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Abstract. Classification is one of the most frequent tasks in machine learning.
However, the variety of classification tasks as well as classifier methods is huge. Thus
the question is coming up: which classifier is suitable for a given problem or how can
we utilize a certain classifier model for different tasks in classification learning. This
paper focuses on learning vector quantization classifiers as one of the most intuitive
prototype based classification models. Recent extensions and modifications of the
basic learning vector quantization algorithm, which are proposed in the last years, are
highlighted and also discussed in relation to particular classification task scenarios like
imbalanced and/or incomplete data, prior data knowledge, classification guarantees
or adaptive data metrics for optimal classification.

Keywords: learning vector quantization, non-standard metrics, classification,
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1 Introduction

Machine learning of complex classification tasks is still an challenging problem. The
data sets may originate from different scientific fields like biology, medicine, finance
and other. They can vary in several aspects like complexity/dimensionality, data
structure/type, precision, class imbalances, prior knowledge to name just a few. Thus,
the requirements for successful classifier models are multiple. They should be precise
and stable in learning behavior as well as easy to understand and interpret. Addi-
tional features are desirable. To those eligible properties belong aspects of classifica-
tion visualization, classification reasoning, classification significance and classification
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certainties. Further, the classifier result should be independent on the certain real-
ization of the data distribution but rather robust against noisy data and inaccurate
learning samples. These properties are subsumed in the generalization ability of the
model. Other model features of interest are the training complexity, the possibility
of re-learning if new training data become available and a fast decision process for
unknown data to be classified in the working phase.

Although, the task of classification learning seems to be simple and clearly defined
as the minimization of the classification error or, equivalently, the maximization of the
accuracy. This might be not the complete truth. In case of imbalanced contradicting
training data of two classes, a good strategy to maximize the accuracy is to ignore
the minor class and concentrate learning only to the major class. Those problems
frequently occur in medicine and health sciences, where only a few samples are avail-
able for sick patients compared to the number of healthy persons. Another problem
is that misclassifications for several classes may cause different costs. For example,
patients suffering from a non-detected illness cause high therapy cost later whereas
healthy persons misclassified as infected would require additional but cheaper medical
tests. For those cases classification also has to deal with minimization of the respec-
tive costs in these scenarios. Thus, classifier models have to be designed to handle
different classification criteria. Besides these objectives also other criteria might be
of interest like classifier model complexity, the interpretability of the results or the
suitability for real time applications [3].

According to these features, there exists a broad variety of classifiers ranging
from statistical models like Linear and Quadratic Discriminant Analysis (LDA/QDA,
[29, 76]) to adaptive algorithms like the Multilayer Perceptron (MLP, [75]), the k-
Nearest Neighbor (kNN, [22]), Support Vector Machines (SVMs, [83]), or the Learn-
ing Vector Quantization (LVQ, [52]). SVMs were originally deigned only for two-class
problems. For multi-class problems greedy strategy like cascades of one-versus-all
approaches exist [41]. LDA and QDA are inappropriate for many non-linear classi-
fication tasks. MLPs converge slowly in learning in general and suffer from difficult
model design (number of units in each layer, optimal number of hidden layers) [12].
Here deep architecture may offer an alternative [4]. Yet, the interpretation of the
classification decision process in MLPs is difficult to explain based on the mathemat-
ical rule behind - they work more or less as black-box tools [41]. As an alternative,
SVMs frequently achieve superior results and allow easy interpretation. SVMs belong
to prototype-based models. They translate the classification task into a convex opti-
mization problem based on the kernel trick, which consists in an implicit mapping of
the data into a maybe infinite-dimensional kernel-mapping space [24, 93]. Non-linear
problems can be resolved using non-linear kernels [83]. Classification guarantees are
given in terms of margin analysis [100, 101], i.e. SVMs maximize the separation
margin [40]. The decision process is based on the prototypes, determined during
the learning phase. These prototypes are called support vectors and are data points
defining the class borders in the mapping space and, hence, are not class-typical.
The disadvantage of SVM models is their model complexity, which might be large for
complicate classification tasks compared to the number of training samples. Further,
a control of the complexity by relaxing strategies is difficult [50].
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A classical and one of the most popular classification methods is the k-Nearest-
Neighbor (kNN) approach [22, 26], which can achieve close to Bayes optimal classifica-
tion if k is selected appropriately [40]. Drawbacks of this approach are the sensitivity
with respect to outliers and the resulting risk of overfitting and the computational
effort in the working phase. There exist several approaches to reduce these prob-
lems using condensed training sets and improved selection strategies [18, 39, 110] as
pointed out in [9]. Nevertheless, kNN frequently serves as a baseline.

