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Abstract.
Case studies focused on software defect prediction in real, industrial software devel-

opment projects are extremely rare. We report on dedicated R&D project established
in cooperation between Wroclaw University of Technology and one of the leading au-
tomotive software development companies to research possibilities of introduction of
software defect prediction using an open source, extensible software measurement and
defect prediction framework called DePress (Defect Prediction in Software Systems)
the authors are involved in. In the first stage of the R&D project, we verified what
kind of problems can be encountered. This work summarizes results of that phase.
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1 Introduction

Software defect prediction is a quality assurance technique in software engineering,
where sophisticated methods (including machine learning) are used to predict future
defects in computer programs. Such information can be used to support optimal
efforts and resources allocation in the software development projects (e.g. to focus
quality assurance activities on software classes which are predicted to be defect-prone).
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1.1 State of the art

Despite the fact, that enormous amount of scientific work has been done on defect
prediction in software engineering, industrial case studies reporting introduction, ob-
stacles or benefits of defect prediction in industrial environments are quite rare. Since
now, reviews of the state of the art in defect prediction research studies were pub-
lished in 1999 by Fenton and Neil [2], in 2009 by Catal and Diri [1] and – in the most
comprehensive form – in 2012 by Hall et al. [3]. Those works prove, that only few
publicized research investigated real world, industrial application of defect prediction.
First publication, related to industrial application of defect prediction was published
in 1997 by Khoshgoftaar et al. [5]. It was a case study on quality modeling of a very
large telecommunications system. Authors of that work used neural network to model
future fault proneness of real-world system managed by telecommunication company,
but finally results were not used to support company’s quality assurance procedures.
Two other publications of Khoshgoftaar and Seliya from 2004 [6] and 2005 [7] con-
tinue the previous concept and focus on commercial data analysis, not on a real-world
application. Similar approach is common for most research utilizing industrial data
- examples can be found in different publications by Ostrand [13], [15], Tosun [19]
and Turhan [21], [22]. Example of industrial application of knowledge gathered by
using defect prediction can be found in few publications, such as [23], and [18]. Com-
plete cases describing introduction of defect prediction in industrial environments
were presented by Ostrand [14], Li et al. [9] and Tosun [20]. Five industrial software
development projects were investigated in order to build software defect prediction
models by Jureczko and Madeyski [4]. The data sets of those projects, as well as
a number of open source projects investigated by the authors, were made available
online at available online at: http://purl.org/MarianJureczko/MetricsRepo/ as
well as in the PROMISE repository. Recent thorough investigation of both industrial
and open source projects with respect to defect prediction including process metrics
was described by Madeyski and Jureczko [10].

2 Objective and case description

As it was described in the previous paragraph, reports on commercial applications
of defect prediction techniques in software development projects are still quite rare.
Therefore, in this paper we describe a real-world endeavor of researchers fromWroclaw
University of Technology who started long-term research project on introducing defect
prediction techniques to real-life industrial software development projects led by the
IT company, part of the globally recognized automotive group.

Plan of the the aforementioned research project assumed dividing research activ-
ities into a number of specified stages which were, to a large extent, required by the
IT company project management methodology. Initial phase was divided as follows:

1. Starting cooperation with the IT company – receiving proposal, which software
development projects can be used in investigation;
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2. Review set of proposed projects, gather knowledge about the projects;

3. Formulate proper approach for introducing defect prediction in software devel-
opment projects;

4. Recognize bottlenecks (weak points) in the projects, which can influence nega-
tively defect prediction;

5. Propose improvements, which can be applied in the investigated software devel-
opment projects.

This paper focuses on the two last stages and answering to research question:
What are main problems related to introducing software defect prediction in existing,
mature commercial software development projects?

2.1 Gathering knowledge regarding projects

Initial step of our research was to gather information describing five software develop-
ment projects proposed by the company encoded as Project B, Project P, Project T,
Project V and Project M as candidates for defect prediction introduction. Projects
were characterized basing on nine questions, presented in Table 1.

