
TOOLS FOR DISTRIBUTED SYSTEMS MONITORING

Łukasz KUFEL*

Abstract. The management of distributed systems infrastructure requires dedicated set
of tools. The one tool that helps visualize current operational state of all systems and notify
when failure occurs is available within monitoring solution. This paper provides an
overview of monitoring approaches for gathering data from distributed systems and what
are the major factors to consider when choosing a monitoring solution. Finally we discuss
the tools currently available on the market.

Keywords: distributed systems, monitoring, monitoring solution, monitoring tools

1. Introduction

Monitoring solution has become an inherent part of distributed systems [2]. The main
advantage it provides is early failure identification and notification of support teams through
email or text message. Some solutions offer an automated task executions to fix the issue
immediately hence minimize systems downtime and human intervention. Those systems are
constantly ensuring availability of crucial IT infrastructure components, for example Zabbix
monitors the system that controls who enters The European Organization for Nuclear
Research (CERN) [4] or Ganglia monitors free-content Internet encyclopedia Wikipedia
[28].

Designing monitoring solution for distributed systems is a process of understanding how
the solution collects and presents the data, what events are available, what can be monitored
and measured and eventually a selection of the tool. This article provides guidelines for
selecting monitoring solution as well as a review of currently available monitoring tools.
There are multiple monitoring tools available on the market [5]. Choosing the right one can
be difficult as there are multiple factors to consider. For example free of charge solutions
have limited monitoring features and their user interface is usually very simple, and
sometimes hard to navigate.

The paper is organized as follows. Section 2 presents basic concepts of monitoring
distributed systems. In Section 3 we discuss major areas where monitoring solution brings

* Institute of Computing Science, Poznan University of Technology, Poznan, Poland;
Technical Operations Manager, Expedia.com, lukasz.kufel@hotmail.com

F O U N D A T I O N S O F C O M P U T I N G A N D D E C I S I O N S C I E N C E S
Vol. 41 (2016)

DOI: 10.1515/fcds-2016-0014

No. 4
ISSN 0867-6356

e-ISSN 2300-3405

benefits to the organization. In Section 4 we describe four approaches how collection of
monitoring data can be achieved. Guidelines about selecting the monitoring solution are
presented in Section 5. Research results of 15 monitoring tools are provided in Section 6.
Sample deployment and monitoring experiment with three popular monitoring solutions is
discussed in Section 7. Section 8 contains summary and conclusions.

2. Monitoring Fundamentals

A monitoring solution for distributed systems is composed from various elements such as
monitoring layers, events, thresholds, polling intervals and data retention. The layers
represent where the data are collected from, how it is transported to the monitoring system
and eventually where the results are presented. Once the data are stored in monitoring
system as an event, the system depending on threshold configuration can trigger an alert
notification to the relevant support team. Monitoring system also requires a policy, which
defines how often the data need to be collected.

2.1. Layers

Monitoring layers are sections in solutions design to visualize data flow from monitored
systems to monitoring system.

Figure 1. Three major monitoring layers representing sample design of monitoring
solution.

Figure 1 shows sample design of monitoring solution which consists of following layers:

238 Ł. Kufel

• Environment. This layer demonstrates distributed systems infrastructure that
includes various types of hardware, operating systems, applications and services. It
also includes storage devices and databases.

• Network. This section of data flow diagram is responsible for transmitting
monitoring data from a source (monitored system) to a destination (monitoring
system). Network can be seen as a local (Local Area Network) or geographically
distributed (Wide Area Network).

• Collection, Presentation and Alerting. The core layer in monitoring solution that
initiates monitoring, stores collected data, visualize metrics and triggers alert
notifications when needed. This is the section where end user configures and
controls entire solution as well as runs reports for availability and capacity metrics.

2.2. Events and Thresholds

We define the event similarly to the definition presented by Terenziani et al. [12] and
Tierney et al. [13] as time-stamped information about the state of a server or an application
and its relevant system metrics, such as availability, CPU utilization, disk utilization and
security auditing to industry standards. The contents of every event should be characterized
by the meaningful details, such as host name, source name, event type (on Windows) or
event severity (in Unix environments), event id and the event message. Table 1 presents five
types for events logged on Windows platforms and eight severities on Unix platforms [27,
34, 35, 39].

Table 1. Windows event types and Unix event severities.
Windows Event

Type
Unix Event

Severity
Action Required?

Error Threshold Error 0 - Emergency
1 - Alert
2 - Critical
3 - Error

Yes, immediately

Warning Threshold Failure Audit
Warning

4 - Warning
5 - Notice

Yes, in near future

Informational
Threshold

Success Audit
Information

6 - Informational
7 - Debug

No

To compare event types and severities of both platforms we categorized them into three
threshold levels.

Error Threshold. This threshold represents an application, service or system that is
unavailable or unstable. An action is required to restore affected component(s). Sample
events by platform are as follows:

Tools for distributed systems monitoring 239

• On Windows, error event is logged when an application cannot establish
connection with remote resource or system could not start the service.

• In Unix, there are four levels of this threshold. Emergency severity (keyword
panic) event is used when system becomes unusable and responsible support
teams need to be engaged immediately. Events with alert severity (keyword
alert) are logged for loss of primary connection link and restoration action must
be taken immediately. Events with critical severity (keyword crit) also require
immediate action. However, they directly do not impact systems’ functionality,
for example loss of redundant network link. Error severity (keyword err) event
is used for non-urgent failures, where restoration action should be taken in
given period.

Warning Threshold. In security events, this threshold is used to monitor failures on audited
processes, for instance incorrect password provided in user login attempt. In system events
this threshold is aligned to the alert configuration setting, for example disk utilization is
above 80%. Sample events by platform are as follows:

• On Windows, failure audit events are registered when user is unable to access
network folder. Warning type event is used in situations like TCP/IP has
reached the security limit imposed on the number of concurrent TCP connect
attempts.