LVQs as introduced by T. Kohonen can be seen as nearest neighbor classifiers
based on a predefined set of prototypes optimized during learning and serving as
reference set [53]. More precisely, the nearest neighbor paradigm becomes a nearest
prototype principle (NPP). Although, the basic LVQ schemes are heuristically moti-
vated approximating a Bayes decision, LVQs are one of the most successful classifiers
[52]. A variant of this scheme is the Generalized LVQ (GLVQ,[77]), which keeps the
basic ideas of the intuitive LVQ but introduces a cost function approximating the
overall classification, which is optimized by gradient descent learning. LVQs are easy
to interpret and the prototypes serve as class-typical representatives of their classes
under certain conditions. GLVQ also belong to margin optimizer based on the hypoth-
esis margin [23]. The hypothesis margin is related to the distance that the prototypes
can be altered without changing the classification decision [68]. Therefore, GLVQ can
be seen as an alternative to SVMs [34, 35].

In the following we will review the developments of LVQ-variants for classification
task proposed during the last years in relation to several aspects of classification
learning. Naturally, this collection of aspects cannot be complete. But at least, it
highlights some of the most relevant aspects. Just before, we give a short explanation
of the basic LVQ variants and GLVQ.

2 Basic LVQ variants

In this section we briefly give the basic variants of LVQ to justify notations and
descriptions. We suppose to have a training data set of vectors v ∈ V ⊆ Rn and let
NV denote the cardinality of V . The prototypes wk ∈ Rn of the LVQ model for data
representation are collected in the set W = {wk ∈ Rn, k = 1 . . .M}. Each training
vector v belongs to a predefined class x (v) ∈ C = {1, . . . , C}. The prototypes are
labeled by y (wk) ∈ C such that each class is represented by at least one prototype.

One can distinguish at least two main branches of LVQ the margin optimizer and
the probabilistic variants [68]. The basic schemes for both variants are explained in
the following.
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2.1 LVQ as Margin Optimizer

Now we assume a dissimilarity measure d (v,wk) in the data space, frequently but
not necessarily chosen as the squared Euclidean distance

dE (v,wk) = (v −wk)
2

=
n∑
j=1

(vj − wj)2
. (1)

According to the nearest prototype principle (NPP), let w+ denote the nearest pro-
totype for a given data sample (vector) v according to the dissimilarity measure d
with y (w+) = x (v), i.e. the best matching prototype with correct class label also
shortly denoted as best matching correct prototype. We define d+ (v) = d (v,w+) as
the respective dissimilarity degree. Analogously, w− is the best matching prototype
with a class label y (w−) different from x (v), i.e. best matching incorrect prototype,
and d− (v) = d (v,w−) is again the assigned dissimilarity degree, see Fig.1.

Figure 1: Illustration of the winner determination of w+, the best matching correct
prototype and the best matching incorrect prototype w−together with their distances
d+ (v) and d− (v), respectively. The overall best matching prototype here isw∗ = w+.

Further, let
w∗ = argminwk∈W (d (v,wk)) (2)

indicate the overall best matching prototype (BMP) without any label restriction
accompanied by the dissimilarity degree d∗ (v) = d (v,w∗). Hence, w∗ ∈ {w+,w−}.
1 Further, let be y∗ = y (w∗). Thus the response of the classifier during the working

1Formally, w∗ depends on v, i.e w∗ = w∗ (v). We omit this dependency in the notation but keep
it always in mind.
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phase is y∗ obtained by the competition (2). According to the BMP for each data
sample, we obtain a partition of the data space into receptive fields defined as

R (wk) = {v ∈ V |wk = w∗} (3)

also known as Voronoi-tesselation. The dual graph G, also denoted as Delaunay- or
neighborhood graph, with prototype indices taken as the graph vertices determines
the class distributions via the class labels y (wk) and the adjacency G matrix of G
with elements gij = 1 iff R (wi)∩R (wj) 6= ∅ and zero elsewhere. For given prototypes
and data sample the graph can be estimated using w∗ and

w∗2nd = argminwk∈W\{w∗} (d (v,wk))

as the second best matching prototype [59].
LVQ algorithms constitute a competitive learning according to the NPP over the

randomized order of the available training data samples based on the basic intuitive
principle attraction and repulsion of prototypes depending on their class agreement
for a given training sample.

LVQ1 as the most simple LVQ only updates the BMP depending on the class label
evaluation

4w∗ = −ε · Ψ (x (v) , y∗) · (v −w∗) (4)

with 0 < ε� 1 being the learning rate. The adaptation

w∗ := w∗ −4w∗ (5)

realizes the Hebbian learning as a vector shift. The value

Ψ (x (v) , y∗) = δx(v),y∗ −
(
1− δx(v),y∗

)
(6)

determines the direction of the vector shift v − w∗ where δx(v),y∗ is the Kronecker
symbol such that δx(v),y∗ = 1 for x (v) = y∗ and zero elsewhere. The update (4)
describes a Winner Takes All (WTA) rule moving the BMP closer to or away from
the data vector if their class labels agree or disagree, respectively. Formally it can be
written as

4w∗ = ε · Ψ (x (v) , y∗) · 1

2
· ∂dE (v,w∗)

∂w∗
(7)

relating them to the derivative of dE (v,w∗). LVQ2.1 and LVQ3 differ from LVQ1
in this way that also the second best matching prototype is considered or adaptive
learning rates come into play, for a detailed description we refer to [52].

