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Abstract. 1 2 A prerequisite of personalized medicine is the identification of
groups of people who share specific risk factors towards an outcome. We investigate
the potential of subspace clustering for finding such groups in epidemiological data.
We propose a workflow that encompasses clusterability assessment before cluster dis-
covery and quality assessment after learning the clusters. Epidemiological usually do
not have a ground truth for the verification of clusters found in subspaces. Hence, we
introduce quality assessment through juxtaposition of the learned models to “models-
of-randomness”, i.e. models that do not reflect a true cluster structure. On the basis
of this workflow, we select subspace clustering methods, compare and discuss their
performance. We use a dataset with hepatic steatosis as outcome, but our findings ap-
ply on arbitrary epidemiological cohort data that have tenths of variables and exhibit
class skew.

1 Introduction

A major objective of epidemiology is to identify risk factors for diseases [1], thus
contributing to the advancement of prevention strategies, of diagnostics and therapies.
For the purposes of personalized medicine [2, 3], it is further necessary to identify
subpopulations that are characterized by the same risk or protective factors with
respect to an outcome. Subspace clustering methods lend themselves naturally to
this task: they scan the high-dimensional feature space and find clusters of individuals
who are similar to each other for some variables (e.g. medical test results) but not for
others (e.g. age and gender). In this work, we investigate the potential of subspace
clustering on data from the epidemiological study SHIP [4] for the disorder “hepatic
steatosis”.

1Part of this work was supported by the German Research Foundation project SP 572/11-1
“IMPRINT: Incremental Mining for Perennial Objects”.

2The data used in this work were made available through the cooperation SHIP/2012/06/D
“Predictors of Steatosis Hepatis”.
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Subspace clustering algorithms build subsets of the original set of dimensions (i.e.
build “subspaces”) and construct clusters in these subspaces. This means that when
the similarity of two objects is computed in a subspace, all dimensions except those
in the subspace are ignored (i.e. “projecting away”, in the sense of the relational
algebra operation “projection”). But why not use traditional clustering for the dis-
covery of small subpopulations? In [5, 6, 7] we find three limitations of traditional
clustering: (i) curse of dimensionality, (ii) correlations among features, and (iii) sensi-
tivity to irrelevant or noise-prone features. Epidemiological data are high-dimensional,
since they contain recordings on sociodemographics, assessments and laboratory tests.
Some of these variables are naturally correlated (e.g. menopause with age) 3. The
third limitation of traditional clustering also applies on epidemiological data: many
of the variables in the high-dimensional space are only filled for some of the study
participants (e.g. menopause and pregnancy only applies for women), thus making
participants with NULL values artificially different from the other participants. This
might suppress similarities with respect to e.g. laboratory test results. Such caveats
are elegantly overcome by subspace clustering.

Our contribution is twofold. First, we propose a workflow for studying the po-
tential of subspace clustering in the very important area of personalized medicine.
We do so for an example disorder, but our findings are relevant for high-dimensional
epidemiological data on disorders that exhibit a skewed distribution, where different
subpopulations are characterized by different risk factors. Second, we propose a new
approach for the evaluation of subspace clustering algorithms without using a ground
truth.

The paper is organized as follows. We next present related work on finding subpop-
ulations in epidemiological data with supervised methods, and we give an overview
of unsupervised algorithms that identify subspaces and build clusters on them. In
section 3, we describe the epidemiological study SHIP and the sample SHIP2·578.In
section 4, we present our workflow for assessing the potential of subspace clustering on
epidemiological data. In Section 5, we apply this workflow on SHIP2·578, assess the
model quality of different subspace clustering algorithms and report on our findings.
We then summarize the insights we won and the lessons-learned, and we present a
list of tasks for future work.

2 Related Work

In epidemiological mining, data analysis is performed with respect to a target outcome
– an impairment or an intervention. Therefore, data analysis mostly concerns super-
vised learning. However, it has been recognized [8] that the complete population used
for learning can be very heterogeneous, affecting classifier performance negatively. In
[8], Zhang and Kodell first train an ensemble of classifiers, then associate with each
training instance the predictions made on it by each ensemble member, thus creating

3In the following, we use the term “feature” to describe a variable associated with a value range,
e.g. body mass index larger than 28. However, we acknowledge that the term “feature space” is
often used to denote the set of variables; we avoid this term whenever possible.
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a new set of dimensions/variables, where the variables are the predictions. They then
perform hierarchical clustering on the instances, thus building three subpopulations:
one where the prediction accuracy is high, one where it is intermediate and one where
it is low [8].

Zhang and Kodell perform clustering after classification [8]. In [9], clustering is
done before classification, to partition tumors into regions before classifying them
on malignancy; the motivation is that a tumor may be very heterogeneous. After
clustering, variables are derived for each region, and are then used for classification
[9].

In [10, 11], we improve model quality by identifying subpopulations in a super-
vised way. In [10], we report that for the population under study, the two genders
show different class distributions and that for one of the genders (female), age is also
modulating the outcome. In [11], we use information gain to partition the population
on gender and then on a specific age value. While it is possible to select features on
the basis of their “merit” [12], as we did in [11], it is more reasonable to consider
clustering instead of a brute-force approach.

Klemm et al. [13] analyse epidemiological data on pains of the spine, applying
conventional clustering. They report that all tested algorithms are very sensitive to
parameter settings and to the choice of the distance measure [13].

In his survey [7], Arthur Zimek elaborates on the advantages of subspace cluster-
ing over traditional clustering for high-dimensional data. He uses following terminol-
ogy: “subspace clustering” algorithms find potentially overlapping groups of objects
whereas “projected clustering” algorithms partition the objects into non-overlapping
groups.This distinction is not always retained in the literature, but in [7] it is properly
justified by pointing to the pioneering algorithms CLIQUE [14] for subspace cluster-
ing and PROCLUS [15] for projected clustering. In our work, we study subspace
clustering and projected clustering algorithms, using these terms as defined in [7].

Studies of clustering in subspaces of medical data are rare Damian et. al apply
COSA (Clustering Objects on Subsets of Attributes) on different datasets, and group
objects on metabolic and/or physiological similarities [16]. They show that better
clusters can be found in a subset of the attributes than in the original high-dimensional
space [16].

Similarly to [5, 6, 7], we compare subspace clustering algorithms. However, our
goal is not to highlight their general advantages and disadvantages, but to investigate
their potential for high-dimensional epidemiological data.

3 Materials

Hepatic steatosis (informally fatty liver) is the condition of raised fat concentration
inside the liver cells. According to [17], around 20-30% of adults have developed
hepatic steatosis. Hence, it is considered as the most common liver disorder [17],
with increasing prevalence tendency for western countries [18]. Hepatic steatosis
itself is a reversible disorder but can evolve into a more severe disease, for instance
steatohepatitis, fibrosis, cirrhosis and liver cell cancer [19]. A timely diagnosis is
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difficult since hepatic steatosis commonly has no symptoms. Epidemiological studies
on this disorder focus on discovering risk factors that hold for the whole population
and for specific subpopulations, and on specifying reliable indices for diagnosis. For
example, indices of fat storage in the body (BMI, waist circumference) and the liver
enzyme GGT have been proposed in [20] as part of a “Fatty Liver Index”. The role
of the SNPs rs11597390, rs2143571 and rs11597086 is highlighted in [21] (cf. Table 3
of [21]). In [22], it has been shown that menopausal status is associated with hepatic
steatosis, thus referring to a variable that concerns only one subpopulation (female
persons).

To study the potential of subspace clustering for the discovery of subpopulations
sharing similar characteristics, we use hepatic steatosis as outcome on a data sample
from the population-based Study of Health in Pomerania (SHIP) [4], as described
hereafter.

