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Abstract. Methods based on fuzzy outranking relations constitute one of the main
approaches to multiple criteria decision problems. The use of ELECTRE methods require
the elicitation of a large number of parameters (weights and different thresholds); but direct
eliciting is often a demanding task for the decision-maker (DM). For handling intensity-of-
preference effects on concordance levels, a generalized concordance model was proposed
by Roy and Slowinski which is more complex than previous outranking models. In this
paper, an evolutionary multi-objective-based indirect elicitation of the complete ELECTRE
IIT model-parameter set is proposed. The evolutionary multi-objective inference method is
successfully extended to inferring reinforced-preference model parameters. Wide
experimental evidence is provided to support the proposal, which performs well even
working on small size reference sets.

Keywords: Multiple criteria analysis, Fuzzy outranking relations, Parameter inference,
Evolutionary algorithms.

1. Introduction

Many practical decisions can be modeled by using multi-criteria decision analysis. Multi-
criteria methods entail a decision-maker (DM) reflecting his/her preferences in a pre-
specified mathematical structure. Hence, obtaining preference information from the DM
and formalizing such information into preferential parameters is a crucial aspect in building
a multi-criteria decision model ([4]). The development of these models can be based on
direct or indirect elicitation procedures. In the first case, the DM must specify preferential
parameters through an interactive process guided by a decision analyst ([7]). Usually, the
DMs reveal difficulties when they are inquired to assign values to parameters whose
meanings are barely clear for them. On the other hand, indirect procedures, which compose
the so-called preference-disaggregation analysis (PDA), use regression-like methods for
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inferring a set of parameters f from a battery of decision examples ([7]). The object of this

paper is to derive a fitted model consistent with a decision policy embedded in a set of

decision examples. According to Doumpos and Zopounidis in [6], such examples may be

provided by:

a) former decisions made by the DM,

b) decisions on a limited set of fictitious actions for which the DM can easily express
preferential judgments (decision policy); and

¢) decisions on a subset of actions under consideration, for which the DM is comfortable
expressing a decision policy.

There are some early works related to the PDA paradigm (e.g. [15]). Indeed, the process
of assessing criterion weights in value-function and utility models (cf. [14, 23, 28]) may be
considered an example of the PDA approach. In the framework of Multiple Criteria
Decision Aid (MCDA), Jacquet-Lagreze and Siskos in [13] pioneered the UTA method.
According to Greco et al. in [11], MCDA approaches based on disaggregation paradigms
are of increasing interest because they imply relatively less cognitive effort from the DM.
The direct eliciting settlement has been recently criticized by Marchant and Pirlot ([16,
24]). In [16], Marchant argues that the only valid preferential input-information is that
arising from DM’s preferential judgments in pairwise comparisons. Another way is to
capture explicit or implicit knowledge or policy from DMs via rough sets approach, in
which the decision policy is modeled by a set of minimal decision rules (e.g. [12]). Our
interest here is restricted to PDA in ELECTRE methods, which are one of the most popular
multicriteria decision tools (e.g. [10, 17, 25]). In ELECTRE-based models, inferring all the
parameters simultaneously requires solving a non-linear programming problem with non-
convex constraints, which is usually difficult (cf. [5, 19]). According to Doumpos et al. in
[7], the relational form of these models and the veto conditions may make it impossible to
infer the model parameters in real-size data sets. Otherwise, in small data sets the non-
linear problem may be ill-determined; there are many different parameter settlements that
are compatible with preference information, but no mathematical programming technique is
able to describe the whole compatible parameter settlement. The problem is particularly
difficult when effects of reinforced-preference on the credibility of outranking are
considered as in [27]. At present, indirect procedures have not been applied to this
enhanced outranking model. Besides, the concordance model is more complex, thus
requiring even more cognitive effort from the DM when a direct settlement is used.