As previously mentioned, the basic LVQ-models introduced by Kohonen are only
heuristically motivated to approximate a Bayes classification scheme in an intuitive
manner. Therefore, Sato&Yamada proposed a variant denoted as Generalized LVQ
(GLVQ,[77]), such that stochastic gradient descent learning becomes available. For
this purpose a classifier function

µ (v) =
d+ (v)− d− (v)

d+ (v) + d− (v)
(8)
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is introduced, where µ (v) ∈ [−1, 1] is valid and correct classification corresponds to
µ (v) < 0. The resulting cost function to be minimized is

EGLVQ (W,V ) =
1

2 ·NV

∑
v∈V

f (µ (v)) (9)

where f is a monotonically increasing transfer or squashing function frequently chosen
as the identity function f (x) = id (x) = x or a sigmoid function like

fΘ (x) =
1

1 + exp
(
− x

2Θ2

) (10)

with the parameter Θ determining the slope [109], see Fig.(2).

Figure 2: Shape of the sigmoid function fΘ (x) from (10) depending on the slope
parameter Θ

As before, NV denotes the cardinality of the data set V . The prototype update,
realized as a stochastic gradient descent step, writes as

4w± ∝ ε · ξ± ·
∂d±E (v)

∂w±
(11)

with

ξ± =
∂f

∂µ
· ∂µ
∂d±E

= ∓2 · ∂f
∂µ
· d∓ (v)

(d+ (v) + d− (v))
2 (12)

for both w+ and w−. Again we observe that the update of the prototypes follows the
basic principle of LVQ-learning and also involves the derivative of the dissimilarity
measure.

As shown in [23], GLVQmaximizes the hypothesis margin, which is associated with
the generalization error bound independent from the data dimension but depending
on the number of prototypes.
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2.2 Probabilistic variants of LVQ

Two probabilistic variants of LVQ were proposed by Seo&Obermayer. Although
independently introduced, they are closely related. The first one, Soft Nearest Pro-
totype Classifier (SNPC, [89]) is also based on the NPP. We consider probabilistic
assignments

uτ (k|v) =
exp

(
−dE(v,wk)

2τ2

)
∑M
j=1 exp

(
−dE(v,wj)

2τ2

) (13)

that a data vector v ∈ V is assigned to the prototype wk ∈ W . The parameter τ
determines the width of the Gaussian and should be chosen in agreement with the
variance of the data.

In medicine, medical doctors judge the proximity of patients to given standards
and define local costs

lc (v,W ) =
M∑
k=1

uτ (k|v) ·
(
1− δx(v),y(wk)

)
(14)

for classification of this training sample. The cost function of SNPC is

ESNPC (W,V ) =
∑
v∈V

lc (v) (15)

which can be optimized by stochastic gradient descent learning with respect to the
prototypes.

A generative mixture model for LVQ with an explicit discriminative cost function
has been proposed in [90] denoted as Robust Soft LVQ (RSLVQ). For this purpose,
the probability that a data sample v ∈ V is generated by the prototype set W is
introduced as

p(v|W ) =
M∑
j=1

p(wj) · p(v|wj) (16)

with prior probabilities p(wj) typically chosen as constant and the conditional prob-
abilities p(v|wj) determined as p(v|wj) = uτ (j|v) for Euclidean data and depending
on the Gaussian width τ . Taking the labels into account we have

p(v, x (v) |W ) =
M∑
j=1

δx(v),y(wj) · p(wj) · p(v|wj) (17)

such that marginalization gives p(x (v) |W ) =
∑M
j=1 δx(v),y(wj) · p(wj). This yields

p(x (v) |v,W ) =
p(v, x (v) |W )

p(v|W )
(18)
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as class probability. For i.i.d. data the cost function to be minimized in RSLVQ is
the sum of the log-likelihood ratios

ERSLV Q(W,V ) =
∑
v∈V

ln p(x (v) |v,W ) (19)

which can be optimized again by stochastic gradient descent learning for Euclidean
data.

Both probabilistic approaches keep the basic LVQ-learning principle of attraction
and repulsion, we refer to [90, 89].