3.1 On the Examination Programme of SHIP

SHIP encompasses two independent cohorts of residents in the region Pomerania, in
Northeast Germany. Inclusion criteria are residency and age (between 20 and 79
years). The set of dimensions is very large, because the examination programme con-
tains interviews, exercise tests, laboratory analyses, somatometric and blood pressure
measurements, dental, dermatological, cardio-metabolic and various ultrasound exam-
inations, sleep monitoring and whole-body magnetic resonance tomography (MRT).
SHIP is a longitudinal study: baseline examinations for the first SHIP cohort were
performed between 1997 and 2001 (SHIP-0, n= 4308), follow-up examinations were
done in 2002-2006 (SHIP-1, n= 3300) and 2008-2012 (SHIP-2, n= 2333) 4. SHIP data
are being used in numerous independent epidemiological studies, including studies on
hepatic steatosis (e.g. [22], [23]).

We analyze on a random sample of 578 SHIP-2 participants for which we have re-
ceived the recordings of the target variable, and we denote as SHIP2·578 and describe
hereafter.

3.2 Class Distribution in the SHIP2·578 Dataset

SHIP2·578 have 56 variables, of which we use the 26 numerical ones; they are depicted
in Table 1. We omit categorical variables, because in our preliminary experiments
we found that subspace clustering algorithms favored categorical variables with very
skewed value distribution and thus produced subspaces of very low quality. We use
the fat concentration identified in the MR images of the liver to derive the target
variable: participants with a fat concentration of less than 10% are assigned to class
A (negative); participants with fat concentration values between 10 and 25% are
assigned to class B, and those with values higher than 25% are assigned to class C.
The classes B and C are both positive. In our experiments, we consider the classes

4The second SHIP cohort, SHIP-TREND, is not relevant for this work, so we skip its description.
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A and notA to make the unsupervised learning task easier. Findings on supervised
learning for the three classes can be found in [10].

Name Description

age ship s2 Age at examination [years]

menopaus s2 Age at menopause [years]

alkligt s2 Daily Alcohol intake [g/day]

sleeph s2 # of sleep hours per day

som bmi s2 Body Mass Index [kg/m2]

som tail s2 Waist circumference [cm]

som huef s2 Hip size [cm]

hgb s2 Haemoglobin [mmol/l]

hba1c s2 Glycated haemoglobin [%]

quick s2 Thromboplastin time Quick[%]

fib cl s2 Fibrinogen (Clauss) [g/l]

crea s s2 Serum creatinine [µmol/l]

hrs s s2 Serum uric acid [µmol/l]

Name Description

gluc s s2 Serum glucose [mmol/l]

asat s s2 Serum ASAT [µmol/sl]

ggt s s2 Serum GGT [µmol/sl]

lip s s2 Serum lipase [µmol/sl]

chol s s2 Serum cholesterol [mmol/l]

tg s s2 Serum triglycerides [mmol/l]

hdl s s2 Serum HDL [mmol/l]

ldl s s2 Serum LDL [mmol/l]

tsh s2 TSH [mU/l]

jodid u s2 Lodide (urine) [µg/dl]

crea u s2 Creatinine (urine) [mmol/l]

sd volg s2 Total thyroid volume [ml]

mrt liverfat s2 Liver fat concentration [%]

Table 1: Overview of the numerical variables in SHIP2·578

The fat concentration values acquired from the MR images are preliminary: quot-
ing [10], “the MR technique used to compute the values of the original target variable
mrt liverfat s2 included a correction of T2? effects, but other confounders for chemical
shift MR fat quantification, such as multi-spectral complexity of fat and T1 effects
were ignored. However, as shown in [24], these latter confounders behave linearly
with respect to the target. Through conservative choice of the cut-off value (. . . ) and
discretization, this problem was partially amended, so that the mining methods still
behave reliably.” The cut-off values we use are 10% and 25%, as mentioned earlier.

SHIP2·578 contains 314 female and 264 male participants. These two subsets have
different class distributions, as shown in Table 2 (repeating part of a table from [10]).
Distribution differences do not necessarily mean that the outcome is predicted by
different variables in each subset, though. We introduce a clusterability assessment
step in our workflow (cf. 4.2), in which we seek indicators of clusters over different
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subsets of variables.

absolute relative
SHIP2·578 data total A B C A B C

All 578 438 108 32 76 % 19 % 6 %
“M” (gender=male) 264 183 66 15 69 % 25 % 6 %
“F” (gender=female) 314 255 42 17 81 % 13 % 5 %

Table 2: Class Distribution on Gender in SHIP2·578

4 Subspace Clustering Workflow on Epidemiological Data

Our workflow is depicted in Figure 1. It encompasses components for following major
tasks: dataset preparation, clusterability assessment, model learning with subspace
clustering and projected clustering algorithms, and model quality assessment.

Figure 1: Workflow of our approach on assessing the merit of subspace clustering
and projected clustering on epidemiological data

Two of these tasks (on the right of Figure 1) build the core of our approach: under
clusterability assessment we define indicators on the existence of clusters in subspaces;
under quality assessment we generate models governed by randomness (“models-of-
randomness”, cf. 4.4) and check whether the quality of the “true models” significantly
exceeds the quality achieved by noise. This latter task is neccessary, because our goal
is to identify subpopulations that have not been already discovered. We describe all
tasks hereafter.
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4.1 Data Preparation

As shown in Figure 1, data preparation in our workflow covers two aspects. First,
we check for subpopulations that are characterized by different sets of variables. The
identification of such subpopulations delivers a first indication on the existence of
potentially interesting subspaces. Moreover, subpopulations can be used for the eval-
uation of the clusters.

As can be seen in Table 2, SHIP2·578 has two subpopulations that differ in the class
distribution. Moreover, several variables are only filled for the female participants.
So, subspace clustering algorithms may identify subspaces containing some variables
filled solely for female participants.

Data preparation further encompasses the alignment of the epidemiological data to
the requirements of the algorithms – normalization and treatment of missing values.
Normalization is necessary for all algorithms that use a distance that is sensitive
to differences among value ranges (e.g. Euclidean distance). Epidemiological data
have variables with very different value ranges (e.g. age in years, sleep hours per
day). Hence, for each variable V with original range RV = [minV ,maxV ], we apply
min-max normalization [25], mapping each value w ∈ RV into w′ = w−minV

maxV −minV
.

Treatment of missing values is necessary for algorithms that cannot compute dis-
tances between objects that have missing values. We consider two options, RE-
PLACEMENT and MAX DISTANCE. For REPLACEMENT, we replace each miss-
ing value of variable V with the average of the observed values if V is numerical, and
with the mode of V , if V is categorical. For MAX DISTANCE, we specify that the
distance between NULL and any value is 1.0.

In our experiments, we opted against MAX DISTANCE, because it tends to arti-
ficially bring objects with few missing values closer to each other and it turns objects
with many missing values into outliers. However, it is possible that REPLACEMENT
hinders the identification of subspaces containing only male/only female participants.

4.2 Clusterability Assessment

To acquire an indication that there are clusters in the data, we use three heuristic
indicators: (i) similarity of the dataset under study to datasets known to contain
clusters, (ii) amount of variance captured by combinations of variables under Prin-
cipal Component Analysis and (iii) prior knowledge on the existence of clusters in
subspaces.

4.2.1 Heuristic (i): Clusterability Assessment through Dataset Compar-
ison

As our first heuristic, we propose to compare the dataset under study to datasets
known to have a cluster structure. For the comparison, we define similarity between
datasets on the basis of (a) cardinality, (b) number of dimensions and (c) number of
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classes: we select (i.1) datasets that have comparable cardinality, number of dimen-
sions and number of classes as our dataset, as well as (i.2) datasets with different
values for some of the three properties.

