.

means that x will be an element of a certain concatenation in a multi-decomposition.
The algorithm starts with all words in X to be uncovered. To be more precise, there
is also a relation between words and vertices which is implied from the algorithm: xi
is an uncovered word iff all vertices (uij , wij), j = 1, 2, . . . , |xi|− 1, are uncovered. As
regards lines 4–13, the following strategy is used in order to obtain few concatenations
in a multi-decomposition. It works by selecting (uniformly at random) one uncovered
vertex, v, at a time and determining a maximal clique in a subgraph induced by the set
of vertices adjacent to v. In consequence, a corresponding concatenation that covers
numerous words is regularly generated (line 13). The pair of sets (L,R) (line 10) is
resolved according to formulas also given earlier in the previous section.

The computationally hardest step of procedure Cover, i.e., the selection of a large
maximal clique (mClique(G)), has been realized following ant colonies approach [8].
The ant colony algorithm has been specially adapted to suit searching for a large
maximal clique. In particular, a probability distribution used by the ants has been
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modified and pheromone evaporation has been disallowed. In each iteration t, each
ant k (k = 1, . . . ,m) traverses a fragment of the graph and builds a maximal clique
Sk(t). For each ant, the choice of the next vertex j to enlarge a clique S depends on:

1. A set S of the already chosen vertexes, which defines the possible choices in
each step, when the ant k is going to collect the next vertex:

JkS = {v ∈ V (G) | v 6∈ S ∧ ∀s ∈ S, (v, s) ∈ E(G)}.

2. The degree of a vertex j, dG(j). This static information is used to direct the
choice of the ants towards promising vertexes.

3. Quantity of pheromone deposited in a vertex, τj(t). This can be viewed as
a global memory of the system, which evolves through a searching process.

The rule of vertex preference can be stated as following:

pkSj(t) =


d(j)+τj(t)∑

l∈Jk
S
(d(l)+τl(t))

, j ∈ JkS ,

0, j 6∈ JkS .
(1)

After a full run, each ant leaves a certain quantity of pheromones ∆τkj (t) on its entire
clique, the amount of which depends on the size of the solution found:

∆τkj (t) =

{
|Sk(t)| if j ∈ Sk(t),

0 if j 6∈ Sk(t).
(2)

The process of evaporation of the trails of pheromone has not been put in. Hence,
the update rule for the trails is simply given as:

τj(t+ 1) = τj(t) +
m∑
k=1

∆τkj (t), (3)

where m is the number of ants (in the present implementation m = |V (G)| was
chosen). The initial quantity of pheromone in the vertexes is zero. Figure 3 exhibits
the pseudo-code of the ant colony approach to solve the clique problem.

5 An algorithm for the cover-grammar problem

Suppose we want to find a cover-grammar for a finite language X ⊂ Σ+. In this
section we discover a two-phase algorithm that does it efficiently. The idea behind
the algorithm is as follows. The language X and possibly other longer words can be
generated by a context-free grammar G = (V,Σ, P, S) in (`, 2)-normal form. For some
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1: function mClique(G)
2: t := 0; C := ∅; M := ∅; S := ∅
3: repeat
4: t := t+ 1; C := M ; M := ∅
5: for k := 1 to m do
6: i := a randomly chosen vertex from V (G)
7: S := {i}
8: while JkS 6= ∅ do
9: choose a vertex j from JkS according to (1)

10: S := S ∪ {j}
11: Sk(t) := S
12: deposit the trails in accordance with (2)

13: if |S| > |M | then
14: M := S
15: update trails according to (3)
16: until |C| ≥ |M |
17: return C

Figure 3: The ant colony algorithm for finding a large maximal clique.

` (which is determined by hand) we can write:

S → t1 | t2 | . . . | tj
S → u1B1 | u1 C11D11 | u1 C12D12 | . . . | u1 C1m1 D1m1

S → u2B2 | u2 C21D21 | u2 C22D22 | . . . | u2 C2m2 D2m2

...
...

S → uk Bk | uk Ck1Dk1 | uk Ck2Dk2 | . . . | uk Ckmk
Dkmk

where ti ∈ X, i = 1, 2, . . . , j, are all words in X that are of length |ti| ≤ `; ui ∈ Σ+

for i = 1, 2, . . . , k are all proper prefixes of words in X that are of length |ui| = `;⋃mq

i=1 CqiDqi for q = 1, 2, . . . , k are multi-decompositions of (u−1q X) − Σ; and Bq =
(u−1q X) ∩ Σ. Then, the following equation holds:

X =

(
j⋃
i=1

{ti}

)
∪

(
k⋃
q=1

{uq}Bq

)
∪

(
k⋃
q=1

mq⋃
i=1

{uq}CqiDqi

)
.