3 Characterization of Classification Tasks and their Relation
to LVQ-variants

In this section we will collect and characterize problems and tasks related to classifi-
cation learning and provide respective LVQ variants. Further, we consider aspects of
appropriate dissimilarities and respective LVQ-variants, if structural knowledge about
the data is available or if restrictions apply. Yet, this collection is neither assumed
to be complete nor comprehensive. The aim is just to show that these issues can be
treated by variants of the basic LVQ schemes.

3.1 Structural Aspects for Data Sets and Appropriate Dissimilari-
ties

3.1.1 Restricted Data - Dissimilarity Data

For most of the LVQ-schemes, vector data are supposed. Yet, non-vectorized occur in
many applications, e.g. text classification, categorical data, or gene sequences. Those
data can be handled by embedding techniques applied in LVQ or by median variants,
if the pairwise dissimilarities collected in the dissimilarity matrix D ∈ RN×N are
provided. For example, one popular method to generate such dissimilarities for text
data (or gene sequences) is the normalized compression distance [21]. The eigenvalues
of D determine, whether an embedding is possible: Let be n+, n−, n° be the number
of positive, negative and zero eigenvalues of (symmetric) D collected in the signature
vector Σ = (n+, n−, n°) and Dii = 0. If n− = n° = 0 an Euclidean embedding is
always possible and prototypes are the convex linear combination wk =

∑N
j=1 αkjvj

with αkj ≥ 0 and
∑N
j=1 αkj = 1 [5]. The squared Euclidean distances between data

samples and prototypes can be calculated as

dD (vj ,wk) = [Dαk]j −
1

2
α>kDαk

and replace the dE in the above cost function for GLVQ. Gradient descent learning
can then be carried out as gradient learning for the coefficient vectors αk using the
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derivatives ∂dD(vj ,wk)
∂αk

[112]. This methodology is also referred as relational learning
paradigm. If such an embedding is not possible or does not show a reasonable mean-
ing, median variants have to be applied, i.e. the prototypes have to be restricted
to be data samples. Respective variants for RSLVQ and GLVQ based on a general-
ized Expectation-Maximization (EM) scheme are proposed in [64, 66]. The respective
median approach for SNPC is considered in [65].

Examples for those dissimilarities or metrics, which are not differentiable, are the
edit distance or compression distance based on the Kolmogorov-complexity for text
comparisons [21], or locality improved kernels (LIK-kernels) used in gene analysis [36].

3.1.2 Structurally Motivated Dissimilarities

If additional knowledge about data is available it might be advantageously to make
use of this information. For vectorial data v ∈ Rn representing discretized probabil-
ity density functions v (t) ≥ 0 with vj = v (tk) and

∑n
j=1 vj = c = 1, divergences

D (v||w) may be a more appropriate dissimilarity measure than the Euclidean dis-
tance. For example, grayscale histograms of grayscale images can be seen as such
discrete densities. More general, if we assume c ≥ 1, the data vectors constitute
discrete representations of positive measures and generalized divergences come into
play, e.g. the generalized Kullback-Leibler-divergence (gKLD) is given by

DgKLD (v||w) =

n∑
j=1

[
vj · log

(
vj
wj

)
− (vj − wj)

]
(20)

as explained in [20]. For differentiable divergences D (v||wk) with respect to the pro-
totype vector wk, it can be easily plugged into the above cost functions of the several
LVQ-variants from Sec. 2 for stochastic gradient descent learning. The derivative for
the generalized Kullback-Leibler-divergence is

∂DgKLD (v||w)

∂w
= − v

w
+ 1 .

Other popular divergences are the Rényi-divergence

Dα (v||w) =
1

α− 1
log

 n∑
j=1

vαj w
1−α
j

 (21)

applied in information theoretic learning (ITL, [70, 69]) with α > 0 with the derivative

∂Dα (v||w)

∂w
= − vα ◦w−α∑n

j=1 v
α
j w

1−α
j

using the Hadamard product v ◦w, and the Cauchy-Schwarz-divergence

DCS (v||w) =
1

2
log

 n∑
j=1

v2
j

 ·
 n∑
j=1

w2
j

− log

 n∑
j=1

vjwj

 (22)
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also proposed in ITL with the derivative

∂Dcs (v||w)

∂w
=

w(∑n
j=1 w

2
j

) − v(∑n
j=1 vjwj

) .
An ITL-LVQ-classifier similar to SNPC based on the Rényi-divergence with α = 2
as the most convenient case was presented in [98], whereas the Cauchy-Schwarz-
divergence was used in a fuzzy variant of ITL-LVQ-classifiers in [106]. A compre-
hensive overview of differentiable divergences together with derivatives for prototype
learning can be found in [102] and an explicit application for GLVQ was presented in
[63].