As clusterability indicator for heuristic (i), we propose to use the K-dist curve of
[26]: the “K-dist” of an object is its (Euclidean) distance to its kth nearest neighbour.
For our heuristic, we compute the “K-dist curve” or “K-dist graph” of a dataset by
sorting the objects on increasing K-dist, and then we juxtapose the curves of different
datasets.

The motivation of using the K-dist curves is that if a cluster structure exists in
the full-dimensional dataset, then it will be reflected as an early steep increase in the
K-dist curve. In contrast, a slow increase means that most objects are at the same
distance to each other; then, we infer that clustering struggles to find representative
clusters in full space. However, we do not know in advance when an increase is “early
steep” vs “slow”. Therefore, we compare the curve of the dataset under study to
datasets, where clusters are easy-to-find (according to literature). If the curve of our
dataset is similar to curves of datasets with easy-to-find clusters, this is an indicator
of clusterability in the complete set of dimensions. The choice of k does not critically
affect the trend of the curves, therefore we use a low value to reduce complexity in
calculating the distance values.

In Figure 2, we see the K-dist curves for SHIP2·578 (578 objects, 26 dimensions,
3 classes) and for the UCI datasets Iris (150 objects, 4 dimensions, 3 classes) [27],
Ionosphere (351 objects, 34 dimensions, 2 classes) [28] and Libras Movement (360 ob-
jects, 90 dimensions, 15 classes) [29], denoted as “Libra” in the figure. With respect
to cardinality and number of dimensions, the SHIP2·578 dataset under study is most
similar to the Ionosphere dataset (selection i.1), and is dissimilar to Iris, which con-
tains much less elements and has only 4 dimensions, and to Libras Movement which
has far more dimensions (selection i.2). The Iris clusters are easy to find (e.g. by
K-Means or DBSCAN) on the complete set of dimensions.

Before computing Euclidean distances, we normalize all variable ranges. Since
each dataset has a different number of dimensions d, we compute the K-dist as the
sum of distances over all dimensions and then divide by d. We set k = 4, as in [26].
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Figure 2: The 4-dist curve of the dataset SHIP2·578 under study, juxtaposed to the
curves of datasets, which have a known cluster structure
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As we see on Figure 2, the 4-dist curves of Iris and Ionosphere are the most similar
to each other, although they are dissimilar in number of objects and dimensions. Both
datasets exhibit an early upward trend (after reading the first few elements). The
curve of Libras Movement is very different from these two curves, and is the one
most similar to the curve of SHIP2·578: both of them exhibit a slow upward trend,
indicating that most objects are equi-distant from each other, except for a few outliers
that are very far from all other elements; these outliers are reflected in a steep raise
for the last dataset elements.

The curve for Libras Movement might be due to the impact of its 90 dimensions
on the Euclidean distance values. However, the curse of dimensionality cannot be the
sole cause for the curve of SHIP2·578, which has more elements and less dimensions,
even less than Ionosphere. Hence, we expect that SHIP2·578 does not contain easy-
to-find clusters, either due to the curse of dimensionality or because there are no
clusters in the complete space.

To test this further, we run k-means and DBSCAN with different parameter set-
tings on SHIP2·578. We acquired very poor results both for internal indices and with
respect to class separation (using the classes as clusters).

4.2.2 Heuristic (ii) on the Existence of Interesting Subspaces

In this heuristic, we perform Principal Component Analysis and inspect the amount
of variance explained by the first few principal components (PC). The motivation is as
follows. Each principal component reflects correlations between some variables. The
variables involved in any two principal components may well be the same. However,
if several principal components are needed to explain most of the variance, then there
may be some subsets of correlated variables that are only partially overlapping.

As we see in Figure 3, the first three principal components explain ca. 35% of the
variance in SHIP2·578. Since SHIP2·578 has more than few dimensions (we consider
26), we expect that some of the subsets of correlated variables are not identical and
may be found by a subspace clustering method.

4.2.3 Heuristic (iii): Exploitation of Prior Knowledge

This heuristic exploits independently acquired insights on variables that are associated
with the outcome.

In [10, 11] we name variables that are known to be associated to hepatic steatosis
(from epidemiology literature), and for which we found (on SHIP2·578) that they
contribute to class separation for only part of the sample (e.g. specific age intervals,
only one of the genders). In [10], we found the most important variable/valuerange-
pairs for the subset of the female and the male participants and found them to overlap
only partially. In [11], we ranked the variables on information gain and came to the
same observation: the top-10 positions in the two subsets overlap only partially.
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Figure 3: Pareto chart of the variance explained by the first 5 principal components
on SHIP2·578

4.2.4 Summary of Clusterability Assessment Heuristics

We propose heuristics to a priori assess the appropriateness of subspace clustering
for the dataset under study,. Heuristic (i) juxtaposes the K-dist curve of the dataset
with the curves of a selection of public domain datasets with known cluster struc-
ture. This heuristic delivers a positive indication if the dataset under study has a
K-dist curve that is similar to a dataset, whose clusters are known to be easy to find.
This indication concerns the complete space, since we consider all dimensions for the
computation of the K-dist values. Heuristic (ii) concerns the existence of interesting
subspaces; itt delivers a positive indication if the amount of variance covered by the
first principal componentsis comparatively low.

For SHIP2·578, heuristic (i) delivers a negative result: the dataset is not similar
to datasets with easy-to-find clusters in the complete space. Heuristic (iii) delivers a
positive result: the dataset may contain interesting subspaces. Heuristic (iii) on the
exploitation of prior knowledge delivers a weakly positive result: the dataset contains
subpopulations that overlap only partially in the sets of variables describing them.

4.3 Subspace & Projected Clustering

Subspace clustering methods find (possibly overlapping) groups of objects which are
homogeneous in a subset of features, or in a combination of feature subsets [7]. More
formally, let X = {x1, · · · , xn} be a set of objects and F = {f1, · · · , fm} the set of
dimensions. Then, a subspace cluster C = (O,S) encompasses a subset O ⊆ X of
objects that are similar to each other in the subspace S ⊆ F . Subspace clustering
algorithms allow an object to belong to two clusters. In contrast, project clustering
methods assign an object to exactly one cluster, thus avoiding redundancies.

As a (oversimplified) example, assume a set of 9 objects X = {x1, . . . , x9}, where
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F = {f1, . . . , f4}. Further, assume that x2, . . . , x6 are similar to each other across di-
mensions f1, f2 ∈ F , x4, . . . , x7 are similar to each other across dimensions f3, f4 ∈ F ;
x1, x9 are similar to each other over dimensions f4, f5. Then, a subspace cluster-
ing algorithm would return three clusters, C1 = ({x2, . . . , x6}, {f1, f2}) and C2 =
({x4, . . . , x7}, {f3, f4}) and C3 = ({x1, x9}, {f4, f5}). The first two clusters differ by
only one object, x7. A projected clustering algorithm would either create only two of
these three clusters, or split the objects x2, . . . , x7 into two distinct clusters, suppress-
ing the fact that some of the objects would belong to both clusters. Which approach
is best depends ultimatively on the semantics of the subspaces, the objects and the
application itself. 5

Therefore, we propose to consider both subspace clustering algorithms (type I) and
projected clustering algorithms (type II). However, we do not focus solely on finding
clusters in subspaces. Rather, we recognize that it is no less appealing to identify
interesting subspaces over the epidemiological data, i.e. subspaces that are expected
to contain clusters, as the two subspaces {f1, f2} and {f3, f4} in the example above.
Once the subspaces are found, a conventional clustering algorithm can be used to
find clusters in them. Hence, we also consider algorithms that find all interesting
subspaces (type III).