• In Unix, warning severity (keyword warn) events indicate condition that may
change to error threshold if action is not taken, for example file system
utilization is currently at 80% where error severity for utilization is set 90% and
more. Notice severity (keyword notice) event is used to log unusual application
or system behavior that is not in error threshold. These events may suggest
potential problems in the near future.

Informational Threshold. In security events it illustrates successful access attempt to
audited processes, for example login to the system. In system events it shows successful
operation of an application or service. It can also inform about change in alert configuration
setting, for example CPU utilization declined below warning threshold level. This threshold
does not require any action by support teams. Sample events by platform are as follows:

• On Windows, success audit event is logged for successful login to an
application or system. In system events information event is used for successful
driver load or periodic operating system uptime.

• There are two levels of this threshold in Unix. Informational severity (keyword
info) event for logging normal operations like successful package installation.
Debug severity (keyword debug) event is used to log additional details like
application stack traces. Those details are very helpful when debugging the
application behavior.

2.3. Polling Intervals and Data Retention

As part of design process of monitoring solution, organization needs to define monitoring
polling intervals and data retention. Based on those, a policy should be established and

240 Ł. Kufel

shared with the department that deploys and maintains monitoring system activities.
Requirements and recommendations should follow industry standards and actual criticality
of the systems available in the organization. The polling intervals have direct impact on
monitoring system performance, the amount of data that is collected and the mean time to
detect (MTTD) a failure in distribute systems infrastructure.

Table 2. Example of polling intervals and monitoring data retention.
Standard System Major System Critical System

Availability
monitoring

Every 10 minutes Every 5 minutes Every 1 minute

Capacity
monitoring, for
example CPU
utilization

Every 20 minutes Every 10 minutes Every 5 minutes

Security and system
logs [7]

Every 3 to 24 hours Every 15 to 60
minutes

Every 5 minutes

Monitoring data
retention [7]

1 to 2 weeks 1 to 3 months 3 to 12 months

Table 2 shows an example of polling intervals and data retention based on systems
criticality. By Standard System we assume a system that has none or low impact on the
organization, for example test server. Major System is defined as a system that would have
moderate impact on the organization’s productivity, for example through unavailability of
communication channels such as internal news portal, email system or VOIP telephony
system. Critical System is classified as it would have highest impact, for example on
revenue in e-commerce organizations if front-end web servers become unavailable, or on
organization’s reputation if the system allowed an unauthorized access.

3. Areas of Monitoring

Within distributed systems infrastructure there are multiple metrics that can be collected.
The key area monitoring solution was designed to monitor is systems availability and
capacity.

3.1. Availability Monitoring

Availability monitoring provides details about systems, services and application
accessibility. It is calculated as a percentage of time when system was running and
accessible to the duration for which this metric is measured. Availability can be assessed by

Tools for distributed systems monitoring 241

analyzing results of ping command, verifying if process is in running state, dedicated port
TCP/UDP is open or if application accepts user credentials during authentication process.

Availability is one of key indicators in Service Level Agreement (SLA) when
organization provides IT functions as services. Sample visualization of LDAP service
availability is shown in Figure 2.

Figure 2. ManageEnginge AppManager - sample availability chart for LDAP
service monitoring. Availability was measured for 7 days.

Today, multiple systems are designed to operate on a 24 x 7 basis. However it is very
difficult to achieve 100% availability on a yearly report. Systems can be running although
users are unable to access them due to for example network outages, required critical
operating system updates or application code releases. Table 3 indicates the time of
unavailability (also known as downtime) and its impact on a monthly and yearly availability
report [21].

Table 3. Impact of downtime duration on availability metric.
Downtime per month Downtime per year Availability %

72 hours 36.5 days 90% ("one nine")
7.20 hours 3.65 days 99% ("two nines")
43.8 minutes 8.76 hours 99.9% ("three nines")
4.38 minutes 52.56 minutes 99.99% ("four nines")
25.9 seconds 5.26 minutes 99.999% ("five nines")

3.2. Capacity and Performance Monitoring

Second popular metric that monitoring solution provides is capacity and performance. As
distributed systems are growing and continue utilizing more computer resources (see Figure
3), this metric helps forecasting future demands on computing power. Traditionally this

242 Ł. Kufel

metric includes CPU utilization, memory utilization, storage (space used and bandwidth
performance), network (bandwidth utilization) as well overall number of devices in the
environment.

Figure 3. Ganglia - sample capacity chart based on Wikipedia grid memory
utilization [28], September 2015 till September 2016.

Based on gathered capacity and performance metrics, IT departments can support
business decisions when allocating budget on IT equipment. Moreover, collected metrics
help application and service owners identifying systems that are overutilized (indication of
further investment or architecture re-design) or systems that are underutilized (indication of
application re-allocation, sharing of resources or application decommission).

3.3. Security Events Monitoring

Monitoring solution also covers security events monitoring. The market offers dedicated
solutions within security information and event management (SIEM), however all
infrastructure and application monitoring tools have a customized module, which can
provide basic security events verification [8]. The main purpose of monitoring solution is to
collect events from security and firewall logs, store and analyze them. Sample events
include unauthorized access attempt due to a wrong password or missing permissions and
distributed denial of service (DDoS). Monitoring solution can also detect increased number
of login attempts from single location and acknowledge firewall rules are blocking
miscellaneous network traffic.

Tools for distributed systems monitoring 243

4. Monitoring Approaches

There are two popular monitoring approaches, agent-based and agentless. Recently new
methods are being introduced that encompasses agent-based and agentless advantages into
one hybrid approach [8] or collection of monitoring metrics through data streams.