Two recent papers examine the problem of inferring outranking model parameters by
evolutionary techniques, both in the context of multi-criteria sorting problems (cf. [7, 9]). In
recent years, evolutionary algorithms have rendered powerful tools for solving difficult
problems in a variety of fields, in particular, for the treatment of non-linearity and global
optimization in polynomial time (cf. [2]). In [7], Doumpos et al. use a differential evolution
algorithm for inferring parameter values in the ELECTRE TRI method. In [9], Fernandez et
al. propose an evolutionary multi-objective algorithm for inferring parameters of a fuzzy
indifference relation model for multi-criteria sorting purposes. Compared with single-
objective optimization, the multi-objective approach is (though more complex) more
flexible because it allows a richer modelling of preferences. The solution of the parameter
inference problem must satisfy several constraints in the parameter space. The DM may be
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unable to establish the model parameters, but the DM may provide subjective information
about criterion importance and parameter value ranges. As constraints, these judgments can
reduce the search space and help to obtain more acceptable solutions. As an additional
advantage, an evolutionary multi-objective algorithm is capable of generating many good
compromise solutions in the associated parameter space. As a result of the evolutionary
exploration process, a characterization of the complete set of different model parameter
settlements is achieved. This information is then used to obtain a final parameter settlement.
The first goal of the present paper is to develop an evolutionary multi-objective method for
inferring the whole set of ELECTRE III model parameters. The approach combines the
preference information contained in a reference set with inter-criteria and intra-criteria soft
information arising from the DM. Further, the capacity of the evolutionary search is applied
to achieve a better characterization of the set of compatible parameter settlements. As a
second goal the approach is extended to achieve a more complex model for handling
reinforced preferences, as proposed by Roy and Slowinski in [27].

Fundamental problems arise when there is no previous preference information. In such
cases the DM should provide the required information in terms of preference judgments
(paired-comparisons or sorting decisions). As a third goal the paper explores the manner to
obtain preference information from the DM, which must be operational. The number of
required judgments and the cognitive effort from the DM should be kept as small as
possible. This issue has not been approached by other papers, which have used a rich
information contained in reference sets with hundreds, even thousands, of pairs of objects.

Aside of this introduction, the paper is organized as follows: notations and main
assumptions are pointed out in Section 2. The optimization model is outlined in Section 3.
The method for inferring ELECTRE III parameters is detailed in Section 4. The proposal by
Roy and Slowinski in [27] is briefly outlined in Section 5, in which the evolutionary search
is also adapted to the new model. Experimental evidence is given in Section 6 through five
illustrative examples. Section 7 contains concluding remarks.

2. Assumptions and notations
Let us consider a consistent family of criteria G={gy, ..., g,} defined on a decision set 4. Let

Z be a preference relation defined on a subset of Ax4 such that xZy means that the DM is
sufficiently confident with the statement ‘x is at least as good as y’.

Assumption 1: The DM can provide a reference set 7 < AxA4 composed of action pairs
(a,b) satisfying the following property: For each (a,b) € T, one of the two statements below
1s true:

i) az b
i) nota = b.
Let o(x,y) be a fuzzy outranking relation defined on 4. o(x,y) may be interpreted as the
degree of credibility of the statement ‘x is at least as good as y’. o can be calculated with
respect to the assumptions imposed by ELECTRE III, PROMETHEE , or by any other

outranking inspired approach. We are interested in considering how the o-image depends
on a specific settlement of the model parameters (weights and thresholds). Let us denote by
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P the set of model parameters to be inferred. Thus, the assessment of the degree of
credibility for ‘x is at least as good as y’ is a function o(x,y,P).

Assumption 2: The DM has additional information about criterion importance,
symmetry, asymmetry, and acceptable parameter ranges. By using such information, the
DM reveals judgments of acceptability or preferences on different parameter settlements.

Now, we denote by P* a specific settlement of model parameters. Let us consider a real
value A> 0.5 and the following crisp binary relations on T~

(xw) € S iff o(x,y, P*)> A (A-outranking)

(x) € P(A) iff o(xy, P*)> A A o(y,x, P*)<0.5 (A-strict preference)

() € Q) iff o(x,p, P*)> A A 0.5Z0(px, P* )<A (A-weak preference)

(xw) € I(A) iff o(xy, P*)> A1 A o(yx, P*)>A (A-indifference).