For our workflow, we consider the type I algorithm RIS [30], the type II algorithm
DUSC [31] and the type III algorithm PROCLUS [15]. We outline these algorithms
below. A more detailed discussion of all algorithms we investigated is in [32].

Type I - Subspace Clustering: We choose the “Dimensionality Unbiased
Subspace Clustering” algorithm (DUSC) [31]. Earlier subspace clustering algorithms
use a single density threshold for all subspaces; this is problematic for large subspaces
(curse of dimensionality). DUSC alleviates this problem by using kernel estimators
and computing density thresholds that depend on the cardinality of each subspace
[31].

Type II - Projected Clustering: We choose the algorithm PROCLUS [15]
as typical member of the “projected clustering” family. PROCLUS has two major
parameters, the number of clusters and the average number of cluster dimensions. In
our example above, the first parameter would determine whether PROCLUS would
build three or two clusters (assuming that the average number of dimensions were set
to 2). If the second parameter were set to 3, PROCLUS may have attempted to build
a 4-dimensional cluster after building one (or two) 2-dimensional cluster(s).

Type III - An algorithm that ranks subspaces on interestingness: We
choose the subspace ranking algorithm RIS [30]. RIS processes each object x in turn,
and works bottom-up to find the set of subspaces where x is a “core point”, according
to [26]; these are the subspaces “relevant for” x. To rank all subspaces, RIS uses a
quality function that considers the number of objects for which a subspace is relevant
and the number of dimensions of the subspace (higher numbers preferred), as well as
the volume covered by the hypersphere spanning all objects in this subspace (lower
volumes preferred) [30]. RIS prunes away a subspace S, either if there is a subspace

5This is a very simplistic example, intended solely to highlight the differences between subspace
clustering and projected clustering. Some subspace clustering algorithms may disallow overlaps
among the subspaces. Other algorithms may reject some of these clusters as two small.
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containing it and having higher quality (thus promoting larger subspaces), or if all
subsets of S with size |S| − 1 have higher quality than S (thus promoting smaller
subspaces) [30].

For our workflow, we speed up RIS as follows. Instead of iterating over each object,
we invoke RIS to find each subspace S that has at least one core point. We store S
and the number of core points in it, count(S), and compute the RIS quality function
[30] for it. We then rank the subspaces on their RIS quality score and choose the
top-ranked ones.

4.3.1 Distance Measure

All three algorithms we consider use Euclidean distance [31, 15, 30], and this is the
distance we use hereafter, since we consider only the numerical variables of SHIP2·578
(cf. 3.2). If categorical variables are also used, measures like Heterogeneous Euclidean-
Overlap Metric (HEOM) or Heterogeneous Value Difference Metric (HVDM) [33]
should be considered. HVDM is supervised, though: it takes the class distribution
into account; in our workflow, we do not disclose the class labels. For HEOM, we
note that if the epidemiological dataset has many categorical variables with several
distinct values, HEOM may “push apart” objects that are similar with respect to the
numerical variables.

4.4 Quality Assessment

The last step of our workflow is a new approach for the evaluation of subspace clus-
tering algorithms in the absence of a ground truth. This approach is not peculiar
to epidemiological mining; it holds for any case of cluster evaluation without ground
truth.

Our approach is inspired by [34], Ch. 8, section 8.5.8 on “Assessing the Significance
of Cluster Validity Measures”, where the quality of a set of clusters is compared to
the quality of clusters built over a dataset of random data points in the same set of
dimensions. However, we do not generate random data. Rather, we use the original
dataset but organize its members randomly into groups, simulating the behaviour of
the learning algorithm to a limited extend, as we explain hereafter.

4.4.1 Core Idea for Models-of-Randomness

Our core idea is to compare the models learned by the algorithms to “models-of-
randomness”. We define as model-of-randomness a set of k clusters ζ = {Zi, i =
1 . . . k} over over the dataset X and feature space F , built in such a way that the
assignment of objects to clusters is random. For each true model ξ generated by
a clustering algorithm, we generate N models-of-randomness (in our experiments,
N = 500), compute the quality of all models-of-randomness and build a histogram
of the observed quality values. These are the quality values likely to be observed on
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these data through random assignment of objects to clusters. If the quality achieved
by ξ is better than the values in the histogram, then we have an indicator that ξ has
found structure in the data. If the quality of ξ is within the histogram, then ξ is no
better than a random structure.

The algorithms DUSC, PROCLUS and RIS are very dissimilar: DUSC builds over-
lapping clusters, PROCLUS does not. Hence, a model-of-randomness that partitions
the data is fair for PROCLUS but not for DUSC. Thus, we build for each of DUSC,
PROCLUS and RIS (a set of N) dedicated models-of-randomness with comparable
behaviour.

4.4.2 Algorithm-Specific Models-of-Randomness

Let ξ = {Yi|i = 1, . . . , k} be the set of k subspace clusters over the dataset X and
feature space F , as returned by one of the algorithms invoked in the previous workflow
step. We build a set G(ξ) of N algorithm-specific ‘‘models-of-randomness” for ξ as
follows.

Models-of-Randomness for DUSC. DUSC builds a set of clusters that may
overlap partially; each cluster is in a different subspace. Let Si be the subspace
for cluster Yi of the model ξ built by DUSC. We create a set Zi that has the same
cardinality as Yi but contains randomly selected objects from X. Then, we project
away all but the Si dimensions of Yi, so that Zi in the same subspace as Yi. Note
that we randomly select the objects with replacement, since the clusters in DUSC may
overlap. We repeat this process for all clusters in ξ, building a model-of-randomness
ζ = {Zi|i = 1, . . . , |ξ|} and denote it as MRNDDUSC(ξ). We generate N such models.

Models-of-Randomness for PROCLUS. PROCLUS takes as input two param-
eters, the number of clusters k and the average number of dimensions per cluster l,
cf. [15]. To build a model-of-randomness zeta for a model ξ of PROCLUS, we first

randomly select k subsets of variables Ri ⊂ F, i = 1 . . . k, such that
∑k
i=1 |Ri| = k ∗ l;

these subsets may overlap. Then, we partition X into k sets of objects Zi, i = 1, . . . , k
by random selection without replacement, since the clusters built by PROCLUS do
not overlap. For Zi we retain only the dimensions in the subspace Ri (of the same in-
dex i). We denote model ζ = {Zi|i = 1 . . . k} as MRNDPROCLUS(k, l). We generate
N such models.

It is noted that the function MRNDPROCLUS(ξ, k, l) takes as input the two input
parameters of PROCLUS, but not the model ξ, since all information needed to build
MRNDPROCLUS() is encapsulated in these two parameters.

Models-of-Randomness for RIS. RIS returns a set of ranked subspaces only.
To build a model ξ for RIS, we invoke DBSCAN in each of the top-M subspaces
(for an input value M) returned by RIS. Let S be such a subspace and let kS be
the number of clusters returned by DBSCAN in it. We partition X into k sets of
objects Zi, i = 1, . . . , kS by random selection without replacement (since DBSCAN
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does not return overlapping clusters). Thus, for RIS+DBSCAN we acquire a model-
of-randomness per subspace. We denote it as MRNDRIS(S, kS) per subspace. We
generate N such models per subspace.

Complete Generation Process for Models-of-Randomness. The complete
generation process goes as follows:

1. For a model ξ of the algorithm under study, we generate a set of N models-of-
randomness G = {ζ1, . . . , ζN} as described above.