4.1. Agent-based Approach

An agent-based approach is platform dependent and requires additional software on
monitored systems. It provides in-depth monitoring data as agents are domain specific and
are designed to collect every possible metric. On the other side, this introduces limitation in
scalability as the solution cannot be easily deployed in organization that uses multiple
platforms, systems and applications. Maintenance and technical support of agent software
can also be difficult as for example code upgrade needs to be performed on every server
where the agent was installed. Overall architecture of agent-based approach in typical
application, database and web server environment is presented in Figure 4.

Figure 4. Agent-based approach architecture. Dedicated agent is installed on
monitored system.

4.2. Agentless Approach

An agentless approach utilizes systems built-in monitoring technologies and protocols such
as Windows Management Instrumentation (WMI) and widely available Simple Network
Management Protocol (SNMP). It is a lightweight solution as it doesn’t require additional
software to be installed as well it is much easier to deploy in distributed environment. As
shown in Figure 5 agentless approach provides systems availability monitoring without
additional modules like it is required in agent-based approach.

244 Ł. Kufel

Figure 5. Agentless approach architecture. Monitoring system uses systems built-in
monitoring protocols and technologies. No additional software is required.

However, an agentless approach is limited to generic monitoring metrics. When more
granular monitoring data are required an additional diagnostic tools would need to be used.

4.3. Hybrid Approach

A hybrid approach provides new way of collecting data as it combines benefits of both
agent-based and agentless approaches [8]. To meet all monitoring requirements it allows
choosing between traditional monitoring approaches as well as gives an interface to
integrate with custom monitoring scripts and agents (see Figure 6). This enables full
flexibility and scalability to the current and future size and variety of monitored systems in a
distributed environment.

Figure 6. Hybrid approach architecture. Each monitored system has the best
suitable monitoring approach deployed.

In hybrid approach, agent-based monitoring can be installed on mission critical systems
where frequent and in-depth monitoring data are required to minimize applications
downtime. A lightweight agentless approach can be employed on standard systems where
only basic metrics like systems availability, CPU and disk utilization are needed. As hybrid

Tools for distributed systems monitoring 245

approach uses relevant traditional technique it allows to better adjust to the business needs
and to sustain with an infrastructure growth.

4.4. Data Streams Approach

With evolution of distributed systems to heterogeneous and cloud environments, a new
approach was developed to measure availability and performance from application and
service perspective. This approach focuses on business transaction execution and validates
end-to-end path from user initiating the task to the connected systems in the infrastructure.
In order to accomplish this goal, software developers need to integrate data forwarders code
into applications’ code.

Figure 7. Data streams approach architecture. The data forwarder acts as an agent
that transmits monitoring metrics as a stream.

The data forwarder is installed as an agent on application server, Java server or web
server (see Figure 7). It transmits monitoring metrics as a stream to monitoring system. This
allows IT operation teams watch application performance in near real time dashboards,
create alerts based on trend lines and understand user’s performance experience with the
application or service. The data streams approach is similar to agent-based approach with
the exception it was designed to be more dynamic and present overall systems performance
rather than focusing on individual infrastructure components.

4.5. Overview of Monitoring Approaches

We examined eight characteristics of traditional monitoring approaches in comparison with
new hybrid and data streams approach. This includes:
• Platform dependency. This characteristic is mainly dependent on additional software

that needs to be installed on monitored system. The major platforms are Windows
and Unix, as well as network and SAN / storage environments. When approach is
platform dependent it limits its scalability and support of heterogeneous systems.

246 Ł. Kufel

• Availability monitoring. This feature allows the monitoring approach to report on
systems accessibility and operational status. It does not only include general check
such as response to ping command; many systems require dedicated port to be open
or system processes and services to be in running state.

• Capacity monitoring. Key elements for this characteristic include CPU utilization,
available disk space and memory resources. In today’s fast growing digital era it is
very important to estimate and maintain basic capacity plan in order to accommodate
future data demands. Based on chosen monitoring approach, this can be
accomplished on general or in-depth level. Additionally, systematic data collection
will allow identifying under- and overutilized systems and applications.

• Alerting and notifications. Apart from data collection the monitoring approach needs
to detect anomalies and inform relevant support teams. The alerting mechanism
includes setting state conditions / thresholds to report if system is up and running or
failure has been detected. Notification methods are usually defined as sending an
email, execution of SNMP trap or execution of custom script and remote command.

• Monitored data granularity. When monitoring system is being designed and
deployed to monitor mission critical applications it is recommended to gather as
much monitoring data as possible. This would allow quicker root cause analysis
when issue occurs. The ultimate size and retention of gathered data needs to be
discussed and took into consideration.

• Monitored data gathering mode. The monitored data are transferred from monitored
systems to monitoring solution through Push, Request and Response and Pull modes.
The Push mode is used based on time- or event-driven situations. In this mode data
are sent (usually by an agent) from monitored system to central monitoring solution.
In Request and Response mode the data are only transferred when monitoring
solution requests for them. This mode is typical in agentless approach that uses built-
in monitoring protocols and technologies. Pull mode is invoked by the monitoring
solution and it collects already prepared data or data sets from the monitored
systems. The data and data sets are arranged by a local agent or a script running as a
scheduled job.

• Additional software required on monitored systems. When monitoring approach
requires additional software on monitored systems the initial deployment of entire
monitoring solution will require much more time comparing to approaches that use
built-in monitoring protocols and technologies. The additional software is platform
and monitored system dependent. For example Oracle database monitoring agent
does not support Microsoft SQL system, similar to Windows operating system agents
cannot be installed on Unix based platform. In certain scenarios, the approach may
require dedicated appliance in order to monitor network devices.

• Solution type. This feature shows impact on capacity usage of monitored resources,
such as processor, disk and memory utilization. It is recommended to adjust the
monitoring approach to the current system performance that it does not have any
negative impact.