Table 1: Assessment questions for researched projects
1. Have defects (Bug Reports – BRs) been registered in some
specific tool(s)?
2. Since when BRs have been registered?
3. How the documentation of BRs looks like in project?
4. What is the estimated end date of current project?
5. How is the code coverage by unit tests in the application?
6. Is there any plan to add unit tests in the old part of the
application?
7. Is there any plan to add unit tests in the new part of the
application?
8. Is there test plan and test cases package created for the appli-
cation?
9. How many people are currently working on the application and
in what roles?

Characteristics of selected projects are collected in Appendix A.

2.2 Considered approach

In the investigated case two variations of the approach to introduce defect predic-
tion were considered. In first, information describing first version of the application,
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marked as n, i.e. code metrics and defects registered in defect tracker during the
testing campaign were used for training purposes. Version n+1 was used for defect
prediction. Registered defects found in version n+1, were used for prediction preci-
sion validation and – again – for training data creation to be used for prediction in
version n+2, and the cycle continued. In the second approach information describing
first version of the application was used for training, but defect prediction based on
mathematical model created in such way w applied to every software version released
during development cycle.

The first approach is more precise but also more expensive. It can have various
variants (e.g. ensemble learning approach can be used to cope with the so called
concept drift). The second approach is cheaper but less precise.

For both alternatives, decision was made to use DePress framework proposed by
Majchrzak and Madeyski from Wrocław University of Technology [11, 12]. DePress
(Defect Prediction for Software Systems) allows for creating graphical workflows, us-
ing intuitive, user-friendly interface. Its possible applications varies from software
measurement, product and process improvement, quality assurance processes, inte-
grating data from various resources and tools for the sake of data analyses — including
software defect prediction. Using standard data formats provided by popular appli-
cations used for software creation, as well as being intuitive and highly customizable,
DePress makes itself a perfect tool to be utilized in different commercial software
development projects for defect prediction introduction.

DePress workflow, planned to be used in the described research project, is pre-
sented in Figure 1. SVN (or GIT – to support TFS-based code repositories) plugin
was used to collect information about changes in a source code repository in XML for-
mat, generated using SVN client. Second input file was generated by defect tracking
software (in the analyzed software development projects JIRA and ClearQuest were
used as bug and issue trackers) and used by JIRA or ClearQuest input DePress plu-
gin to gather defect information. Third, input file was used to introduce information
regarding project’s code metrics, collected using additional tools, like Eclipse Metrics
plugin for Eclipse Integrated Development Environment or Visual Studio Code Met-
rics Power Tool (more information can be found in [16]). In our workflow presented
in Figure 1, code metrics information for particular software version (i.e. n) was com-
bined with defect information to obtain training data or validation data. Combining
information from different sources was planned to be conducted in two steps – in first,
defect information was combined with list of code modules (classes, methods) mod-
ified due to defects. It is possible in most cases when developer add unique defect
identifier to comment sent when submitting code to the repository. In the second
step, metrics describing selected code modules are added to the final portion of data,
used later for training or validation. Later, during next phases of the research, feature
selection was planned to be introduced to select most effective set of metrics. Another
direction of further research is to use other features not related to the source code
metrics.

Conditions which have to be met in order to just perform the defect prediction
(conditions 1, 3 and 4) using described approach, as well as to assure high quality of
resulting predictions (condition 2 and from 5 to 8) have been listed in Table 2. As is
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Figure 1: A simplified DePress workflow

Table 2: Requirements for performing defect prediction in selected projects, using
specified workflow

1.Set of files containing defect information and code metrics has
to be available;
2.Unified method for marking the software version in code repos-
itory and defect trackers has to be present;
3.Each defect report has to be registered under one, single entry
in defect tracker software;
4.Each unique defect report has to be registered under unique
identifier;
5.Information explaining in which version each defect was found
should be available;
6.Defect fix has to be sent into the repository within single com-
mit;
7.Defect fix has to be sent into the repository with related defect’s
identifier;
8.No other changes than defect fix cannot be sent within one com-
mit into code repository;

apparent from the Table 2, set of requirements was created, regarding code repository
and defect tracker contents. Next step of the research was to verify, if the mentioned
requirements were fulfilled in analyzed projects, addressing the research question.
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3 Results

Software development projects selected for research were verified if they fulfill re-
quirements listed in Table 2. Observations gathered during that investigation can be
divided into two areas: code repository related area, and defect tracker area.