Proceeding in the same way as described above, for every set B, C and D, and
then recursively for the next sets, we obtain the grammar that generates exactly the
language X. This finishes the first phase. A pseudo-code for obtaining this initial
grammar is given in Section 5.1. In the second phase the size of the grammar is
reduced by merging some non-terminals. The possibility of getting a grammar that
generates an infinite language is the advantageous by-product of this reduction.
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1: function Rules(X)
2: V [X] := the consecutive number i from (0, 1, 2, . . .)
3: U := {p ∈ Σ≤` | (p ∈ X) ∨ (pw ∈ X, |p| = `)}
4: for u ∈ U do
5: if |u| < ` then
6: add to P the rule Vi → u
7: else
8: A := u−1X
9: if ε ∈ A then

10: add to P the rule Vi → u
11: A := A− {ε}
12: B := A ∩ Σ
13: if B 6= ∅ then
14: b := V [B] if B ∈ V else Rules(B)
15: add to P the rule Vi → uVb
16: A := A−B
17: if A 6= ∅ then
18: for CD ∈ Cover(A) do
19: c := V [C] if C ∈ V else Rules(C)
20: d := V [D] if D ∈ V else Rules(D)
21: add to P the rule Vi → uVc Vd
22: return i

Figure 4: The method of constructing the initial grammar for a set X.

5.1 Phase 1—constructing an initial grammar

Our method of constructing the initial grammar is based on the idea that was demon-
strated at the beginning of this section and is presented as function Rules (Figure 4).
Before the execution of Rules(X), the set P and the map V (an associative array
where a key is the set of words and a value is an integer index) are empty. To every
set L in V is associated a number i (V [L] = i) such that a grammar variable Vi
‘represents’ the set L. Actually, L = {w ∈ Σ+ | Vi ⇒∗ w}. V [X] = 0 and, thus,
V0 is the start symbol. No lines of this algorithm are in need of an explanation—the
pseudo-code is already written in nearly a high level programming language.

5.2 Phase 2—merging non-terminals

In this subsection, we will describe function Reduce, which—in an iterative process—
improves the current grammar by reducing the number of variables and consequently
the number of rules. This reduction leads in turn to an increase in the number of
accepted words and this is why, in some cases, we get a grammar that generates
an infinite language. As can be seen from the pseudo-code of Figure 5, not all pairs
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1: function Reduce(V , P )
2: z := |V |
3: T := an array that fulfills T [j] = J ⇔ V [J ] = j
4: for 0 ≤ i < j < z do
5: if T [i] 6= nil ∧ T [j] 6= nil then
6: P ′ := ∅
7: for (A→ α) ∈ P do
8: A′ → α′ := substitute Vi for Vj in A→ α
9: P ′ := P ′ ∪ {A′ → α′}

10: G := the grammar determined by P ′

11: if L(G) ∩ Σ≤d = X then
12: T [j] := nil
13: P := P ′

14: return P . the reduced set of rules

Figure 5: An algorithm for merging non-terminals.

of non-terminals are allowed to be merged. So as to avoid the acceptance of a word
y 6∈ X, |y| ≤ d (d is the length of the longest word in X), after the mergence (in lines
7–9) of non-terminals Vi and Vj , the improvement process is controlled with the help
of the enumeration of words accepted by G. It means that for i = 1, 2, . . . , d the set
L(G) ∩ Σi is listed and checked for the equality with X ∩ Σi (line 11).

How can we be sure that the mergence of two variables Vi and Vj (i < j) only
increases the number of accepted words? The skeleton of a proof would rely on a claim
that if for any word x ∈ Σ+ before the mergence V0 ⇒∗ uVj w ⇒∗ x (u,w ∈ (V ∪Σ)∗)
holds, then after the mergence we could write a like derivation, putting in the place
of Vj a variable Vi.

5.3 The enumeration of words

In order to check the condition in line 11 of function Reduce, we need a routine
for generating all words of length i, for i = 1, 2, . . . , d, that are accepted by a given
grammar G. Towards this goal, we aim to define a function ζ determining the words
of a certain length and to provide a guide for its efficient implementation.