Tools for distributed systems monitoring 247

• Deployment and maintenance. This characteristic presents the level of difficulty
when deploying and maintaining the monitoring approach. This takes into
consideration day-to-day operations and support, future software updates,
configuration and simultaneous deployment across large environments, for example
with 500 systems and more.

Results of our review are presented in Table 4.

Table 4. Overview of monitoring approaches.
Agent-based

approach
Agentless
approach

Hybrid
approach

Data streams
approach

Platform
dependency

Yes No Yes Yes

Availability
monitoring

No Yes Yes Yes

Capacity
monitoring

Yes Yes Yes No

Alerting and
notifications

Yes Yes Yes Yes

Monitored data
granularity

In-depth, full General,
limited

In-depth, full In-depth, full

Monitored data
gathering mode

Push Request and
Response

Push, Request
and Response,
Pull

Push

Additional
software required
on monitored
systems

Yes No Yes - for in-
depth data
No - for
standard data

Yes

Solution type Heavy,
lightweight

Lightweight Lightweight Lightweight

Deployment and
maintenance

Difficult Easy Intermediate Intermediate

5. How to Select the Tool?

Choosing the right tool to monitor distributed systems depends on four major factors. The
most important is the price of the solution. It is not only the software license cost, but the
decision maker should also take into account vendor consultation fees, staff training,
documentation updates and time required to deploy it across entire domain. If the
infrastructure is large, for example 1,000 servers, it may also be needed to hire dedicated
personnel to maintain the monitoring solution.

The second factor is functionality and scalability. The market has many tools to offer
and some of them give comprehensive solutions for heterogeneous environments while
others are domain and platform specific. As many organizations started to use distributed

248 Ł. Kufel

systems in the cloud environment this aspect needs also to be considered. Popular
mechanism of up and down scaling infrastructure resources in the cloud introduces new
challenges to traditional monitoring approaches. For example, agentless approach
monitoring web server in the cloud may report the system as unavailable when the instance
is automatically destroyed. False alerting can be prevented however it would require manual
intervention in monitoring system. For systems with short lifespan (less than hour) this will
be overwhelming people resources and mistakes are possible. In order to monitor dynamic
resources, it is suggested to use data streams approach which focuses on business
transactions performance rather than on individual system resources. It is also
recommended to perform a research for which systems, services and applications will the
selected monitoring solution be implemented as well which metrics are important to
business decision maker. The number of selected metrics to be monitored has a direct
impact on how much data are being gathered and stored for further analysis. The metrics
may include infrastructure capacity planning, SLAs on systems availability etc. [6][11].
When monitoring solution is installed in one geographic location and monitored systems are
in the other location(s), it is recommended to perform at least a week long network packets
analysis on monitoring sample systems. This would give a good indication how wide area
network (WAN) bandwidth utilization will increase when monitoring solution is fully
deployed.

Next key factor is alerting and integration with existing systems. Usually when
organization decides to deploy monitoring solution there are already many IT management
tools such as service desks, support team email mailboxes, SMS notifications and user
portals. When chosen solution offers customization the integration process will be seamless
and easier to support.

Final factor is deployment and maintenance. There are tools available on the market
which can be easily downloaded from vendor’s website and installed in minutes. In some
cases on-site vendor consultation and training will be required as solution may need
dedicated software agents and configuration profiles. Large infrastructure environments will
benefit when the monitoring solution can automatically discover configuration of systems to
be monitored and install required agents when relevant. Also, it is important to discuss day-
to-day maintenance of the monitoring solution as well as future vendor support with
software upgrades when new version of the tool is released.

6. Monitoring Tools for Distributed Systems

There are multiple commercial and non-commercial tools available on the market. They
monitor distributed systems using agent-based, agentless approach, hybrid approach and
today more frequently with data streams approach. Here, we examine 15 tools (see Table 5).

Tools for distributed systems monitoring 249

Table 5. Monitoring tools for distributed systems.
Tool License Monitoring

approach
Alerting Cloud /

Custom.
Target
market
size

Unique
feature(s)