2. If the clusters in ξ do not cover all objects in X, i.e. if the clustering algorithm
has identified noise points and skipped them (as in [26]), then we randomly
choose and remove n elements from the clusters in ζi (for i = 1, . . . , N), where
n is the cardinality of the set difference ∪Y ∈ξY \ ∪C∈ζi C.

3. We compute the histogram hist(G, q) of quality values of the models in G using
the quality function q().

4.4.3 Quality Functions

For quality evaluation, we consider both internal and external indices, across the
guidelines of [34]. For evaluation against a ground truth (external index) we use the
F-measure F1 = 2 · precision·recallprecision+recall , with precision = TP

TP+FP and recall = TP
TP+FN .

For SHIP2·578, we consider the class A as negative (N) and the classes B and C taken
together as positive (P), deriving the numbers of true positives (TP), false positives
(FP) etc accordingly. To associate each cluster with a class we use majority voting,
i.e. we assign each cluster to the class of the majority of its elements.

For internal quality evaluation, we adjust the silhouette coefficient measure, as
described in [34] for clusters over the whole set of dimensions. This measure captures
compactness within each cluster and separability among clusters. Given a subspace
S, let a(o) be the average distance between object o and all other objects in its cluster
and b(o) be the minimum of the average distances from o to all clusters not containing
o. The smaller the value of a(o) is, the more close o is to all other objects of its cluster.
The higher the value of b(o) is, the more well-separated o is from other clusters. Then,

the silhouette coefficient of o with respect to S is defined as SilhS(o) = b(o)−a(o)
max(a(o),b(o)) .

The value of the silhouette coefficient is between -1 and 1, higher values are better.
The silhouette coefficient of a clustering is the average of the silhouette coefficient of
all data objects involved in the clustering, i.e. excluding noise points if any.

5 Experiments and Findings on SHIP2·578

We apply our workflow on SHIP2·578, using our own MATLAB implementations
of DUSC, PROCLUS and RIS. We initially experimented also with the subsets of
female and of male participants (cf. Table 2). However, in most of the experiments,
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the quality of the models did not vary much. Hence, we only report on the findings
for the complete dataset.

Unless otherwise specified, we disclose to the algorithm the variable mrt liverfat s2,
i.e. the fat concentration in the liver (cf. subsection 3.2).

5.1 Preparatory Steps and Parameter Tuning

According to the first step of our workflow, we normalize all variables to the interval
[0, 1]. For the treatment of missing values, we opt for the REPLACEMENT strategy
(cf. subsection 4.1), i.e. we replace missing values of numerical variables with the
mean, and missing values of nominal variables with the mode of the distribution.
In the following, we denote the cardinality of the dataset as N and the number of
dimensions as d.

Parameter settings for DUSC: We focus on small subspaces to alleviate the
side-effects of the curse of dimensionality on the similarity between the objects in
the clusters of each subspace. Hence we experiment with low values for the global
density threshold F . We conducted preliminary runs for values between 0.1 and 2
and set F to 0.7 for the complete dataset, and to 1.5 for the subsets of female and of
male participants. Similarly to RIS, we set the minimum size of a cluster minSize
to 6, which is equal to round(ln(F)) and approx. 1 % of the total dataset size. For
the parameter ε, which controls the kernel density [31], we empirically set it to 0.02.
Parameter η guarantees that very sparse regions are not considered as dense; we set
it to 2, as suggested in [31]. For both F and ε, we tune the parameter values such
that for the cardinality dim of a created subspace S it holds that it lies between 1
and half of the feature space F , i.e. 1 < dim(S) < 0.5 · d.

Finally, parameter r influences the pruning of redundant subspaces: given a sub-
space cluster C ′ = (O′, S′) if there exists another subspace cluster C = (O,S) with
O′ ⊆ O ∧ S ⊂ S′, |O′| > r · |O|, then we prune C. We set r to 0.2; this is admittedly
very strict, but considerably reduces complexity in our experiments.

Parameter settings for PROCLUS: The main parameters input to PROCLUS
are the number of projected clusters k and the average dimensionality l. For k, we
consider {2, 3, . . . , 15}; for l, we employ {3, 5, . . . , 15}. For each run, PROCLUS stops
after 10 iterations. We set the parameters A and B, which control the complexity of
the initialization phase, to 10 and 5, respectively. Parameter minDeviation, needed
to identify too small clusters, is set to 0.1 which means that a cluster medoid is
declared as bad, if the cluster contains less than Nk ·minDeviation objects.

Parameter settings for RIS: RIS uses the concept of density introduced in DB-
SCAN [26]. To set the density threshold minPts and the neighborhood radius ε for
DBSCAN, we adapt the heuristic of [30], and set minPts = round(ln(N )). Also, we
utilize the upper bound heuristic proposed in [30] to set ε for a N × d-dimensional

dataset as εγminPts = 1
2 · γ ·

d

√
minPts
N with γ ∈ {0.05, 0.06, . . . , 0.1}.
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We prune subspaces with fewer core objects than 90% of the dataset’s size. From
the ranked list of subspaces returned by RIS, we select the top-M , for M = 6. Then,
we apply DBSCAN with the same minPts and ε to obtain a clustering.

5.2 Setting Up the Models-of-Randomness

We create models-of-randomness for each of DUSC, PROCLUS and RIS, as described
in subsubsection 4.4.2. We set the number of models N = 500, i.e. we generate 500
models-of-randomness for each model of DUSC and of PROCLUS.

For RIS, we set M = 6, i.e. we consider the top-6 subspaces, as already mentioned
at the end of Section 5.1. We invoke DBSCAN for clustering in each subspace, as
explained in the corresponding part of subsubsection 4.4.2.

When we invoked PROCLUS in our preliminary experiments, we found that it
returns non-unique results for a given setting of the parameters k, l. A possible
explanation is that the average number of dimensions per subspace, i.e. the parameter
l, can be realized in different ways. For example, if the total number of dimensions
is 6 and if the parameter settings are l = 3 and k = 2, then RIS has several ways of
building two clusters with an average of 3 dimensions. Therefore, we first select the
best runs, according to our quality measures (cf. 4.4.3) and identify the best values
for the parameters k, l. We fix k, l to these values and invoke both PROCLUS and
MRNDPROCLUS(k, l) N = 500 times. We thus generate the histogram of quality
values for both PROCLUS and for its models-of-randomness, and we juxtapose the
average quality value of the PROCLUS histogram with the values in the histogram
of MRNDPROCLUS(k, l).

5.3 Results for DUSC

In Table 3, we show the 13 subspace clusters produced by DUSC on SHIP2·578.
The largest subspace has three dimensions, 3 clusters are in one-dimensional spaces.
All subspaces come from a set of four variables: alkligt s2, crea s s2, ggt s s2 and
sleeph s2. The cluster sizes vary from 6 (≈ 1 %) to 533 members (≈ 92 %). The
minimum silhouette score is 0.40 (Cluster #9), the maximum is 0.97 (Cluster #1).
These scores are much higher than those of the models-of-randomness, where mean
and median are between -0.08 and -0.01. Hence, DUSC discovers cluster structure in
the data. However, no subspace cluster achieves an F1 score above 0, i.e. the clusters
do not separate between classes.