3.1 Defect tracker area

From the requirements gathered in Table 2, points 1-5 can be applied to defect tracker
area of observations. Requirement 1 was fulfilled in all investigated software devel-
opment projects. In most cases, getting files containing defect information was easy
and was only limited to running proper “Export” function within the defect tracker.
However, during the research, few minor datafile-related issues were met, with no
impact on the future defect prediction process. First problem was strictly related
to JIRA defect tracking software used in some of the analyzed software development
projects. Global JIRA settings for all related projects were fixed and allowed for ex-
traction only 1000 records in single file. This small issue was impacting total time for
preparing input data for defect prediction in projects with few thousands of defects
registered. To prepare input data, set of defects had to be divided manually into
parts containing maximum 1000 defects each. Parts in such form can be exported to
file, but after that operation, all the files have to be merged back to one defects set.
That operation, although it is easy, it is also time consuming and impacts time frame
of the defect prediction operation.

Similar issue was also observed in projects where different software was using for
defect tracking. In that case, to prepare final data set, data from different defect track-
ers had to be extracted, often – to more than one file, then transformed using DePress
into one, common format and merged. Extreme example of such situation was found
in Project M, where huge part of the defects was stored as simple e-mail communica-
tion between testers and developers. Each communication had to be stored in single
file, then loaded into DePress framework, parsed, re-formatted and concatenated into
single data set.

Using unified naming in both – defect tracker and code repository is important: if
this requirement, listed in Table 2 under point 2, is not fulfilled, it is almost impossible
to connect data describing code from proper application version (release) with defect
information – please notice that in regular software life cycle in considered company
bug report can be registered anytime for at least three different versions of application:
for example, when found by end-user, defect report will concern version n of the
software (if we assume that only one single version is used by end-users, what is
highly unlikely); at the same time version n+1 is being tested by testers and version
n+2 is being written by software developers – also for these two versions bugs can
be reported. Such case is analogical to situation when multiple releases are tested in
parallel. For four projects, charts showing the most frequent version numbers present
in defect trackers are presented in Appendix B. Project M was not included, as due
to early phase of development only 1.0.0.0. version was applied to all changes and
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fixes, thus there is no other version number assigned to reported defects. As shown on
the charts attached, version naming is not consistent in some cases (see Figure 5 and
Figure 6). The problem is even more serious when we oppose names found in defect
trackers to naming present in code repository. In Project P and Project V defects were
registered using different version naming (numbering) approach than adopted in code
repository. As a result of such situation, defect information cannot be automatically
combined with code-related data, such as metrics or changes log. Manual combination
will be time consuming and will impact time frame of the process. On the other hand,

40%

27%

14%

62%

0% 10% 20% 30% 40% 50% 60% 70%

Project V

Project T

Project P

Project B

Figure 2: Percentage share of defect reports without version information

the remarkable consistency was demonstrated regarding Requirement 3. In every
investigated project, every observed software defect was tracked using single entry in
currently used tool for defect tracking. Such approach caused situation, when also
Requirement 4 was fulfilled – when using of specialized software for defect tracking,
like JIRA, HP Quality Center or IBM ClearQuest, an unique identifier is assigned to
each new entry.

Requirement 5 is strictly connected with the numbering approach issue. It is
easy to notice on charts provided in Appendix B that for significant part of total
defects registered, there is no information telling in which version (release) of software
particular defect was detected. Percentage figures describing share of this kind of
defects are gathered in Figure 2. In the case of the proposed solutions of software
defect prediction described in paragraph 2.2, such entries without version information
still can be used for defect prediction, but it should be expected that prediction quality
will decrease – for example, if considered defects were found in code which was later
refactored, it will cause the situation when code metrics describing refactored code
will be marked as defective in data set used for learning.
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3.2 Code repository area

Requirements 1, 2, 6, 7 and 8 from Table 2, belong to code repository area of obser-
vations. As it was mentioned above, Requirement 1 was fulfilled in all investigated
software development projects. Problems caused by different naming conventions used
for defect trackers and code repositories were described in previous subsection.