Zabbix Open
source,
proprietary

Agent-based
and agentless

Email,
SMS,
custom

Yes / Yes Large and
enterprise

Auto
discovery,
multiple
plugins

Nagios Open
source,
proprietary

Agent-based
and agentless

Email,
SMS,
custom

Yes / Yes Small,
medium
and large

Multiple
plugins, wide
community
support,
community
customized
versions

Ganglia Open
source

Agent-based Optional
via Nagios

Yes / Yes Large and
enterprise

Clusters and
grid support

Hyperic Open
source,
proprietary

Agent-based
and agentless

Email,
SMS

Yes / Yes Small and
medium

Easy
deployment
and
configuration

ManageEngin
e
AppManager

Proprietary Agentless Email,
SMS,
custom

Yes / Yes Small and
medium

Quick and easy
deployment,
application
performance
monitoring

IBM
SmartCloud
Monitoring

Proprietary Agent-based
and agentless

Email,
SMS

Yes / Yes Enterprise Predictive
analysis and
reports

HP
Operations
Manager

Proprietary Agent-based
and agentless

Email,
SMS,
custom

No / Yes Enterprise Integration
with other HP
products

AppDynamics Proprietary Data streams Email,
SMS, API

Yes / Yes Large and
enterprise

Software as a
Service

Datadog Proprietary Data streams Email,
SMS, API

Yes / Yes Small,
medium
and large

Supports
multiple cloud
platforms and
DevOps teams
collaboration

Graphite Open
source

Data streams No Yes / Yes Large and
enterprise

Can handle
160,000
distinct metrics
per minute

250 Ł. Kufel

New Relic Proprietary Data streams Email,
SMS, API

Yes / Yes Small,
medium
and large

Software as a
Service,
synthetic
monitoring

Prometheus Open
source

Data streams Email,
SMS, API

Yes / Yes Small,
medium
and large

Active
community of
developers and
users

Riemann Open
source

Data streams Email,
SMS, API

Yes / Yes Small and
medium

Wide
community
support

Sensu Open
source,
proprietary

Agent-based Email,
SMS, API

Yes / Yes Small,
medium
and large

Configuration
files
automation via
Chef and
Puppet

TICK by
InfluxData

Open
source,
proprietary

Data streams Email,
SMS, API

Yes / Yes Small,
medium
and large

Software as a
Service

Tools with open source License would usually have wide community support and
possibilities to extend to enterprise model like Nagios. Proprietary tools would typically
require vendor consultation when deployment is planned on large environment, for example
more than 500 systems. Monitoring approach characterizes how the monitoring data will be
collected. When monitoring system detects failure Alerting mechanism will be used to
notify relevant support teams. Various alerting methods allow better alignment to
organization needs and easier integrations with existing support engagement tools. Many
tools have now Cloud support feature which allows further monitoring integrations with
external providers. All the tools we examined had some Customization options such as
custom script execution, formatting of email alert or opportunity for custom plugins
development. Target market specifies the size of the environment the tool can support and
its Unique feature(s) were provided in the last column.

6.1. Zabbix

Zabbix is open source software with great set of features that can be used in large and
enterprise environments [40]. The application monitors servers, network devices,
applications, databases and VMware virtual machines using agent-based and agentless
approaches. Zabbix agent runs as native system process and does not require any specific
environment like Java or .NET. Furthermore, Zabbix provides hardware monitoring for
systems with Intelligent Platform Management Interface (IPMI) which gathers details about
temperature, fan speed, chip voltage, and disk state.

Installation process is relatively easy. However, configuration and maintenance can be
complex. Even though Zabbix is an open source application, it offers commercial support
with custom features development, official training and professional consultancy.

Tools for distributed systems monitoring 251

6.2. Nagios

Nagios first launched in 1999 and now is one of the best-known open source system for
monitoring IT infrastructure, systems, applications, services and business processes [30]. It
is available in two versions, free Nagios Core, and commercial Nagios XI. Nagios Core has
limited set of features for monitoring critical IT components; it can send alert notification
by email, SMS or run custom script. Its web interface is very simple and provides reporting
capabilities such as record of historical outages, events and alert notifications.

Nagios XI has all the monitoring features and easy-to-navigate web interface. This
includes interactive dashboards with hosts overviews, services and network devices. Nagios
XI provides improved reporting module of performance and capacity planning which helps
organizations plan future infrastructure upgrades. Monitoring configuration of particular
system can also be easily audited as the application offers configuration snapshot module
that regularly saves the current configuration.

Nagios has wide community support with active development of new plugins and help
with product installation, configuration and maintenance. The plugins especially allow
Nagios Core users to expand monitoring capabilities as well as to adapt to new
technologies, applications and systems without major software update.

Moreover, based on Nagios open source code some developers created their own
monitoring solutions. Those solutions include Shinken and Icinga, and continue to be open
source projects [25, 38].

6.3. Ganglia

Open source Ganglia was designed at Berkeley academic campus [19]. It primary objective
was to collect metrics in near real time for large distributed systems such as grids and
cluster up to 20,000 hosts where CPU utilization needs to be monitored every 10 seconds
[9]. Ganglia provides in-depth operating systems metrics and using sFlow agent it can also
gather information from network gear such as routers and switches. It uses XML language
for data representation, External Data Representation (XDR) standard [18] for compact data
transport and RRDtool for data storage and visualization. Implementation in Unix/Linux
environment is robust. However, on Windows systems it requires (and is limited by)
Cygwin libraries.

It is worth mentioning that Ganglia is not only aimed for university campuses. It has
been successfully implemented by multiple companies in public and private sectors.

6.4. Hyperic

Available in two versions, open source Hyperic HQ and paid version vFabric Hyperic [23].
It was designed to monitor virtual and physical environments through agent-based and
agentless approaches. Its key component, Hyperic Agent, automatically discovers system
metrics such as memory, CPU utilization as well as applications being hosted on that
system. Discovered resources are presented in Hyperic User Interface (aka Portal). Apart

252 Ł. Kufel

from metrics collection Hyperic provides interface to remote resource control. User can
start and stop application service or perform housekeeping functions on the database.

Hyperic installation and configuration is relatively easy and takes a few minutes. Alert
notifications can be delivered as email, SNMP trap, SMS or integrated with other incident
management system.

The vFabric Hyperic is a commercial version that offers enterprise support and has more
features for example automated corrective actions.

6.5. ManageEngine AppManager

Installation and configuration of ManageEngine AppManager is very easy and intuitive
[29]. The product is available in three price categories, free of charge when monitoring five
servers and two paid versions, depending on size of the infrastructure it needs to monitor as
well as available features. The most advanced version (Enterprise) is highly scalable with
failover capabilities and supports distributed systems monitoring in multiple geographic
locations.

The company is continuously developing the product to provide monitoring for latest
technologies and systems such as Cassandra and Couchbase databases, Docker solution for
software distribution in virtual infrastructure or Hadoop clusters monitoring.

As AppManager supports multiple platforms it can easily be deployed in organizations
with heterogeneous environment where hardware and operating systems come from
different vendors. Another good feature is interface for execution of custom scripts that can
collect any monitoring data.

6.6. IBM SmartCloud Monitoring

IBM SmarCloud Monitoring comes as a bundle of well established IBM Tivoli
infrastructure management products which includes Tivoli Monitoring and Tivoli
Monitoring for Virtual Environments [24]. It is easy to install although configuration and
management requires some expert knowledge.

The new solution includes improved analytic modules, and capacity and reporting tools.
It also provides dynamic usage trending and health alerts for all monitored resources –
physical, virtual and in cloud.