Let G = (V,Σ, P, S) be a context-free grammar in (`, 2)-normal form. Let the
production rules P be written in the form:

P = { V0 → α00, V0 → α01, . . . , V0 → α0r0 ,
V1 → α10, V1 → α11, . . . , V1 → α1r1 ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vz → αz0, Vz → αz1, . . . , Vz → αzrz },

where: {V0, V1, . . . , Vz} = V , αij ∈ (V ∪ Σ)+, S = V0. If αij = γ1γ2 · · · γk and
γm ∈ V ∪ Σ we will write αijm for γm (1 ≤ m ≤ k).
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For β ∈ V ∪ Σ and natural n ≥ 1 by ζ(β, n) we mean the set of words of length
n which can be derived from β in the grammar G. Observe that for any a ∈ Σ we
have ζ(a, n) = {a} exactly when n = 1 and ζ(a, n) = ∅ in case n > 1. The set of
words which can be derived from a non-terminal A can be computed as the union of
sets of words which can be derived from every sentential form α at the right-hand
side of A → α. Similarly, ζ(Vi, n) can be obtained through joining sets of words of
length n which can be derived from every αij , j = 1, 2, . . . , ri. When we determine
the set of words of length n which can be derived from αij = u1u2 · · ·u`B (um ∈ Σ,
B ∈ V ) only the words of length n− ` which can be derived from B have to be found,
whereas when determining the set of words of length n which can be derived from
αij = u1u2 · · ·u` C D (um ∈ Σ, C,D ∈ V ) all compositions1 of n − ` with two parts
have to be taken into account. For example, let α = aBC and n = 4. The set of all
words of length four derived from α consists of:

• catenation of {a} and all words of length one derived from B and all words of
length two derived from C,

• catenation of {a} and all words of length two derived from B and all words of
length one derived from C.

By combining the facts mentioned above, we can obtain the following recurrence
relation:

ζ(β, n) =


{β} : β ∈ Σ ∧ n = 1,⋃ri
j=1

⋃
C(αij ,n)

ζ(αij1, c1) · · · ζ(αijk, ck) : β = Vi ∧ n ≥ 1,

∅ : otherwise,

where k = |αij | and the sequence c1, c2, . . . , ck belongs to the compositions

C(α, n) =

 if |α| = n then {(1, 1, . . . , 1)} else ∅ : |α| ≤ `,
if n > ` then {(1, 1, . . . , 1, n− `)} else ∅ : |α| = `+ 1,
{(1, 1, . . . , 1, p, q) | p+ q = n− ` ∧ p, q ≥ 1} : |α| = `+ 2.

The application of dynamic programming2 results in the effective implementation of
the formula ζ(β, n). If Σ = {a1, a2, . . . , at}, it suffices to compute ζ for every entry in
the table:

[(a1, 1), (a2, 1), . . . , (at, 1), (V0, 1), (V1, 1), . . . , (Vz, 1), (V0, 2), . . . , (Vz, d)]

in the given order by reusing stored results.
Let s be maxA∈V, 1≤i≤d |ζ(A, i)|. In practical situations the sizes of alphabets of

terminal and non-terminal symbols are small constants, |V ∪Σ| = c1, and the number
of production rules for a non-terminal is also a small constant, c2. There are no
more than c1d entries in the table. Since catenation of two sets can be done in time
O(ds2) and there are at most d − 1 compositions in C(α, d), the worst-case running
time for every entry is c2(d−1)O(ds2). Thus, the evaluation of L(G)∩Σ≤d consumes
c1dc2(d− 1)O(ds2) = O(d3s2) time.

1Compositions are merely partitions in which the order of summands is considered. For example,
there are four compositions of 3: (3), (12), (21), (111).

2To become more familiar with dynamic programming please consult Chapter Eighteen of [23],
Chapter Fifteen of [7], or Chapter Nine of [24].
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5.4 A run of the algorithm

We run the algorithm on an example. Let the sample language consist of the words:

X = {a, aa, aab, aba, baa, aaa, aaaa, aaab, aaba, abaa, baaa, aaaaa,
aaaab, aaaba, aabaa, abaaa, baaaa, aaabb, aabba, abbaa, bbaaa, baaab,
baaba, babaa, abaab, aabab, ababa}.