It was observed that when best practices for version control are not mandatory in
software development projects, Requirements 6, 7 and 8 are not fulfilled. Instead of
sending to the code repository each code change separately with the proper comment
describing the change and using single commit (see Figure 3), it is common practice
to send different changes using one commit. Such approach may affect reliability of
the input data for defect prediction purposes with varying degrees, depending on case:

• Software developer sends defect’s fix into the repository separately, as single
“code package” but did not add proper comment, containing unique defect
identifier;

• Software developer sends defect’s fix into the repository separately, attaching
unique defect identifier, but “package” also contains other small changes, not
related to the defect, like local code refactoring (“hidden refactoring”);

• Developer sends defect’s fix as well as small additional changes, but did not
attach defect identifier while sending code to the repository;

• Developer sends different code changes, related to different tasks (defect fixes,
new functionalities, code refactoring) in a single package, attaching general
comment or no comment at all (Figure 4).

Last mentioned practice makes data describing changes in code repository useless
for chosen approach of defect prediction in investigated projects.

In four from five total investigated software development projects, regarding legacy
systems with many releases over a long time period, best practices for version control
are maintained, what results with high quality data describing code changes due to
defect fixes. Exception from that rule is small and relatively new Project M, where
significant amount of “commits”, especially from initial project phase, consists of
many changes of different kind, namely new functionalities, refactorization and fixes
were introduced at the same time. Great amount of commits contains several dozen
changed files with different adjustments, moreover those amendments are not defined
in comments to commits. Comments describing commits in project’s M repository are
too vague, moreover most of them characterize main functionality only. Amendments
introduced together with those functionality are often not mentioned at all. Even
in cases where adjustments and fixes are accompanied with comments, they tend to
be very ambiguous, e.g. “Few fixes in bindings”, “Fixes in Web Interface”. None of
the comments consists of reference to an e-mail in which defect was reported, hence
there is no possibility to indicate which defects were fixed in a given package. At the
moment, thorough analysis of reported defect’s date, commits’ date and changes in
source code is the only possibility to merge changes with reported defects.
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Figure 3: Best practice for sending changes to the code repository

Figure 4: Improper practice of sending code to the repository

4 Improvement propositions

Similar to results of the investigation, improvement propositions can relate to speci-
fied area (defect tracker or code repository) or be applied to the whole project – like
improving work culture within the projects, by persuading team members to maintain
best software development practices and self discipline in that matter. Such approach,
as well as clearly visible version number in application, defect tracker and code repos-
itory, will result in keeping unified version marking convention in each project.
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4.1 Defect tracker area

In the investigated projects, professional defect tracking software, like JIRA or Mi-
crosoft Team Foundation Server provide unique identifier for each registered defect.
Team members should register every defect found as single entry in defect tracker.
Such practice will secure that every defect registered will receive its own unique identi-
fier assigned by tracker. Identifier should be used later, during defect fixing. Review-
ing defects stored in tracker to avoid duplication of defects also should be introduced
as common practice.

To complete the missing version information from bug reports (as it was shown
in Figure 2), additional information should be collected, describing relation between
version number and time period when particular version was installed in test envi-
ronment (when defect was found by tester) or production environment (when defect
was found by end user). Such information can be used by proper DePress workflow
to complete missing version information in data acquired from defect tracker.

4.2 Code repository area

No other changes should be send to the code repository with the defect fix – project’s
work culture should ensure that code is send to repository after every change, sepa-
rately, together with appropriate description (Figure 3) – if it is defect fix, it should
contain unique identifier assigned by defect tracker.

To follow the considered approach, instead of using lacking defect identifiers in code
repository data to combine code changes with particular defects, DePress workflow
can be modified by adding special nodes providing semantic or syntactic analysis
of repository log entry, to link changes with bug reports stored in defect tracker.
Syntactic analysis looks for pre-defined patterns in commit comments to recognize
bug fixes, semantic analysis uses time relation basing on assumption, that bug report’s
status is changed to “fixed” after sending appropriate code to the repository. Those
methods of finding change-bug relation was used with good results and then described
by Śliwierski, Zimmermann and Zeller in [17].