(x) € R(A) iff o(xy, P*)<A A o(px, P*)<A (A-incomparability).

3. Parameter inference by using a multi-criteria error measure
A perfect consistency preference model-decision policy is reflected by the logical
implications:

Vixy)eT
oxy, P¥)> A= xZy (1.a)
xXZy = o(xy, P*)> 1 (L.b)

0-1 logic in Eq. (1.a) is a simplified model. A non-ideal decision maker may associate a
degree of truth less than one to the proposition ‘x is at least as good as y’. Equation (1.a)
can be considered a fuzzy implication. For a non-ideal decision maker, his/her perception
about ‘x is at least as good as y’ is influenced by his/her beliefs about ‘y is not at least as
good as x’. Using the above A-relations, (1.a) and (1.b) can be transformed into:

Vixy)eT

XP()y =>xZy (2.a)
xQ(D)y = xZy (2.b)
xI Ay =>xZy (2.0)
xZy = xSy (2.d)

When the model o suggests a strict preference favoring x over y, the statement ‘x is at
least as good as y’ is more credible. The implication (2.a) is more credible than (2.b) or

(2.c). Yet some effects of reinforced preferences (cf. [27]) could make xZy true despite

o(xp,P*) <A.
Conditions
1) (x,y) € P(A) with not xZy
2) (x,y) € Q(A) with not xZ y
3) (x,y) € I(A) with not xZ y
4) (x,y) ez with not xS(A)y

are identified as inconsistencies with P(1), O(A) ,I(1), and Z, respectively. Such
discrepancies can be interpreted as errors, deviations of o(x,y, P*) from a good model for
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the degree of truth of the predicate ‘x is at least as good as y’. Such inconsistencies may
arise from inadequate assessments of some model parameters.
Let us consider the following sets:

Dp={(x,y) € P(A) with notxZ y }
Dy = {(x,y) € O(4) with notxZ y }
D;={(x,y) € I(A) with notxZ y}
Dy ={ (x,y) eZ with not xS(A)y }

np, ng, h; and nx denote the respective cardinality of the above sets. Obviously, such
values depend on P.

The model parameters should be inferred from the best compromise solution to the
multi-objective optimization problem:

Minimize (np , ng , ny, hxz ) 3)
Pe RF
where Ry is a feasible region in the parameter space. This region is determined by
constraints that the DM imposes on the model parameters (Assumption 2). In the remainder

of the paper we shall denote by (np , ng, n;, nxz )* the best compromise solution to Problem
3 in the objective space.

As in [9], we disregard single objective minimization of some error function or any
related criterion. Compared with single-objective optimization, a multi-objective approach
is more flexible because it allows modelling preferences on different objectives. The
different inconsistency measures do not have the same importance and should not be
merged into a single objective; inconsistencies with P(1) seem to be more relevant. The

objective ny seems to be a little more important than #; and nx:. However, since it is difficult

to model the DM’s priorities with respect to ng, n; and nx, we use a posterior modelling of
preferences. Still, the complexity of solving (3) suggests the application of evolutionary
algorithms. These are particularly convenient to solve multi-objective optimization
problems because they render approximations to the Pareto frontier in a single run, instead
of performing many single-objective optimization processes such as non-heuristic
conventional multi-objective optimization techniques do ([2, 9]). An evolutionary-based
solution to Problem 3 for inferring the ELECTRE III model parameters is developed in the
next section.

Beyond the mathematical complexities, many P* may arise as a pre-map from (np, ng ,

n; , nz)*. From such P* the DM should select a Py.* as ‘the most appropriate settlement’.
Indeed, this choice is another selection problem whose solution demands the DM consider
the following:

. How representative is the particular solution regarding the whole
distribution of parameter settlements?
. How capable is such a solution of restoring additional preference

information not included in the reference set?
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. To what extent does such a solution agree with the DM’s additional
information about criterion importance, symmetry, asymmetry, and acceptable
parameter ranges?

These issues will be addressed in subsection 4.4.