In Figure 4, we depict clusters #11, #12, #13 in their joint 4-dimensional space,
as well as 12 noise points: we draw three-dimensional scatterplots to highlight the
relationship among each three dimensions.We see that no cluster is very compact and
that each cluster contains objects that are close to objects of the other clusters. Noise
points are not very far from the cluster members either. Hence, albeit the silhouette
scores of all clusters are higher than in the model-of-randomness, the clusters do not
yield much insight on the similarities and differences among their members.
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Cluster No. #1 #2 #3 #4 . . . #11 #12 #13

Subspace alkligt s2 crea s s2 ggt s s2 sleeph s2 . . . alkligt s2 alkligt s2 alkligt s2
- - - crea s s2 . . . sleeph s2 sleeph s2 sleeph s2
- - - ggt s s2 . . . crea s s2 crea s s2 crea s s2
- - - - . . . ggt s s2 ggt s s2 ggt s s2

Cardinality of C 84 403 317 197 . . . 533 27 6
Silhouette 0.97 0.70 0.86 0.58 . . . 0.60 0.42 0.50
F1 0 0 0 0 . . . 0 0 0
MRNDDUSC :
Mean of Silhouette -0.04 -0.05 -0.05 -0.02 . . . -0.02 -0.02 -0.01
Median of Silhouette -0.02 -0.08 -0.08 -0.04 . . . -0.02 -0.01 -0.01
(Mean, Median) of F1 (0,0) (0,0) (0,0) . . . (0,0) (0,0) (0,0)

Table 3: Excerpt of the clustering obtained by DUSC on SHIP2·578 – subspace
variables, cluster sizes, silhouette & F1 scores, and (in the last four rows) performance
of MRNDDUSC

On the SHIP2·578 subset of female participants, DUSC returned 16 subspace clus-
ters (results without figures), among them 7 four-dimensional ones. As for the com-
plete dataset, the variables sleeph s2 and ggt s s2 were also part of these subspaces.
However, DUSC also included the variable menopaus s2 (age at onset of menopause),
as well as the fat liver concentration variable mrt liverfat s2 in the subspace. Hence,
DUSC did manage to exploit a gender-associated variable. The liver fat concentra-
tion variable did not contribute to class separation though: the F1 score is as low as
for the models-of-randomness. The silhouette scores are also low, though still higher
than in the models-of-randomness.

On the SHIP2·578 of male participants (results without figures), DUSC returned
8 clusters with at most three dimensions (in 6 of the 8 clusters). As for the complete
dataset, the variables crea s s2, ggt s s2 and sleeph s2 constitute a subspace, but not
the variable ggt s s2 alone. The silhouette scores are higher than for the subset of
female participants, while the F1 score is again as low as for the models-of-randomness.

5.4 Results for PROCLUS

As pointed out in subsection 5.2, PROCLUS runs in a non-deterministic way, so we
performed several experiments to identify the best parameter configuration: the best
silhouette score value (0.56) is achieved for kopt = 2 and lopt = 3, i.e. two clusters in
a subspace with three dimensions on average. The histograms of the silhouette scores
for these parameter settings is depicted on the upper part of Figure 5: PROCLUS at
the left-hand side, MRNDPROCLUS(kopt, lopt) at the right-hand side.

In the PROCLUS histogram on the left upper part of Figure 5, the median is
between 0.25 and 0.5, i.e. lower than the best observed silhouette score of 0.56. Still,
the histogram is shifted to the right in comparison to the histogram of the models-of-
randomness on the right upper part of Figure 5, where all values are between -0.25
and 0.25 (arithmetic mean: 0.003, median: 0.004). Hence, PROCLUS does find a
clustering structure in the subspace. The F1-score for kopt and lopt is 0 though (not
shown), indicating that the two clusters do not reflect the classes in the data. It
is noted that PROCLUS exploited the fat liver concentration variable mrt liverfat s2
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Figure 4: Scatterplots for the 4-dimensional clusters #11-13 (cf. Table 3) returned
by DUSC on SHIP2·578: the largest cluster (dark grey, low values for alkligt s2) is
rather compact, but cluster members and noise points are close to each other, making
interpretation difficult.

when building those clusters, although this variable is in neither of the subspaces.
In the lower left part of the figure we show the best silhouette score achieved when
hiding this variable; this experiment is described later.

In Table 4, we show a description of the two clusters that lead to the best ob-
served silhouette score on the upper left part of Figure 5. Cluster C1 contains 523
of 578 objects in a two-dimensional projection, C2 the remaining 55 objects in a 4-
dimensional projection. C1 is in a two-dimensional subspace, C2 in a four-dimensional
one, whereby the average subspace size is indeed 3, as dictated by lopt. The mean and
standard deviation values of each variable inside and outside a cluster are normalized;
we skip the term “normalized” hereafter when referring to the values of the variables
in these two clusters.

The variables of the subspace of cluster C1 have a lower standard deviation inside
C1 than outside it, and their mean values are shifted to the left, i.e. C1 contains par-
ticipants with lower crea s s2 and ggt s s2 values on average. However, the standard
deviation outside C1 is larger than the mean for both variables, implying that lower
values can also be seen in C2. The scatterplot in Figure 6 verifies this observation,
by showing the values of crea s s2 and ggt s s2 in C1 (in black) and in C2 (in grey);
despite the shift of the crea s s2 values in C1, the overlap is substantial. Essentially,
C2 is a subcluster of C1.
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Figure 5: Histogram of silhouette scores (over 500 runs) for PROCLUS (left-hand
side) and corresponding models-of-randomness (right-hand side). The models de-
picted in the upper part of the figure exploited the predictive variable mrt liverfat s2.
When mrt liverfat s2 is disclosed, PROCLUS achieves a silhouette score of 0.56 for
k = 2 clusters and l = 3 average number of dimensions (upper part). When this
variable is hidden, PROCLUS achieves an even higher silhouette score of 0.65 – this
time for k = 2, l = 15 (lower part) – but this value is an outlier: as can be seen in the
lower part of the figure, the average cluster quality of PROCLUS is the same as for
the models-of-randomness.

Indeed, cluster C2 is less compact than C1, as we see in Table 4: for two of the four
variables constituting the subspace of C2, namely for tsh s2 and hba1c s2, the mean
values are very close and the standard deviation values are so large that an overlap
of the clusters is certain. The mean of asat s s2 is larger inside C2 than outside it,
but the two mean values are less than one third of the standard deviation (almost the
same inside and outside C2) away from each other. The overlap of values for crea s s2
is evident in Figure 6. Since the values of all C2 dimensions overlap inside and outside
C2, we conclude that C2 is essential an area inside C1 that is less dense than the rest
of C1.

In the next experiment with PROCLUS, we hide mrt liverfat s2. The best silhou-
ette score for this set of variables is 0.65, achieved for k = 2, l = 15. The histograms
for PROCLUS and for the models-of-randomness with the same k, l settings are in
the left lower part, respectively right lower part of the figure. Differently from the his-
tograms in the upper part of the figure (where mrt liverfat s2 is disclosed), the mean
and median silhouette scores of PROCLUS are as for the models-of-randomness; the
best score (0.65) is an outlier. Hence, the liver fat concentration variable is exploited
by PROCLUS.
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Cluster Ci |Ci| Variable V µ(VCi
) σ(VCi

) µ(VC\Ci
) σ(VC\Ci

)

1 523
crea s s2 0.0617 0.0239 0.1103 0.1295
ggt s s2 0.0580 0.0788 0.1512 0.1658

2 55

tsh s2 0.1048 0.0513 0.1103 0.0860
hba1c s2 0.3348 0.0528 0.3344 0.0839
asat s s2 0.1620 0.0745 0.1329 0.0767
crea s s2 0.1103 0.1295 0.0617 0.0239

Table 4: Clustering result for PROCLUS with k=2 and l=3 for on SHIP2·578,
depicting each variable V that contributes to each cluster, the variable’s normalized
mean µ(·) and standard deviation σ(·) inside and outside each cluster
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Figure 6: Scatterplot of
PROCLUS for kopt = 2,
lopt = 3, across the vari-
ables crea s s2 and ggt s s2,
i.e. the subspace of C1;
crea s s2 is also in the sub-
space of C2: the crea s s2
values in C2 are more
shifted to the right than
in C1, but the overlap be-
tween the two clusters is
substantial.