User Interface is web based and offers user role-based views, such as cloud admin,
capacity planner, and application’s owner. Multiple built-in dashboards provide quick view
to entire monitored infrastructure in addition to in-context menu which gives a user an
opportunity to quickly drill down to relevant management tool.

6.7. HP Operations Manager

HP Operations Managers offers comprehensive solution for physical and virtual
infrastructures [22]. It collects monitoring data using agent-based and agentless approaches
as well as provides easy integration with third-party tools such as network monitors. The

Tools for distributed systems monitoring 253

built-in discovery module automatically recognizes managed nodes and configures
monitoring rules which essentially allows quicker deployment of entire solution.

The tool operates as client-server solution and provides intuitive User Interface. Large
deployments would require IT expertise. In order to collect detailed information about
infrastructure, operating systems and applications HP Operations Manager requires
additional plugins, so called Smart Plug-Ins (SPIs). This product was the only one which
didn’t support monitoring of public clouds, such as Amazon Web Services (AWS).

6.8. AppDynamics

AppDynamics offers a solution for applications performance monitoring that can be
implemented in the organization’s environment, delivered through Software as a Service
(SaaS) model or in hybrid deployment [15]. It provides monitoring metrics using data
streams approach. Installation is easy and requires minimal configuration. Alerting module
in this solution uses machine learning algorithms to create dynamic baselines and to detect
anomalies in the infrastructure technology stacks.

Apart from applications performance monitoring, AppDynamics can monitor web
applications response time from real end-user’s browser and mobile phone perspective. This
can help optimizing page load times and detect errors through content checks on a web site.

6.9. Datadog

Datadog solution was primarily designed to monitor cloud environments and seamlessly
integrate with collaboration applications used today by DevOps support teams [16, 17]. It
works with more than 100 applications and systems that generate monitoring metrics. The
agent that sends the data streams is supplied on open source license which gives additional
flexibility to the organization.

Datadog gathers application performance data, presents metrics in intuitive dashboards
and notifies support teams through various channels when failure is detected. It also aims
for live collaboration with interactive dashboards and tools such as Hipchat and ChatWork
for group discussions.

6.10. Graphite

Graphite is highly scalable, real-time charts rendering application, written to visualize
monitoring metrics gathered by other applications [20]. Its main purpose is to store the
numeric time-series data and render graphs of that data on demand. The solution is
enterprise ready, can handle approximately 160,000 distinct metrics per minute. Graphite
requires implementing additional plugins to provide alerting mechanism.

As an open source product, this solution can integrate with multiple data collection
tools, data forwarders, data storage alternatives as well as other open source and paid
monitoring solutions.

254 Ł. Kufel

6.11. New Relic

New Relic monitoring solution is only available in Software as a Service (SaaS) model [31].
This gives many benefits from infrastructure maintenance and support perspective, however
many organizations may raise a concern about security aspects and performance from
remote locations, especially in Europe. Deployment of this solution is very easy and the
system also supports on-premise applications.

The solution can monitor synthetic transitions from multiple geographic locations,
provide guidance and code diagnostics on web applications and services. It has capabilities
of analyzing application performance on mobile phone devices.

6.12. Prometheus

Prometheus is an open source project that collects monitoring metrics through data streams
[33]. It stores all the data as time-series identified by metric name and key-value pairs. Each
server node hosting Prometheus solution runs autonomously. All the collected data are
available through dashboards that provide multiple visualization layers and integration with
other applications. Data gathering process runs via pull mode over HTTP. Push mode is
also supported through an intermediary gateway server.

Prometheus has active community of users and developers. Moreover, the community
published best monitoring practices such as metric and label naming, creating dashboards,
and configuring alerts on Prometheus website.

6.13. Riemann

Rieman solution is similar to Prometheus and stores data as time-series with powerful
processing language [36]. It was designed for DevOps teams that support dynamic
production infrastructure. Metrics are visualized using Graphite application while alerts and
notifications can be integrated with PagerDuty platform [32].

With Riemann monitoring metrics can be visible within milliseconds comparing to
traditional solutions that pull data every five minutes or less frequent.

6.14. Sensu

Sensu offers a solution for public, private and hybrid cloud computing to monitor servers,
services, applications, and business KPIs [37]. It is available in two versions, open source
Sensu Core and paid Sensu Enterprise. The latter version gives additional functionally, for
example alert assignment to dedicated support team, built-in third party integrations, audit
logging, enterprise-level dashboard, vendor support and annual trainings.

Sensu provides extensible framework including a message bus, event processor,
monitoring agent, and documented API that allows quicker deployment in large and
heterogeneous environments.

Tools for distributed systems monitoring 255

6.15. TICK by InfluxData

InfluxData created a monitoring platform that consists of Telegrapf (T), InfluxDB (I),
Chronograf (C) and Kapacitor (K) [26]. All those components make up a TICK stack.
Telegrapf is collecting data as time-series, InfluxDB delivers high performance database for
writing time-series, Chronograf visualize the data and Kapacitor is responsible for alerting,
ETL processes and anomalies in gathered time-series.

The solution is available as open source version and paid version through InfluxCloud.
The latter is also available on AWS platform. The company offers professional services
including developers support and training courses.

7. Time to Notify Experiment

Moreover to the review of currently available monitoring tools we conducted a monitoring
experiment with three popular tools: Nagios XI, Prometheus and Sensu. The main goal of
the experiment was to measure the time since failure occurred to notify support team about
it. As a sample failure we chose situation when CPU utilization exceeds 95% threshold. The
tools were selected by following criteria: a) support of cloud environments, b) wide
community support, c) at least one tool with agent-based monitoring approach and one tool
with data streams monitoring approach, and d) availability of open source version of the
solution.