4. Inference of ELECTRE III parameters by evolutionary multi-
objective optimization
4.1. Brief outline of ELECTRE III

The ELECTRE methods introduced a binary relation S that is a model of Z. Proposition
xSy (‘x outranks y’) holds if, and only if, the DM has sufficient arguments in favor of ‘x is
at least as good as y’ and there are no strong arguments against it. In more formal way, the
coalition of the criteria in agreement with that proposition is strong enough, and there is no
important coalition discordant with it (cf. [26]). This can be expressed by the following
logical equivalence [22]:
xSy < C(x,p) A~ D(x,y)
where:
e (C(x,p) is the predicate about the strength of the concordance coalition; this coalition is
composed of two criterion subsets:
C(xSy) = {g; € G such that gi(x) - g(y) >-¢;};
ClyOx) = {g; €G such that g(y) -p; < g(x) < g -¢;} (O denotes ‘weak
preference’);
p;and g; denote the preference and indifference thresholds for criterion j ( p;>g; >0).
e D(xy) is the predicate about the strength of the discordance coalition C(yPx) = {j €G
such that gj(y) - gj(x) 2p; }(P denotes ‘strict preference”’)
e A and ~ are the logical connectives for fuzzy conjunction and fuzzy negation,
respectively.
Let c(x,y) denote the truth degree of predicate C(x,y). Using the ‘product’ operator for
conjunction, in ELECTRE III the degree of credibility of xSy is calculated by:
oxy) = clxy). Nd(x.y) “4)
where Nd(x,y) denotes the truth degree of the non-discordance predicate.
The concordance index c(x,y) is defined as follows:
cxy) = Lo kelxy) 5)
where:
k; is the weight of the j-th criterion (b + ky + ... + ky = 1)
cj(x.y) is the marginal (partial) concordance index for the j-th criterion. This index is
calculated by:

0 if je C(yPx)
¢lxy)= N (gXx) -gWw +tp) (pi—q) ifje CyOx) (6)
1 ifje C(xSy)

The partial discordance is measured in comparison with a veto threshold v;, which is the
maximum difference gj(y) - gj(x) compatible with o(x,y) > 0. Following Mousseau and Dias
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in [21], we shall use a simplification of the original formulation of the discordance indices
in the ELECTRE III method given by:

Nd(x,y) = min [1 - dj(x,p) ] (7)
je C(yPx)
dj(x,y) = (VJ - MJ)/ (Vj — uj) iff U; < Vj < Vi

where V; = gj(y) - gj(x) and u; is a discordance (pre-veto) threshold (see Figure 1).
o(x,y) is calculated by combining Equations 5-8 with Equation 4. So, the following
parameters must be specified:

1) the vector of weights;

ii) the vector of indifference thresholds;

iii) the vector of preference thresholds;

iv) the vector of veto thresholds;

V) the vector of discordance thresholds (only when the simplification

suggested in [21] is used).
Additionally, if a crisp outranking relation is built on 4, then a cutting level A* should
be specified.

4.2 Constraints in Problem 3
As we stated above, the DM may reveal subjective information about criterion importance
and parameter value ranges. The parameter settlement should correspond with such beliefs.
Otherwise, the DM would feel disappointed with a decision that contradicts his/her feelings.
The most obvious situation concerns ‘weights’. Often, the DM has a clear idea about the
importance of criteria, though is doubtful regarding weight values. The solution must agree
with the order of importance in the DM’s mind.

In [8], Fernandez et al. stated that the DM should be able to create the following binary
relations on G:

SI= {(gmg) € GxG such that “criteria g,, and g; have approximately equal importance’};

LI= {(gw.g) € GXG such that ‘criterion g,, is slightly more important than criterion g;’ };

MI= {(gn.g)) € GXG such that criterion g,, is clearly more important than criterion g’ }.

MI, LI and ST should hold:

a. If g,Mlg;then ky,— k=

b. If g,Llg;then f> k —k > [f2 )

c. If gnSlgjthen |k, k < pr2

where £ is a threshold parameter for strict outranking that is proposed to be settled
within the interval [1/(2n), 1/n] (cf. [8]).
In order to obtain a preference-consistent model, the DM may impose other constraints:
Forj=1,. (10)
0< ql min S CI/ qj max
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Dj min Spj Spjmt/vc (qjmax <pjmin )

Uj min < U; < Uj max (pj max < Uj min )

Vi min < Vi < Vi max (uj max < Vi min )

If necessary, the DM may impose constraints specifying certain inter-criteria asymmetry
conditions. For instance: v; <v;<v;, ¢, <gq; orp,<p;.