In biology and medicine, frequently data vectors are compared in terms of a corre-
lation measure % (v,w) [76, 97]. Most prominent correlation values are the Spearman-
rank-correlation and the Pearson-correlation. The latter one is defined as

%P (v,w) =

∑n
k=1 (vk − µv) · (wk − µw)√∑n

k=1 (vk − µv)
2 ·
∑n
k=1 (wk − µw)

2
(23)

with µv = 1
n

∑n
j=1 vi and w defined analogously. The Pearson-correlations is differ-

entiable according to

∂%P (v,w)

∂w
= %P (v,w) ·

(
1

B
v − 1

D
w

)
(24)

with the abbreviations B =
∑n
k=1 (vk − µv) · (wk − µw) and D =

∑n
k=1 (wk − µw)

2

[97]. Therefore, the Pearson-correlations can immediately be applied in gradient
based learning for the LVQ-classifiers [96] whereas Spearman-correlation needs an
approximation technique, because an explicit derivation with respect to w does not
exit due to the inherent rank function [95, 49]. Related to these approaches are
covariances for the dissimilarity judgment, which were considered in the context of
vector quantization learning in [62, 54].

3.2 Fuzzy Data and Fuzzy Classification Approaches related to LVQ

The processing of data with uncertain class knowledge for training samples and prob-
abilistic classification of unknown data in the working phase of a classifier belong to
the challenging tasks in machine learning and vector quantization. Standard LVQ and
GLVQ are restricted to deal with exact class decisions for training data and return
crisp decisions. Unfortunately, these requirements for training data are not always
fulfilled due to uncertainties for those data. Yet, SNPC and RSLVQ allow processing
of fuzzy data. For example, the local costs (14) in SNPC can be fuzzyfied replac-
ing the the crisp decision realized according to the Kronecker-value δx(v),y(wk) by
fuzzy assignments αx(v),y(wk) ∈ [0, 1] [79, 107]. Information theoretic learning vector
quantizers for fuzzy classification were considered in [106] and a respective RSLVQ
investigation was proposed in [30, 85].
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Otherwise, if the class label of the training data are fuzzy, further modification of
LVQ approaches are required relaxing the strict assignments of prototypes to certain
classes. This attempt was done in [31] for FSNPC. An alternative for those prob-
lems might be a combination of unsupervised vector quantization together with an
supervised fuzzy classifier extension based on self-organizing maps (SOM, [51, 52])
and neural gas (NG, [60, 59]) as proposed in [105].

Comparison of fuzzy classification results is mandatory as for crisp classification.
Therefore, reliable and compatible evaluation measures are necessary. Statistical mea-
sures like the κ- index or the κ-Fleiss-index for comparison of two and more classi-
fication solutions, respectively, are well-known and accepted in statistics for crisp
classification [14, 17, 76]. Their extensions regarding fuzzy classifications are investi-
gated in [32, 111].

4 Attempts to Improve the Classifier Performance

Several aspects can be identified to improve classifier performance. These issues
are not only pure classification accuracy and false positive/negative rates but also
comprise facets like interpretability and class representation, model size, classification
guarantee and other [3, 45, 44]. In the following we will graze some of these aspects
without any claim of completeness.

4.1 Robustness, Classification Certainty and Border Sensitivity

Several aspects can be identified when discussing robustness and assessment of classi-
fication certainty of a classifier model. For SVMs, most questions are answered by the
underlying theory of convex optimization and structural risk minimization providing
also generalization bounds [40, 83, 100]. For GLVQ generalization bounds were con-
sidered in [23, 35, 34]. However, LVQ-methods depend sensitively on the initialization
of the prototypes optimized during the stochastic online learning process, which is in
contrast to the well-determined convex optimization of applied in SVMs. Several
attempts were proposed to make progress regarding this problem ranging from intel-
ligent initialization to the harmonic to minimum LVQ algorithm (H2M-LVQ, [71]).
This latter approach starts with a different cost function compared to GLVQ incorpo-
rating the harmonic average distance instead of d+ and d− in (9). According to this
average, the whole distance information between the presented data sample and all
prototypes is taken into account, which reduces the initialization sensitivity. During
training progress, a smooth transition to the usual minimum distance GLVQ takes
place to end up with standard GLVQ. A more intuitive approach for initialization in-
sensitive GLVQ is to adopt the idea of neighborhood cooperativeness in neural maps
also for the prototype in GLVQ. Thus, not only the best prototype w+ is updated
but also all other prototypes of the correct class proportional to their dissimilarity
degree, for example by a rank based scheme known from neural gas. The respective
algorithm is denoted as supervised neural gas (SNG, [36]).
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In mathematical statistics, classification and discrimination ability is also assessed
in terms of significance level and confidence intervals. Beside the previously men-
tioned generalization bounds, the research for these aspects of LVQ schemes is under-
estimated so far [92, 1]. A related feature also to the confidence concept in statistics
is conformal prediction which provides together with a classification decision of the
classifier a value describing the certainty of the decision [91, 108]. A LVQ-realization
was proposed in [82], a respective approach for SNG was presented in [81]. Another
recently investigated approach is based on so-called reject options based on considera-
tions for reject tradeoff for optimum recognition error [19]. Rejection measures return
a value r (v) indicating the certainty of the classification of a data point v ∈ V . For
example, in RSLVQ as a probabilistic classifier model we can take

rRSLV Q (v) = argmaxk (p(y (wk) |v,W ))

where lower values correspond to lower certainty [28]. For GLVQ one can choose

rGLVQ (v) =
|d+ (v)− d− (v)|
2 ‖w+ −w−‖2

if the respective receptive fields from (3) are neighbored in Delaunay-graph G, i.e.