7.1. Tools Installation and Configuration

In the datacenter, tools were installed on individual servers running CentOS 6.8 operating
system. Nagios XI provides the most seamless installation as it only requires downloading
one file and executing one command. Once the command finishes, the user can login to
Nagios XI web interface and start adding systems to be monitored. Alerting configuration is
also simple and for example email notifications require only local or remote SMTP server
and account details. To monitor local and remote servers, dedicated agent named Nagios
Remote Plugin Executor (NRPE) needs to be deployed. The agent works as a
communication gateway that allows remote scripts execution and sends results back to the
monitoring solution. Monitoring of system’s availability Nagios XI portrays as a ‘host’
while any metrics collected within that host is shown as a ‘service’. Installations of
Prometheus and Sensu were more advanced as those tools are built on modular components
and the majority of their configurations is only available through text files.

Prometheus as complete monitoring solution requires installation of core module, Node
Exporter module that gathers basic metrics of local server, PromDash module to build
dashboards helping visualize metrics from multiple data sources and Alertmanager module
to build various alert notifications. Each of those modules needs separate configuration file
written in YAML language and uses dedicated TCP port for communication. YAML
language makes the configuration files’ format human-readable however is very sensitive
and for example one extra white space in the line can make this line to be ignored or change

256 Ł. Kufel

the logic how the alerts’ rules are being processed. To avoid configuration mistakes in
alerting module, Prometheus gives visual editor that shows alert’s routing tree. As this tool
has wide community support, many step-by-step tutorials are available including Docker
images with complete solution. In order to monitor basic server resources, Node Exporter
module needs to be installed on every local and remote server. Monitoring of dedicated
resources like MySQL database requires additional module to be installed on the database
server.

Sensu similarly to Prometheus has modular architecture and as a solution requires core
module which includes client module, Redis data-store used as a database and cache, Rabbit
MQ used a transportation and communication layer, and dashboard module. Redis and
Rabbit MQ need to be installed before deploying Sensu package. Every module has its
configuration file in JSON format and uses dedicated TCP port for communication. In order
to monitor local and remote servers, Sensu package needs to be installed on every system.
Sensu similarly to Nagios XI collects the data metrics by executing scripts; however scripts
are initiated by local process rather than by the central process running on monitoring
solution server like in Nagios XI. Once the script finishes, its results are sent to Sensu
central server using communication bus (Rabbit MQ). The same bus is used for receiving
instructions what needs to be monitored and how often. The monitoring and polling
configurations are always kept on Sensu central server.

7.2. Experiment and Results

The experiment to measure time to notify support team since server’s CPU utilization
exceeds 95% threshold was conducted using systems in Amazon AWS cloud and Google
Cloud. Servers in the clouds were running Linux or CentOS operating system including
Nagios NRPE package, Prometheus Node Exporter, and Senus package with only Sensu
Client service activated. Both of the cloud providers allowed configuring their network to
be accessed only from a dedicated IP addresses such as the addresses of our monitoring
solutions’ servers. In order to generate high CPU utilization event we installed relevant
cpuburn package that can constantly cycle through floating-point unit (FPU) intensive
functions.

In the cloud environments cpuburn was scheduled to be executed every 12 or 15 minutes
and start at random second of the minute. Each time the scheduled task ran, it ran for four
minutes. Nagios XI and Sensu were configured to monitor servers’ CPU utilization every
one minute. Due to the design how Prometheus stores data in the time series and calculates
monitoring metrics, it was set to monitor servers’ CPU utilization every 30 seconds. All the
tools were configured to generate email alert only when high CPU event lasted for at least
one minute.

Tools for distributed systems monitoring 257

Figure 8. Time to notify support team since high CPU event occurred. There are
three sets of Prometheus results due to various events grouping configurations
(1) group wait 10s, group interval 2m, (2) group wait 30s, group interval 5m,

(3) grouping disabled.

The results (Figure 8) gathered from more than 400 scenarios show that Nagios XI and
Sensu median time to notify support team was 93 seconds since the CPU utilization
exceeded 95% threshold. Prometheus Alertmanager module provides grouping mechanism
that can prevent flooding of alert notifications when multiple resources report the same
failure within short period of time. Prometheus group_wait variable allows the extra time to
wait before sending initial notification, while group_interval holds specified time after
initial notification to send a batch of new alerts that came for the same group. Due to that
mechanism and the design how Prometheus calculates CPU utilization metric, we noticed
significant delay in sending email notification comparing to Nagios XI and Senus.
Prometheus median time to notify was 128 seconds (group_wait 10s, group_interval 2m),
156 seconds (group_wait 30s, group_interval 5m), and 179.5 seconds when grouping was
disabled.

During experiment period we also noticed that Nagios XI and Sensu were unable to
notify on high CPU utilization on some of Amazon AWS Linux micro instances. This
occurred as the cloud provider was protecting other customers’ instances and limiting CPU
resources of our instances [14]. Nagios XI detected the limited CPU condition as ‘CPU
steal’ metric however we were unable to set an alert condition on that metric (Nagios XI
supports alert configuration only on CPU user, system and iowait metrics). We did not
observe these issues with Prometheus as alerts were based on CPU idle metric. We also did
not experience CPU limitations while running cpuburn on Linux instances in Google Cloud.

8. Conclusions

We reviewed 15 monitoring tools which can visualize current state of distributes systems
infrastructure. They also provide excellent capabilities of notifying relevant support teams
when failure has been detected. Experiment conducted during our review presents how
quickly three popular monitoring solutions can send email notification with sample alert.

We discussed basic concepts of monitoring, areas where monitoring provides benefits
and key factors that should be considered when choosing a monitoring solution. The future
distributed systems computing will use cloud environments and it is recommended for

258 Ł. Kufel

monitoring solution to support that capability [1, 3, 10]. From maintenance and data
collection perspective we presented four approaches to choose from when designing and
deploying a monitoring solution.

References

[1] Aceto G., Botta A., De Donato W., Pescape A., Cloud monitoring: A survey, Computer
Networks, vol. 57, pp. 2093-2115, 2013.