The mean and median F1-scores for PROCLUS have been consistently equal to
zero (and thus equal to the values for the models-of-randomness), independently of
the k, l values. We observed an F1-score of 0.45 for k = 3, l = 15, but this value
appeared only once; the corresponding PROCLUS histogram over 500 runs had again
a mean and a median equal to zero. Thus, we conclude that no class separation is
achieved.

The silhouette scores of the clusters are influenced by the values of k and l, as we
see in Figure 7: we vary the number of clusters k, and, for each value we increase
the average number of dimensions l and depict the line of the silhouette values. We
observe that the parameter l has a large impact: for small l values, the silhouette
values are widely scattered; as l increases, the silhouette lines coerce.

5.5 Results for RIS

In Table 5 we show the six best subspaces returned by RIS, ordered by position in the
ranked list (i.e. subspace #1 is the best one). The first rows of the table describe these
subspaces, while the last four rows describe the quality of the models-of-randomness.

Each subspace returned by RIS consists of two variables only, which we depict in
the second row of Table 5. We observe that one of the variables, crea s s2 (serum
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Subspace No. #1 #2 #3 #4 #5 #6

Subspace Variables sleeph s2 crea s s2 crea s s2 crea s s2 crea s s2 quick s s2
crea s s2 tsh s2 ggt s s2 asat s s2 lip s s2 crea s s2

Number of Clusters 7 1 1 2 1 1
Number of Outliers 13 21 26 23 25 28

RIS Quality Score 703.5 688.2 678.1 676.8 671.7 669.2
Silhouette 0.74 0.78 0.85 0.61 0.77 0.61
F1 Score 0 0 0 0 0 0

Mean(SilhouetteMRND) -0.02 -0.06 -0.06 -0.04 -0.05 -0.04
Median(SilhouetteMRND) -0.06 -0.09 -0.10 -0.08 -0.09 -0.09
Mean(F1MRND) 0 0 0 0 0 0
Median(F1MRND) 0 0 0 0 0 0

Table 5: The six highest-rated subspaces of RIS for SHIP2·578: for each subspace we
show its RIS quality score, contributing variables and basic information on clustering,
including the number of clusters, the number of outliers, silhouette and F1 score. The
last four rows depict the performance of the models-of-randomness.

creatinine concentration, see Table 1 for all variable names) is contained in each of
them; given that the subspaces consists only of two variables, there is not much variety
among the subspaces.

The best subspace, #1, consisting of the variables sleeph s2 and crea s s2, has
a RIS quality score of 703.5. On this subspace, DBSCAN returns 7 clusters and
13 outliers. The silhouette score of this clustering is 0.74, clearly higher than the
models-of-randomness, where the silhouette mean is -0.02 and the median is -0.06.
The clusterings in the other subspaces have even higher silhouette scores (cf. Table 5,
5th row).

The clusterings in the subspaces found by RIS have an F1 score of zero, similarly
to the models-of-randomness. This is expected for the subspaces #2, #3, #5 and #6,
because DBSCAN builds only one cluster in each of them; this cluster is naturally
assigned to the majority class. The 7 clusters in subspace #1 and the two clusters
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in subspace #4 are also characterized by the majority class, though, hence DBSCAN
cannot reconstruct the classes in the subspaces found by RIS.

In Figure 8 we use scatterplots to give more insights of the clusters found in each
of the 6 subspaces. The “Quality score” mentioned above each subspace is the RIS
quality score; we repeat the value, together with the id of the subspace. In each of
the figures (marked in different shades of gray, and the outliers).
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Figure 8: Scatterplots for the clusterings in the top-6 subspaces found by RIS in
SHIP2·578

5.6 Findings, Insights and Restrictions

The models learned by all algorithms are superior in internal quality to the models-
of-randomness, implying that all algorithms identified some cluster structure in sub-
spaces of the data. On the negative side, the quality with respect to the ground
truth is unsatisfactory for all algorithms: no learned model has achieved a separa-
tion between the classes. However, our clusterability assessment step already gave an
indication that SHIP2·578 is not easy-to-cluster (cf. 4.2.1, especially Figure 2), and
we already know from prior research that class separation in SHIP2·578 is not easy
either [10, 11].

It is remarkable that some variables are present in many subspaces produced by
different algorithms. Most striking is the variable crea s s2 (serum creatinine, cf.
Table 1), which appears in subspaces of all algorithms. High values of this variable
indicate kidney dysfunction. Such a dysfunction is a common complication of diabetes
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mellitus. It is also reported [35] that there is an association between sleep disorders
and chronic kidney disease. The variable sleeph s2 (sleep hours per night, cf. Table
1) appears together with crea s s2 in some of the subspaces found by DUSC (cf.
Table 3), and also constitutes the best subspace found by RIS (cf. Table 5), i.e. the
one with the highest RIS quality score. The variable hba1c s2 (cf. Table 1, high
amounts are associated with diabetes mellitus) appears together with crea s s2 in
the PROCLUS cluster C2, Table 4).

These subspaces are not associated with the outcome ”hepatic steatosis” which we
study. Do they reflect associations between other outcomes and risk factors, though?
Next to scrutinizing cluster content (PROCLUS cluster C2, the 7 clusters of DBSCAN
in subpace #1 of RIS, the clusters in the DUSC subspaces), it must be investigated
whether these subspaces and clusters persist for different parameter settings of the
algorithms. This is necessary before stating that such subspaces might reflect known
variable associations. Ultimately, such associations must be validated in independent
studies, of course.

Concerning the potential of subspace clustering algorithms for epidemiological
mining in general, our experiments delivered insights on several restrictions that need
to be taken into account when using these algorithms or preparing epidemiological
data for them.

Setting the parameters has been a challenge. For some parameters, it is even
unclear what would be a proper range of values: this holds for the global density
threshold F required by DUSC, which is less intuitive than e.g. neighbourhood car-
dinality. Setting the average dimensionality l, as required by PROCLUS, is also less
intuitive than specifying a constant number of dimensions. Assigning values to non-
intuitive parameters requires several experimental runs. Moreover, as stated in [6],
such parameters are often set to minimize run time or result size; this does not imply
that the cluster structure is good.

Even for conceptually intuitive parameters like neighbourhood cardinality and ra-
dius, specifying values has been far from easy. For RIS, we adapted the heuristics
proposed in [30], but recognize that this heuristic is brute force and does not nec-
essarily reflect the peculiarities of a specific dataset. For PROCLUS, we faced the
additional problem of non-deterministic output, a fact that further impeded the tun-
ing of the input parameters.

The algorithms require more parameters than we mentioned in our experiments.
For example, PROCLUS requires values for the cut-off percentage to identify “bad”
medoids (PROCLUS uses k-medoids for clustering [15]), as well as two integers A
and B that tune the complexity of the random initialization phase. We have used the
parameter settings suggested in the literature, but we recognize that different values
may have a substantial impact on the results. Ultimately, this problem can only be
solved by methods that reduce the number of parameters, as e.g. in [36, 37].

Exploitation of domain knowledge. It is often pointed out that parameter tun-
ing requires some knowledge on the application. However, we found it difficult to
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guide the algorithms with use of our prior knowledge, because there was no match
between prior knowledge and algorithmic parameters.