R
(
w−
)
∩R

(
w+
)
6= ∅ (25)

is valid. Related to those rejection options is a class-dependent outlier detection with

rclass−out (v) = −d+ (v)

as rejection measure.
For a certain classification it is important to detect precisely the class borders.

In SVMs this concept is realized by the support vectors, which are extreme points
of the class distributions. One aim of LVQ approaches is to represent the classes by
class typical prototypes. For a more detail discussion see, Sec.4.2. Here we want
to emphasize that class border sensitive LVQ-models can be demanded. The first
attempt in this direction was the window rule for LVQ2.1. According to this ruel,
learning takes only place if the training sample v falls into a window according to

min

(
d+ (v)

d− (v)
,
d− (v)

d+ (v)

)
≥ 1− ω

1 + ω
(26)

in the variant LVQ2.1. Prototype adaptation only takes place if this relation is fulfilled
for a predefined value 0 < ω < 1 [52], i.e. if the data sample v falls into a window
around the decision border. Yet, this rule does not work for very high-dimensional
data as explained in [109]. Further, the window rule (26) may destabilize the learning
process and, therefore, it was suggested to apply this rule only for a few learning steps
after usual LVQ1 training to improve the performance [52]. However, this unstable
behavior can be prevented or at least reduced, if the window rule is only applied if
the receptive fields R (w+) and R (w−) are neighbored, i.e. R (w+) ∩R (w−) 6= ∅.
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A more simple and intuitive border sensitive learning can be achieved in GLVQ.
For this purpose, we consider the squashing function fΘ (x) from (10) depending on
the slope parameter Θ. The prototype update (11) is proportional to the derivative

f ′Θ (µ (v)) =
fΘ (µ (v))

2Θ2
(1− fΘ (µ (v)))

via the scaling factors ξ± from (12). For small slope parameter values 0 < Θ� 1 only
those data points generate a non-vanishing update, for which the classifier function
µ (v) from (8) is close enough to zero [8], i.e. the data sample is close to a class
border, see Fig. (3).

Figure 3: Illustration of the border-sensitive LVQ.

The respective data points are denoted as active set Ξ contributing to the proto-
type learning. Thus, the active set determines the border sensitivity of the GLVQ-
model. In consequence, small Θ-values realize border sensitive learning for GLVQ and
prototypes are certainly forced to move to the class borders [48].

4.2 Generative versus Discriminative models, Asymmetric error
Assessment and Statistical Classification by LVQ-models

As pointed out in [73], there is a discrepancy between generative and discriminative
features in prototype-based classification schemes, in particular for class overlapping
data. The generative aspects reflect the class-wise representation of the data by the
respective class prototypes emphasizing interpretable prototypes, whereas the discrim-
inative part ensures best possible class separability. In LVQ-models, discriminative
part is mainly realized by the repellent prototype update for the best matching incor-
rect prototype w− as for example in LVQ2.1 or GLVQ, which can be seen as a kind
learning from mistakes [87]. The generative aspect is due to the attraction of the best
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matching prototype w+ with correct class label. A detailed consideration of balancing
both aspects for GLVQ and RSLVQ can be found in [73]. There, the balancing is re-
alized by a decomposition of the cost functions into a generative and a discriminative
part. For example, the generative part in GLVQ for class representation takes into
account the class-wise quantization error

EreprGLV Q (W,V ) =
1

2

∑
v∈V

d+ (v)

adopted from unsupervised vector quantization, whereas the original GLVQ cost func-
tion EGLVQ (W,V ) from (9) plays the role of the discriminative part [73]. Combining
both aspect yields a different weighting of d+ (v) and d− (v).

Other weighting and scaling may emphasize other aspects. Class-dependent
weighting and asymmetric error assessment of f (µ (v)) in GLVQ by a composed
scaling factor

s(v) = β(x(v)) · γ(y(w−), x(v))

was suggested in [46], where β(x(v)) > 0 are class-priors weighting the misclassifi-
cations of classes in the cost function 9. The γ(y(w−), x(v))-factor allows to model
class-dependent misclassification cost and thus enable to integrate asymmetric mis-
classification costs.