If the DM felt that the discordance threshold u should be near to the middle point of the
interval [p, v], the constraints:

v +p)2—uwl<erp)  O<e<<l) (i=1,..n) (11)

could be added.

The DM is not obliged to impose the above full set of constraints; some can be
removed, and some, added. The algorithm should be able to handle the constraints required
by the DM in order to find acceptable solutions according to Assumption 2.

4.3 Description of the evolutionary approach for inferring the model
parameters
We use the Non-dominated Sorting Genetic Algorithm-11 (NSGA-II) (cf. [3]). NSGA-II is
one of the most efficient approaches in the literature on evolutionary multi-objective
optimization (cf. [2]). This method ranks every member of a K ’-size population according
to individual non-domination levels, applies evolutionary operators to build an offspring
population, and combines parent and offspring populations in a new pool of 2K’ size. This
combined population is sorted into non-dominated classes. The next K ’-size population is
obtained by selecting the best individuals of the parent-offspring combined pool. In order to
keep diversity, a crowding distance (a density estimator) is associated to every individual.
For the selection of ‘parents’, NSGA-II uses a special kind of binary tournament called
‘crowded tournament selection operator’. It works as follows: let i, j be two randomly
selected solutions from the parent population. Solution i wins the tournament over j
whenever one of the following conditions is true:

1) if solution 7 has a better rank than j;
2) if they have the same rank but solution i has a better crowding distance
than j (that is, the crowding distance associated with i is greater than the associated to

J)-

Point 1 assures the winner lies on a better non-dominated front. Point 2 solves possible
ties between solutions, being on the same front, by deciding according to crowding
distances. In this case, the winner resides in a less crowded region.

The pseudocode of NSGA-II is given below (cf. [2]):

Generate random population (size K’)
Evaluate objective values
Generate non-dominated fronts
Assign to these fronts rank based on Pareto dominance
Keep the best front (rank) in the population memory
Generate offspring population
Binary tournament selection
Crossover and mutation
For i =1 to number of generations
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With parent and offspring population
Generate non-dominated fronts
Assign to these fronts rank based on Pareto dominance
Loop (inside) by adding solutions to next generation
Starting from the best front until K’ individuals found
Calculate crowding distance between points on each front
Update the population memory
Select points (elitist) on the better front (with better rank)
and which are outside a crowding distance
Form next generation
Binary tournament selection
Crossover and mutation
Increment generation index
End of loop
Individuals are represented by a string composed of 5n + 1 positions as shown in Figure

We use one-point crossover (e.g. [18]). 2n+1 possible crossover points are defined on

the individual (see Figure 3). Given two parents the specific crossover point is randomly
generated. This crossover operator keeps feasibility with respect to constraints 9, 10, 11.

We use uniform mutation (e.g. [18]). The operator for mutation is implemented as

follows:

Pick a random integer number Le [1; 4n+2]
II. If L € [1; n], assign j=L; then a random real number a € [ Gjmin; Gjmax ] 1S
generated. Replace g; with a.
I11. If L € [n+1;2n], assignj = 2n —L +1; then a random real number a € [

Djmins Pjmax | 1 generated. Replace p; with a. To enforce restriction (11) a random real
number b € B={xeR such that | v +ppi2—x <& (vi- py)} is generated. Replace u;
with b.

IV. If L € [2n+1;3n], assign j= 3n-L +1; then a random real number b € B is
generated; interval B is defined as in II. Replace u; with b.
V. If L € [3n+1;4n], assign j= 4n-L+1; then a random real number a € [

Vimin' Vimax ] 18 generated. Replace v; with a. To enforce restriction (11) a random real
number b € {xeR , such that | (v +p)2 —xl< & (v~ py)}is generated; replace u; with
b.