5 Conclusions

Authors wish that observations gathered in this work as well as improvement propo-
sitions will support software development professionals who want to take advantage
of defect prediction and introduce this technique in different software companies. We
convince that proper work culture is crucial in software development projects and
have to be maintained from the beginning. Even small derogation from best practices
– like resignation from inserting defect’s unique identifiers to code commits, harmless
at the moment, can result that any innovative technology or technique when intro-
duced in the future, as defect prediction in this case, will meet significant problems
or at least will suffer from bad data quality. With the growth and maturation of de-
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veloped applications, small discrepancies or negligences can turn into serious quality
or project-related knowledge issues – like presented in this work 62% lack of version
information in registered defects (Figure 5).

Important role in collecting information analyzed in described research played De-
Press Framework and set of its interfaces created for variety of software development
tools. Highly customizable DePress allowed to combine data from various sources,
stored in various formats, like different defect tracker tools used in projects (see Ta-
ble 4 for example). Thus, if requirements for introducing defect prediction cannot be
maintained in the project from the beginning, DePress can support particular projects
in recovering lost information using its abilities to utilize and combine different data
sources, as well as data mining mechanisms and semantic or syntactic analysis.
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A Characteristics of the projects involved

Characteristics of software development projects which were selected for defect pre-
diction introduction. Information gathered in tables were received from project’s
representatives. BR stands for Bug Report – a single entry in defect tracking soft-
ware describing one software defect found in developed (maintained) application.

Table 3: Characteristics of the project V
Defect tracker used IBM Clear Quest, JIRA
Since when BRs have been regis-
tered?

Since 2005

Documentation of BRs Documents and Wiki stored on
local server

Estimated end date Continuous maintenance
Code coverage by unit tests 10% of LOC
Unit tests in the old part of the
application

Yes (Refactoring)

Unit tests in the new part of the
application

Yes

Test plan and test cases package Yes
Size of the project team 8 developers, 3 testers

Table 4: Characteristics of the project P
Defect tracker used IBM ClearQuest, JIRA, HP

Quality Center
Since when BRs have been regis-
tered?

Since 1.09.2008

Documentation of BRs BRs are described in defect
tracker according to Test Man-
ager specification

Estimated end date Continuous maintenance
Code coverage by unit tests 5% - 74% 10% of LOC (depends

on module)
Unit tests in the old part of the
application

Yes (Refactoring)

Unit tests in the new part of the
application

Yes

Test plan and test cases package Yes
Size of the project team 7 developers, 7 testers
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Table 5: Characteristics of the project T
Defect tracker used JIRA
Since when BRs have been regis-
tered?

Since 2009

Documentation of BRs JIRA
Estimated end date Continuous maintenance
Code coverage by unit tests 3% of LOC
Unit tests in the old part of the
application

No

Unit tests in the new part of the
application

Yes

Test plan and test cases package Yes
Size of the project team 3 developers, 1 tester

Table 6: Characteristics of the project B
Defect tracker used JIRA
Since when BRs have been regis-
tered?

Since 18.10.2011

Documentation of BRs JIRA
Estimated end date Continuous maintenance
Code coverage by unit tests 17% of LOC
Unit tests in the old part of the
application

No

Unit tests in the new part of the
application

Yes

Test plan and test cases package Yes
Size of the project team 3 developers, 2 testers

Table 7: Characteristics of the project M
Defect tracker used Microsoft Team Foundation

Server, E-mails
Since when BRs have been regis-
tered?

Since April 2014

Documentation of BRs Microsoft Team Foundation
Server, E-mails

Estimated end date 2016
Code coverage by unit tests No unit tests
Unit tests in the old part of the
application

No

Unit tests in the new part of the
application

No

Test plan and test cases package No
Size of the project team 2 developers
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B Version numbers present in defect trackers

Other versions
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Figure 5: Defects registered for different version numbers in Project B
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Figure 6: Defects registered for different version numbers in Project P
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Figure 7: Defects registered for different version numbers in Project T
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