Let us assign ` := 1. At the beginning, a set of production rules P and a map V
representing non-terminals are both empty. V [X] := 0. There are two sets to consider
in an initial call—Rules(X):

a−1X = {ε, a, ab, ba, aa, aaa, aab, aba, baa, aaaa, aaab, aaba, abaa, baaa,
aabb, abba, bbaa, baab, abab, baba},

b−1X = {aa, aaa, aaaa, baaa, aaab, aaba, abaa}.

First, a−1X is processed. The rule V0 → a is added to P ; V [{a}] := 1; the rules
V1 → a (this rule is added in the second recursive call) and V0 → a V1 are added to P .
After the removal of ε and a from a−1X, the following concatenations are generated
by Cover(a−1X − ({ε} ∪ Σ)):

{a} {a, aba, aa, b, aaa, ba, aab, abb, bba, ab, bab, baa} (V1 V2),

{a, b} {a, aa, aaa, aab, aba, baa} (V3 V4).

After the return from appropriate recursive calls, the rules V0 → a V1 V2 and V0 →
a V3 V4 are added to P .

Similarly, b−1X is processed. The following concatenations are generated by
Cover(b−1X):

{a, aa, aaa, aab, aba, baa} {a} (V4 V1),

{a} {a, aa, aaa, aab, aba, baa} (V1 V4).

After return from appropriate recursive calls, the rules V0 → b V4 V1 and V0 → b V1 V4
are added to P .

The subsequent sets of words, which represent variables V1, V2, V3, and V4 are
processed in recursive calls. Based on the set {a} we get V1 → a. Based on the set
{a, aba, aa, b, aaa, ba, aab, abb, bba, ab, bab, baa} we get

V2 → a | a V3 | a V3 V3 | b | b V1 | b V3 V1 | b V1 V3

Based on the set {a, b} we get
V3 → a | b

Finally, based on the set {a, aa, aaa, aab, aba, baa} we get

V4 → a | a V1 | a V1 V3 | a V3 V1 | b V1 V1
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Afterwards, the resultant grammar is ‘reduced’ by merging some variables. All
pairs (V0, V1), (V0, V2), . . . , (V1, V2), . . . , (V4, V5) are checked. It appears that three
pairs of variables can be successfully merged. These are V0 with V1, V0 with V4, and
V2 with V3. So a cover-grammar for X is:

V0 → a | a V0 | a V0 V2 | a V2 V0 | b V0 V0
V2 → a | b | a V2 | b V0 | a V2 V2 | b V0 V2 | b V2 V0

We have empirically verified—till the length eighteen—that this grammar accepts all
and only the words from the language {{a, b}+ | every word has more a’s than b’s}.

5.5 Complexity issues

Let n be the size of an input language X, and d be the length of the longest word in
X. It is not hard to see that the running time of the second phase is polynomially
bounded, even if the size of an obtained grammar is proportional to d × n. The
outermost loop of function Reduce iterates at mostO((dn)2) times. The enumeration
of words is its dominant operation. Because c1 and c2 from Subsection 5.3 can be as
large as O(dn) and s = O(n), in the pessimistic case the second phase takes no more
than O(d5n4) time.

As far as the first phase is concerned, the running time T of the subroutine Rules
can be assessed by the following relation:

T (d, n) =

c1∑
i=1

(
O(d2n4) + c2T (d− `, n/c3)

)
where c1 is the number of prefixes (see line 3 of Rules); the O(d2n4) component
denotes the number of operations in the subroutine Cover and other operations in
Rules apart from recursive calls; c2 is the number of recursive calls in lines 19 and
20 (a recursive call in line 14 does not have to be considered since |B| ≤ |Σ| and its
execution time is already contained in O(d2n4)); c3 is a scaling factor such that n/c3
denotes the size of languages in consecutive recursive calls.

Hypothetically, c1 and c2 can be as large as n, and c3 can be equal to one. Then,
for small `, the algorithm would have an exponential time complexity. However,
usually c1 and c2 are small constants, and c3 ≥ 2. Then the recurrence leads to
T (d, n) = O(cmin{d/`, log2n}d2n4) where c is a small constant. This formula reveals that
the value of ` should be relatively large if we want to shorten the running time of the
whole process. But then it may be unable to achieve minimal CFCGs. Fortunately,
for formal languages considered in practice, the execution of the algorithm can be
performed very fast even though ` = 1, n is of the order of a few hundreds and d is
of the order of a dozen or so.
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6 Experimental results

In all experiments we used the implementation3 of algorithms written in Python.
An interpreter ran on an Intel i3-4010U, 1.7 GHz processor under Windows 10 oper-
ating system with 16 GB RAM. As regards the creation and manipulation of graphs,
we took advantage of the NetworkX4 library (version 1.11).