VI If L =4n+1, nreal numbers k; € (0; 1) are randomly generated. We use
the approach proposed in [1]. #-1 uniform random numbers are generated in (0;1);
further, these are ranked 0< a; < a5...<a,.; <1, and the weights are calculated as k; = a;
— a;.. Thus, the normalization condition (k; + k, + ... + k, = 1) is satisfied and the
random weights are uniformly distributed. This particular mutation is considered valid
only if the constraints given by (9) hold. Otherwise, the random generation is
repeated.

VIL If L = 4nt2, then a random real number ¢ € [Anpn; 1] (Anin20.5) is
generated. Replace A with a.
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Note that the above defined mutation operator also keeps feasibility with respect to
constraints 9, 10, 11. The initial population is generated from a feasible individual by
reiterative mutations.

In a wide range, the algorithm performance was not very sensitive to the settlement of
its parameters. No remarkable differences were found with population size K’ = 100, 150,
crossover probability p. =0.5, 0.8, mutation probability p,, =0.05, 0.1. The results obtained
using 1000 generations were better than those with 200 and 500 generations.

Finally, the parameters of the evolutionary search were set to: Number of generations=
1000, Population size= 100, Crossover probability= 0.8, Mutation probability= 0.05.

4.4. Final formalization and discussion
As we shall show through some examples, the above evolutionary methodology is able to

find a good compromise solution (np, ng, n;, nx)* to Problem 3 in its objective space.
Sometimes, an abundant reference information is available (for instance, when there are

many statements a=b from former decisions made by the DM or accepted by him/her). But
in other situations, the available reference information could be scarce and the cognitive
effort from the DM should be kept as small as possible. In case of small size reference sets

Problem 3 is ill-determined, and the compromise (np, ng, n;, nz)* usually corresponds to
many different points in the parameter space. Let us denote by {P*} the set of points in the

parameter space which are the pre-image of (np, ng, nj, nz)*. Each parameter settlement P;*
is compatible with the preference information contained in the reference set under
constraints 9—11. However, this does not mean that such compatible solution should be
accepted by the DM as the correct parameter settlement. The DM probably has other beliefs
and feelings, not contained in 9—11, which should be satisfied (this will be discussed in
detail below). It is thus necessary to choose an element Py * €{P*} as the final solution of
the parameter inference problem. The DM may decide between two procedures:
i) to select a particular P;* e {P*} according to the DM’s own judgment; or
ii) to use the information provided by their distribution in order to select a more acceptable
setting.
Let us discuss ii) thoroughly. There are two random factors that explain the deviation of
P;* from more acceptable central points:

1) The reference set is a population sample; different reference sets lead to
different optimal parameter settlements, although the system of DM’s preferences is
unique;

2) Even under the same reference set, the random nature of the evolutionary

algorithm produces different solutions.

Thus, P* can be considered a random vector. There is a multivariate probability
distribution function (P, *, P*) that describes the random behavior of P*, being P, * its
mean point. Let P,.,* be the nearest P* to P,*. P, may be considered the most central
point of ¥ P,*, P*), and from this view, its most representative point. P,.,* may coincide
with P,* when this is capable of restoring the reference information.

As a final formalization, with scarce preference information we propose the following
steps:
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1) The DM provides the preference information;
2) The DM establishes constraints 9—11;
3) Perform many runs of the evolutionary algorithm and obtain a good

characterization of {P*}. Let us denote by {P*}mp. this set and Py, its mean point
(Py, is an estimator of P, *);

4) Provisional assignment of Py.*: Check if P,* belongs to {P*} (Py,* is
able to restore the preference information from which {P*} was derived). In the
affirmative case, assign Pn* t0 Pyey®. Otherwise, find Pyeo,™ in {P*}gmpie (the nearest
P* to P,*), and assign it to Pyeg™;

5) Check if the temporary Py* agrees with the whole system of preferences
and beliefs from the DM. If possible, check its ability to restore some additional
preference information not contained in the reference set from which {P*} was
derived. If these conditions are satisfactorily held, the current Py.,* can be accepted as
the final solution of the inference problem.