Related to these aspects is the Receiver Operating Characteristic (ROC, [15, 27])
for balancing the efficiency (true positive rate - TP-rate) and false positive rate (FP-
rate), see Fig.(4).

92 M. Kaden, M. Lange, D. Nebel, M. Riedel, T. Geweniger, T. Villmann



Figure 4: Illustration of the Receiver Operating Characteristic and the confusion ma-
trix with true positives (TP), false positives (FP), ffalse negatives (FN) and true nega-
tives (TN) (from: http://de.wikipedia.org/wiki/Receiver_Operating_Characteristic,
15.01.2014).

ROC analysis plays an important role in binary classification assessment in par-
ticular in medicine and social sciences. Originally, ROC is an important tool for
performance comparison of classifiers [27].

Recent successful LVQ/GLVQ approaches for medical applications also utilize this
methodology for improved LVQ analysis and classifier comparison [6, 7, 11]. In partic-
ular, ROC-curves are considered to be an appropriate tool for classifier performance
comparison [15], which are based on the evaluation of true and false positive rates.
Frequently, the area under ROC-curve (AUC) is calculated as the respective statistical
quantity for comparison [43, 67, 99].

Unfortunately, original GLVQ as proposed in [77] does not optimize the clas-
sification error rather than the cost function EGLVQ (W,V ) from (9). Hence, the
performance cannot judged consistently neither in terms of the statistical quantities
provided by the confusion matrix nor by the ROC analysis.

However, if the parametrized sigmoid function fΘ (x) is used for GLVQ, then the
cost function becomes Θ-dependent EGLVQ (W,V,Θ). It turns out that for Θ ↘ 0
the sigmoid function fΘ (x) converges to the Heaviside function H (x) such that the
cost function EGLVQ approximates the misclassification rate. Using this observation
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one can redefine the classifier function as

µΘ (v) = fΘ (−µ (v)) (27)

with µΘ (v) ≈ 1 iff the data point v is correctly classified and µΘ (v) ≈ 0 otherwise,
such that the new cost function EGLVQ (µΘ (v)) approximates the classifications ac-
curacy

AC =
TP + TN

NV
(28)

with TP and TN are the number of true positives and true negatives, respectively,
as considered in Fig.4. Again, NV is the cardinality of the full data set V . In a
similar way all quantities of a confusion matrix (see Fig. (4)) and combinations
thereof can be obtained as a cost function for a GLVQ-like classifier keeping the idea
of prototype learning [48]. In particular, many statistical quantities used in medicine,
bioinformatics and social sciences for classification assessment like precision π and
recall ρ defined by

π =
TP

TP + FP
and ρ =

TP

TP + FN

can be explicitly optimized by a GLVQ-like classifier. Also the well-known Fβ-measure

Fβ =

(
1 + β2

)
· π · ρ

β2 · π + ρ
(29)

developed by C.J. van Rijsbergen [74] and frequently applied in engineering can
serve as a cost function in this scheme [44]. For the common choice β = 1, Fβ is the
fraction of the harmonic and the arithmetic mean of precision and recall, i.e. β > 0
controls the balance of both values.

Further, we can draw the conclusion that with this statistical GLVQ-interpretation,
a classifier evaluation in terms of statistical quality measures based on the confusion
matrix as well as ROC-analysis becomes a consistent framework. As mentioned above,
ROC-curve comparison is usually done investigating the respective AUC-differences.
Other investigation focus on precision-recall-curves [25].

Recently, a GLVQ-approach for direct optimization of the AUC was proposed in
[10]. This approach directly optimizes AUC using the probability interpretation of
AUC as emphasized in [27, 38].

4.3 Appropriate Metrics and Metric Adaptation for Vector Data

Beside the data structure dependent dissimilarities and metric already discussed in
Sec. (3.1.2), we now briefly consider non-standard (non-Euclidean) metrics for vec-
tor and matrix data, which can be used in LVQ-classifiers for appropriate separa-
tion. Thereby, one fascinating behavior of parametrized metrics is the possibility
of a task dependent adaptation to achieve a better classification performance. For
LVQ-classifiers, this topic was initialized by the pioneering works [13] and [37] about
relevance learning in GLVQ denoted as Generalized Relevance LVQ (GRLVQ). In
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this work the usually applied squared Euclidean metric in GLVQ is replaced by the
weighted variant

dλ (v,w) =
n∑
j=1

λ2
j (vj − wj)2 (30)

with the normalization
∑n
j=1 λ

2
j = 1. Together with the prototype adaptation for

a presented training sample v with label x (v), also the relevance weights λj are
optimized according to

4λj ∝ λj
[
ξ

+ (
vj − w+

j

)2 − ξ− (vj − w−j )2] (31)

to improve the classification performance. Here we applied the stochastic gradient
∂EGRLV Q

∂λj
and the derivative

∂dλ (v,w)

∂λj
= 2λj (vj − wj)2

. (32)

The generalization of this relevance learning is the matrix variant (abbreviated as
GMLVQ) using the metric

dΩ (v,w) =
m∑
i=1

([Ω (v −w)]i)
2 (33)

with Ω ∈ Rm×n as a linear data mapping [86, 87, 16]. The derivative reads as

∂dΩ (v,w)

∂Ωkl
= 2 · [Ω (v −w)]k [v −w]l

where [v −w]j denotes the jth component of the vector v − w. For quadratic Ω ∈
Rn×n the regularization condition det (Λ) = det

(
Ω>Ω

)
has to be enforced [84].