The goal of experiments is to show that not only is our algorithm able to generate
short cover-grammars for finite languages, but first of all it might identify infinite lan-
guages based on their finite examples. The benchmark is composed of seven context-
free, not regular languages and single (the third) regular language (]x(w) denotes the
number of xs in the word w):

• L1 : ambn, 1 ≤ m ≤ n,

• L2 : balanced parentheses,

• L3 : ambn, m ≥ 1 and n ≥ 1,

• L4 : {w | w ∈ {a, b}+ and ]a(w) = ]b(w)},

• L5 : {w | w is a palindrome and w ∈ {a, b}{a, b}+},

• L6 : {w | w ∈ {a, b}+ and 2]a(w) = ]b(w)},

• L7 : the language of  Lukasiewicz (S → aSS; S → b),

• L8 : {aibjck | i = j or j = k, i, j, k ≥ 1}.

The first six languages were considered by Nakamura et al. [21,22], and the language
L7 was considered by Eyraud et al. [10], while the inherently ambiguous context-free
language L8 was the one language for which the Synapse system made by Naka-
mura and Matsumoto [22] could not directly synthesize a grammar from positive and
negative sample words.

For each target language we generated a learning and a test sample in the following
way. We built the learning sample by listing the set of words L∩Σ≤d for each language.
The maximum length d = 7 (d = 12 for L8) was set up such that we could compare
our running times with those obtained by Nakamura and Ishiwata [21]. Regarding the
construction of the test set, we generated the set of all words up to the length twelve
(and fourteen for L8) over the alphabet of terminal symbols used to define the target
language. The test sequences were then labelled as positive or negative depending on
their membership in the language.

In order to study the behaviour of our algorithm, for each target language we fixed
` := 1 and constructed a CFCG by applying the first (creating an initial grammar) and
the second phase (reduction) of the algorithm. Then, we evaluated the inferred cover-
grammar on the test set by checking if it correctly classifies all test sequences. Such
a procedure has been applied 30 times and the results are gathered in Table 1. For each

3https://github.com/wieczorekw/wieczorekw.github.io
4http://networkx.lanl.gov/
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t |P | |V |
L Min Max Ave Min Max Ave Min Max Ave CS t |P | |V |
1 0.01 0.25 0.14 9 19 13.7 5 8 6.8 23 1 4 2
2 0.01 0.03 0.01 9 20 13.3 5 10 7.6 16 1 4 2
3 0.04 1.53 0.62 12 21 18.3 8 12 9.8 30 6 6 2
4 0.03 0.08 0.05 17 29 22.4 8 12 10.3 26 2 7 2
5 0.02 1.37 0.57 12 73 47.2 6 31 18.6 11 2 10 3
6 0.02 0.08 0.04 16 27 20.5 8 12 9.5 14 22 9 3
7 0.01 0.07 0.03 12 26 17.6 6 13 9.0 28 not considered
8 14.61 153.72 40.96 62 303 163 36 107 65.6 5 unable to infer

Table 1: Inferred grammars’ characteristics and CPU time t of computations (sec.).
|P | and |V | denote, respectively, the number of production rules and the number of
variables in a generated grammar. The leading columns show our results, while the
last three columns concern the results obtained by Nakamura et al. [21, 22].

language correct classification has been reached within CS (Completed Successfully)
runs out of 30. The sizes of grammars for Li, i = 1, 2, . . . , 7, varied from 9 to 73,
and the CPU time varied from 0.01 to 1.53 seconds. As for L8, correct classification
has been reached for d = 12 only within five runs. In this case computations lasted
on average 40.96 seconds and larger grammars have been obtained. The last three
columns show results reported by Nakamura et al. [21, 22]. They used Windows
version Visual C++ compiler and Intel Pentium II processor with 400 MHz clock.
But even if we divide their t by four (4 × 0.4 ≈ 1.7) the values will be greater than
our minimum t. As can be seen from the table, Nakamura et al. obtained smaller
grammars for languages from 1 to 6, but there are three main differences between
their approach and ours. For one thing, Synapse needs both positive and negative
words. For another, Synapse could not directly synthesize a grammar for language
L8 in a reasonable amount of time. Finally, a current restriction of Synapse is that it
has not synthesized grammars with more than about twelve rules.