For example, we disclosed to the algorithms the variable mrt liverfat s2 that deter-
mines the class, yet no algorithm exploited this variable during subspace construction
and learning. How to inform the algorithms that this variable is more important
than others? The supervised distance measure HVDM [33] would not help in that
case, because we did not disclose the discrete target variable, only the mrt liverfat s2
from which we derived the class labels. Re-weighting this or other variables in the
distance function might have been effective. However, it is not certain that assigning
a high weight to some variables would make the algorithm prefer these variables when
building subspaces; insider knowledge of the algorithm is necessary to decide that.
Algorithms should preferably allow for direct guidance on the importance of some
variables.

As another example, the experimentation with PROCLUS revealed that the algo-
rithm can be trapped to favor variables for which most objects have the same value,
although those variables do not contribute to well-separated clusters. An explanation
is that PROCLUS attempts to build a subspace of variables for which the standard
deviation is minimal. A variable that gets the same value for most of the objects does
satisfy this objective, although it is not informative with respect to clustering. We
know that epidemiological data contain many such variables, e.g. biomarkers, cate-
gorical variables on medication intake, variables associated to the presence of a rather
rare impairment. How to instruct the algorithm to consider them but not concentrate
exclusively on them?

Dimensionality bias. Algorithms like CLIQUE [14], SUBCLU [30] and RIS use a
static density threshold. This is problematic for subspaces of different cardinalities
(curse-of-dimensionality). This affects the performance of DUSC, too: DUSC uses a
dimensionality-unbiased density threshold to find clusters in subspaces, but it uses a
global density threshold to prune irrelevant subspaces during subspace generation [7].
Distance functions that are not sensitive to the number of dimensions seem to be the
sole remedy to this problem.

Cluster redundancy. Algorithms like DUSC build many overlapping clusters. So,
the application expert must decide which clusters are interesting and which object-
cluster memberships are important. Algorithms like RESCU [38], OSCLU [39] and
STATPC [40] compute not only the quality of a subspace cluster with respect to
a certain score but also scores for the complete clustering, e.g. “relevance” [38] or
“orthogonality” [39]. Such concepts seem promising for ranking clusters. However,
these algorithms seek the best candidate subspaces and the best candidate clusters in
them; although they employ heuristics to avoid generating and scanning all subspaces,
their execution time is very high. In our preliminary experiments, RESCU failed to
produce results for SHIP2·578 within a reasonable time. The advantage of cluster
ranking must hence be considered in the light of execution time overhead.
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Mix of numerical and categorical variables. Subspace clustering algorithms
exhibit an almost exclusive preference for the Euclidean distance and often assume
that all variables are numeric. Epidemiological data contain many categorical vari-
ables, though. Our dataset contains more categorical than numerical variables. At
the beginning of our study, we attempted to alleviate the problem by discretizing the
numerical variables with a technique proposed in [41], and then run the algorithms
with a feature space consisting solely of categorical variables. This was motivated
by the fact that there are algorithms like CLICKS [42] and SUBCAD [43], designed
for feature spaces with categorical variables only. However, PROCLUS, which we
wanted to include in our evaluation, has concentrated on categorical variables with
very skewed distribution of values, and produced very unsatisfactory results. Thus, we
discarded this approach. Nonetheless, it may be worth pursuing for other algorithms.

A candidate for subspace clustering on a mix of numerical and categorical variables
is HSM [44], which extracts subspace clusters by using the density-based mechanism
of DUSC for numerical variables and frequent pattern mining for categorical vari-
ables. The exploitation of categorical variables could compensate for the inconclusive
performance of DUSC on the numerical variables, as we observed it for SHIP2·578.
However, our study in [10] indicates that frequent pattern mining is most beneficial
when exploiting both numerical and categorical data, hence treating the two data
types separately might not bring great advantage. Yet, it might be worth investigat-
ing.

The more recent subspace clustering algorithm proposed in [45] uses k-modes clus-
tering and a feature weighting distance measure to cover so-called “heterogeneous
datasets”, which contain both numerical and categorical variables. However, this al-
gorithm builds “soft” subspaces [45], and might thus exacerbate the problem of too
many candidates to be inspected by the human expert.

Impact of design decisions on algorithm performance. Some of our design
decisions may have influenced the performance of the subspace clustering algorithms.
First, the treatment of missing values with the REPLACEMENT strategy has pos-
sibly prevented the recognition of male and female subpopulations. However, the
alternative strategy MAX DISTANCE (cf. subsection 4.1) may exacerbate object
dissimilarity and lead to more noise points, and it would be incompatible with the
constraint that at least 90% of the objects be present in a subspace. Hence, a future
step would be to allow for subspaces with less than 50% of the objects and then use
the MAX DISTANCE strategy. Approaches that generate too many alternatives are
impractical for PROCLUS (because of its non-deterministic nature), hence we would
consider this option only for RIS and DUSC.

6 Conclusion

We presented a workflow that investigates the potential of subspace clustering on
epidemiological data, using the example of hepatic steatosis as ground truth outcome
for the evaluation and the SHIP2·578 population-based dataset for the experiments.
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Our workflow encompasses steps for preparing the data according to the demands
of the algorithms and for selecting methods that find interesting subspaces, clusters
within a subspace and clusters across subspaces. The core steps of our workflow
are clusterability assessment and quality assessment. In the first core step, we seek
for indicators on whether the dataset contains clusters or interesting subspaces, by
performing statistics on it and comparing it to public domain datasets. In the second
core step, we evaluate the quality of the clusters learnt by the subspace clustering
algorithms against the quality of models-of-randomness. We introduce the concept
of model-of-randomness as a model describing data that do not have a clustering
structure at all. This concept is needed to evaluate in the absence of ground truth:
albeit epidemiological data have a ground truth with respect to a target variable, they
have no ground truth with respect to subspace clusters.

In accordance to our prior knowledge, our workflow has verified that the example
epidemiological dataset might contain subspaces but finding cluster structure in it
is not easy. This was reflected in the experiments with all algorithms: the internal
quality of the clusters found was higher than the quality of models-of-randomness,
but the subspaces were very small, some models consisted of only one cluster and
there was no class separation.

Our experiments revealed several insights on the potential of subspace clustering
for epidemiological datasets. Parameter setting is a major issue, because many param-
eters are not intuitive, so the expert does not even know what would be a proper range
for them. The exploitation of available domain knowledge is difficult, because prior
knowledge does not translate into the available set of parameters. Some properties of
the epidemiological data, namely a mix of categorical and numerical variables, a large
set of dimensions and a skewed distribution of many categorical variables (some of
them have the same value for most of the cohort participants), seem to disagree with
the design of the algorithms. A distance function that is insensitive to the number of
dimensions, covers both categorical and numerical variables, and allows for missing
values, seems to be key for the success of subspace clustering on epidemiological data.
So, we will work next towards extending our distance measures [11] in this direction.

The interplay of internal quality and class separation deserves some discussion
in the context of epidemiological mining. In our experiments, none of the subspace
clustering algorithms managed to separate the classes, but all of them produced mod-
els which, despite the shortcomings identified above, were of higher internal quality
than randomness. Färber et al. point out that the identified clusters may mirror
meaningful, previously undiscovered subpopulations of the dataset, yet common ex-
ternal evaluation measures discriminate these findings when the algorithms either
split classes into multiple clusters or combine two or more classes into a single cluster
[46]. Therefore, Färber et al. speak against juxtaposition of classes to clusters, stating
that “the already annotated classes are not even interesting in terms of finding new,
previously unknown knowledge. And this is, after all, the whole point in performing
unsupervised methods in data mining.”

In the light of the demands of personalized medicine, it seems reasonable to keep
track of groups of variables that appear together in subspaces, and to consider inde-
pendent validation for them. A further, perhaps even more promising next step is
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the design of semi-supervised variants of the subspace clustering algorithms for better
and transparent exploitation of already secured prior knowledge.
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