Many interesting variants have been proposed including prototype- or class-specific
matrices. Recently, the extension to vector Minkowski-p-metrics

dΩ
p (v,w) = p

√√√√ m∑
i=1

(|zi|)p (34)

were considered in [57, 58] with the linear mapping

z = Ω (v −w) . (35)

Minkowski-p-norms allow further flexibility according to their underlying unit balls
Fig.5.
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Figure 5: Unit balls for several Minkowski-p-norms ‖x‖p (34): from left to right
p = 0.5, . . . = 1, . . . = 2, . . . = 10.

In particular, all values 0 < p ≤ ∞ are allowed [55]. For example, values p < 1
emphasize small deviations. Thereby, for p 6= 2 the respective spaces are only Banach
spaces, which are equiped with a semi-inner product instead of the usual Euclidean
inner product.

Kernel distances became aware also for LVQ approaches due to the great success
of SVMs. Positive definite kernel function κΦ (v,w) correspond to kernel feature
maps Φ : V → IΦ ⊆ H in a canonical manner [2, 83]. The data are mapped into an
associated Hilbert space H such that for the respective inner product 〈•, •〉H in H
the relation

〈Φ (v) ,Φ (w)〉H = κΦ (v,w)

is valid. Therefore, a kernel distance is defined by the inner product, which can be
calculated as

dκΦ (Φ (v) ,Φ (w)) =

√
κ (v,v)

2 − 2κ (v,w) + κ (w,w)
2 (36)

for images Φ (v) and Φ (w). First integration attempts of kernel distances into GLVQ
were suggested in [72] and [80] using various approximation techniques to determine
the gradient learning in the kernel associated Hilbert space H. An elementary alter-
native is the utilization of differentiable universal kernels [103] based on the theory of
universal kernels [61, 88, 94]. This approach allows the adaptation of the prototypes
in the original data space but equipped with the kernel distance generated by the
differentiable kernel, i.e. the metric space (V, dκΦ) [104, 103]. Hence, such a distance
is also differentiable according to (36), see Fig.6.
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Figure 6: Utilization of differentiable kernels κΦ and respective kernel distances dκΦ

in vector quantization instead of the usual data metric dV . SVMs operate in IΦ

based on the inner product, whereas differentiable kernels may be applied directly in
gradient descent learning for GLVQ living the metric space (V, dκΦ

).

For example, exponential kernels are universal, which can be used together with
the above mentioned Minkowski-p-norms and the linear data mapping (35), revealing

κΩ
p (v,w) = exp

(
−
(
dΩ
p (v,w)

)p)
as an adaptive kernel with kernel parameters Ω [47].

The natural extension of vector quantization is matrix quantization. For example,
grayscale images of bacterial structures in biology have to be classified or hand writ-
ten digit recognition. One possibility is to extract certain features related to the task.
Another possibility would be to take the images as matrices and application of ma-
trix norms for comparison. Matrix norms differ from usual norms by the additional
property of sub-multiplicity ‖A ·B‖ ≤ ‖A‖ ·‖B‖, such that the matrix norm becomes
compliant with the matrix multiplication [42]. One of the most prominent class of ma-
trix norms are Schatten-p-norms [78], which are closely related to Minkowski-p-norms.
The Schatten-p-norm sp (A) of a matrix A is defined as

sp (A) = p

√√√√ n∑
k=1

(σk)
p (37)

where the σk (A) are the singular values of A, i.e. the squared singular values (σk (A))
2

are the eigenvalues of Ω = A∗A ∈ Rn×n and where A∗ denotes the conjugate complex
of A [78]. With this matrix norm, the vector space of complex matrices Cm×n becomes
a Banach spaceBm,n. As for vector norms, the value p = 2 is associated with a Hilbert
space. Schatten-norms were considered for improved LVQ classification compared to
vector norms in image data analysis in [33]. Further properties of the respective
Banach spaces were studied in [56].
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5 Summary

In this review paper we give a summary over interesting developments in learning
vector classification systems. Of course, such a survey can neither be complete nor
an in-depth analysis. This is more a starting point for further reading for interested
researcher and operators in practice. It does not replace own experiences but it may
help to find suggestions for specific tasks.
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