We owe an explanation of the reasons and principles of comparison between our
method and the selected grammatical inference method. The main reason is the lack
of other methods for generating CFCGs. Besides, we wanted to emphasize that our
method is able to generalize, i.e., giving expected recursive grammars. We should
be aware of the differences between these two tasks. Inductive synthesis (IS) of
cover-grammars needs all positive words (examples) of an unknown language up to
a certain length d. A grammatical inference (GI) method usually takes as input
some positive words and some negative words (counterexamples). After all, it could
be said that in IS counterexamples are given indirectly: one can easily render all
the negative words of the length up to d (absence in examples implies presence in
counterexamples), therefore in the set of positive words the information about the
negative words is already encoded. So both tasks, IS and GI, have the same goal:
to get a grammar which accepts all examples, but no counterexample. However, the
possibility of omitting counterexamples gives IS an advantage over GI. It is especially
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seen when an expected language has a few examples and many counterexamples.
Then, IS takes a small input sample, while GI needs much bigger input sample so as
to enhance the chance of getting the proper grammar. Let us consider the language
L = {ab(bbaa)nbba(ba)n | n ≥ 0}, which can be generated by the grammar G =
({S,A,B,C,D}, {a, b}, P, S) with productions P in (2, 2)-normal form:

S → a bD A→ a

B → b C → a aDB

D → b bA | b bC A

The equivalent grammar:

V0 → a b V1 V6 V1 → b | b b V2 V6
V2 → a aV1 | a aV4 V6 V4 → b b V5 V1

V5 → a a V6 → b a

has been achieved with

X = L ∩ Σ≤17 = {abbba, abbbaabbaba, abbbaabbaabbababa}

using less than 0.1 seconds. Please note that in this example the number of negative
words is relatively large: |Σ≤17| − |X| ≈ 2.6 × 105. What is more, in order to avoid
such incorrect hypotheses as: (a+b)∗, (a+b)∗a, a(a+b)∗, a(a+b)∗a, (a+b)∗bb(a+b)∗,
(a + b)∗bbb(a + b)∗, (a + b)∗ba, (ab + b + aabb)∗(ba)∗, etc., the set of negative words
has to be sufficiently large, and therefore a GI algorithm will cause to consume much
more time.

We took the Synapse system as a reference method, because in all experiments [21]
its authors reported results for positive and negative words being all strings in {a, b}∗
with a length not longer than d = 7. This is very similar to our settings. The last
thing we had to choose was the way of deciding that a CFCG is correct with respect
to a model. Naturally, in view of the definition of a context-free cover-grammar every
output from our algorithm is correct, but some of them could be beyond what is
expected. Unfortunately, for two given CFGs, G1 and G2, checking whether G1 ≡ G2

is undecidable (there is not even an inefficient way for doing this algorithmically). For
this reason, one has to verify it formally by hand or check it by a careful examination.
Since the formal proof of the grammar equivalence can be extremely difficult to find
and because of multiple runs, the checking with a test set seemed to be a better choice
even if it might fail.

7 Conclusions

In this paper we were interested in the synthesis of context-free grammars based on
finite languages. We therefore faced the following task: given a finite set X ⊂ Σ+ of
words where d is the length of the longest word in X, build a context-free grammar—
called a cover-grammar—that accepts the language X as well as possibly other words
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longer than d and does not accept any word from the set Σ≤d−X. As stated, the cover-
grammar problem has many solutions among which we are searching for short ones.
For regular languages, this problem turns into a minimal cover-automata problem
and has many theoretical results and practical methods [3, 17]. In order to address
the context-free case, we have designed an algorithm for the multi-decomposition
of a finite language, in which the most important and intractable computation is
aided by ant colony optimization. On this foundation, we have further designed an
algorithm for generating a cover-grammar in (`, 2)-normal form, which not only is
able to generate concise grammars, but also might identify infinite languages based
on the finite examples X. The conducted experiments showed that our algorithm can
synthesize fundamental context-free grammars within a second, which include most
of the grammars investigated by other researchers.
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