[2] Boccia V. et al., Infrastructure Monitoring for distributed Tier1: The ReCaS project
use-case, International Conference on Intelligent Networking and Collaborative
Systems, Salerno, Italy, 2014.

[3] Fatema K., Emeakaroha V. C., Healy P. D., Morrison J. P., Lynn T., A survey of Cloud
monitoring tools: Taxonomy, capabilities and objectives, Journal of Parallel and
Distributed Computing, vol. 74, no. 10, pp. 2918-2933, 2014.

[4] Hakulinen T., Ninin P., Nunes R., Riesco-Hernandez T., Revisiting CERN Safety
System Monitoring (SSM), Proceedings of International Conference on Accelerator &
Large Experimental Physics Control Systems, San Francisco, California, USA, 2013.

[5] Hernantes J., Gallardo G., Serrano N., IT Infrastructure-Monitoring Tools, IEEE
Software, vol. 32, no. 4, pp. 88-93, 2015.

[6] Horalek J., Sobeslav V., Proactive ICT Application Monitoring, Latest Trends in
Information Technology, Wseas Press, pp. 49-54, 2012.

[7] Kent K., Souppaya M., Guide to Computer Security Log Management, US Nat'l Inst.
Standards and Technology, Sept. 2006; http://csrc.nist.gov/publications/nistpubs/ 800-
92SP800-92.pdf.

[8] Kufel L., Security Event Monitoring in a Distributed Systems Environment, IEEE
Security & Privacy, vol. 11, no. 1, pp. 36-43, 2013.

[9] Massie M., Li B., Nicholes B., Vuksan V., Monitoring with Ganglia, Book published
by O’Reilly Media, 2013.

[10] Smit M., Simmons B., Litoiu M., Distributed, application-level monitoring for
heterogeneous clouds using stream processing, Future Generation Computer Systems,
vol. 29, pp. 2103-2114, 2013.

[11] Spellmann A., Gimarc R., Capacity Planning: A Revolutionary Approach for
Tomorrow’s Digital Infrastructure, Computer Measurement Group Conference, La
Jolla, California, USA, 2013.

[12] Terenziani P., Coping with Events in Temporal Relational Databases, IEEE Trans.
Knowledge and Data Eng., vol. 25, no. 5, pp. 1181-1185, 2013.

[13] Tierney B., Crowley B., Gunter D., Holding M., Lee J., Thompson M., A Monitoring
Sensor Management System for Grid Environments, Proceedings of The Ninth
International Symposium On High-performance Distributed Computing, IEEE CS, pp.
97-104, 2000.

[14] Amazon AWS Micro instance limitations, https://aws.amazon.com/ec2/faqs, Jul 2016.
[15] AppDynamics, Application Performance Monitoring & Management,

http://www.appdynamics.com, Apr 2016.
[16] Datadog, Cloud Monitoring as a Service, http://www.datadoghq.com, Apr 2016.

Tools for distributed systems monitoring 259

[17] DevOps support teams, http://theagileadmin.com/what-is-devops, Apr 2016.
[18] External Data Representation (XDR), Wikipedia page,

https://en.wikipedia.org/wiki/External_Data_Representation, Feb 2016.
[19] Ganglia Monitoring System, http://ganglia.sourceforge.net, Feb 2016.
[20] Graphite, Graphs rendering application, http://graphite.readthedocs.org, Apr 2016.
[21] High availability, Wikipedia page, https://en.wikipedia.org/wiki/High_availability, Feb

2016.
[22] HP Operations Manager, http://hp.com/go/Ops, Feb 2016.
[23] Hyperic Application & System Monitoring, http://sourceforge.net/projects/hyperic-hq,

Feb 2016.
[24] IBM SmartCloud Monitoring, http://ibm.com/software/tivoli/products/smartcloud-

monitoring, Feb 2016.
[25] Icinga, Open Source Monitoring, http://www.icinga.org, Apr 2016.
[26] InfluxData, The platform for time-series data, https://influxdata.com, Apr 2016.
[27] International Telecommunication Union, X.733: Information technology - Open

Systems Interconnection - Systems Management: Alarm reporting function,
http://www.itu.int/rec/T-REC-X.733/en, Apr 2016.

[28] Live monitoring console of Wikimedia Grid, http://ganglia.wikimedia.org, Feb 2016.
[29] ManageEngine Applications Manager, http://appmanager.com, Feb 2016.
[30] Nagios - The Industry Standard In IT Infrastructure Monitoring, http://www.nagios.org,

Feb 2016.
[31] New Relic, Application Performance Management & Monitoring, http://newrelic.com,

Apr 2016.
[32] PagerDuty, The Incident Resolution Platform For IT Operations & DevOps Teams,

http://www.pagerduty.com, Apr 2016.
[33] Prometheus, Monitoring system and time-series database, http://prometheus.io, Apr

2016.
[34] Request for Comments (RFC) 5424 - The Syslog Protocol,

http://tools.ietf.org/html/rfc5424#section-6.2.1, Feb 2016.
[35] Request for Comments (RFC) 5674 - Alarms in Syslog,

https://tools.ietf.org/html/rfc5674.html, Apr 2016.
[36] Riemann, A network monitoring system, http://riemann.io, Apr 2016.
[37] Sensu, Monitoring for today’s infrastructure, https://sensuapp.org, Apr 2016.
[38] Shinken Monitoring, http://shinken-monitoring.org, Apr 2016.
[39] Windows Event Types, http://msdn.microsoft.com/en-

us/library/windows/desktop/aa363662.aspx, Feb 2016.
[40] Zabbix - The Enterprise-Class Open Source Network Monitoring Solution,

http://www.zabbix.com, Feb 2016.

Received 22.02.2016, Accepted 15.09.2016

260 Ł. Kufel

http://ganglia.wikimedia.org/