Alternatively, the DM may:

- in 3) separate 7 in different subsets, thus obtaining several candidates to
be Pys™ as in 4), which will be judged according to the above conditions (fifth step);
or

- in 4) select another element from {P*}mpie; OF

- modify/add some constraints thus including additional information and
repeat from the third step; or

- use {P*}qumpe as starting basis for further refinement in an interactive
DM-analyst decision support procedure as was proposed in [7].

In case of abundant reference information, the procedure is reduced to:
1. The DM provides the preference information;
2’. The DM establishes constraints 9—11;

3. The best compromise (np, ng, 1y, nx)* and its pre-map Pyei* are determined. Ppeg™
should agree with the whole system of preferences and beliefs from the DM. If possible,
check its ability to restore some additional preference information not contained in the

reference set from which (np, ng, nj, nx)* was derived. If these conditions are satisfactorily
held, Py.s* can be accepted as the final solution of the inference problem.

5. Handling reinforced preference on the credibility of outranking

In ELECTRE 111, the outranking degree of credibility does not include effects of reinforced
preference. To illustrate this issue and its role in our proposal, consider two actions X, y
described by three criteria of similar importance taking their values in the interval [1, 7]
(increasing preferences); x=(1,1,7), y=(3,3,1). Let us suppose the following parameter
settlement: weights k;=k,=k;= 1/3; veto thresholds v;=v,=v;=5; strict preference thresholds
p1=p>=p3=1. According to the model of Equations 4-8, o(x,y)= 1/3, o(y,x)= 0, so not
xS(A)y with 2> 0.5. However, the DM may feel a very important difference in the third

criterion, and hence x may be preferred. In such a case xZy = xS(A)y is false in very wide
range of reasonable parameter settlements. Hence, in the framework of an indirect
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ELECTRE III parameter settlement, such inconsistencies do not come from an inadequate
parameter settlement.

In [27], Roy and Slowinski proposed a way of handling reinforced-preference effects
for calculating c(x,y). As in the ELECTRE III, each criterion has an importance coefficient
ki (a ‘weight’) that contributes to c(x,y) whenever g; € C(xSy) v C(yOx). Roy and
Slowinski ([27]) give to some criteria g; the possibility of increasing their relative
importance when the difference gj(x) — gj(v) exceeds a value rp; called reinforced
preference threshold. When this threshold is crossed, the value ;, used to model the relative
importance of g; in c(x,p), is replaced with wik; , where w>1 is called reinforcement factor.
Let C(xRPy) denote the set of criteria for which gj(x) - g(y) > rp; . Then, Roy and
Slowinski ([27]) propose calculating c(x,y) as:

Zjec(xRPy)Wj J Zjec(xSy)—c(xRPy)kj Zjec(yQX)@kj

cxy) =
Zjec(xRPy) wik + ZjeG—c(xRPy) ki
(12)
_8(x)—-(gW) - p)
where ¢ =
bi—4q
The degree of credibility of outranking is calculated as in ELECTRE III, but replacing
(5) with (12).
The parameters to be inferred are:
1) the vector of original importance coefficients &; ;
ii) the vector of reinforcement factors w;;
iii) the vector of reinforced preference thresholds rp;;
iv) the vector of indifference thresholds;
V) the vector of preference thresholds;
vi) the vector of veto thresholds;
vii) the vector of pre-veto thresholds;

viii) the cutting level A* .
The mathematical problem is still (3) with constraints (9—11) and constraints on 7p; and
w;. w; must be greater than 1; 7p; must be greater than p; and should be greater than ;. So, in
addition to 9—11 we consider the following constraints:
Forj=1...n (13)
U STP; < 1Djmax
I <W; £ Wipgs

5.1. Description of the evolutionary approach for inferring the model
parameters
The evolutionary algorithm and further exploration is as detailed in subsections 4.3 and 4.4.
Handling reinforced preferences, the individuals are represented by a string composed of 7n
+ 1 positions as shown in Figure 4.

Again we use one-point crossover. 3n+1 possible crossover points are defined on the
individual (see Figure 5). Given two parents the specific crossover point is randomly
generated.
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As in Section 4 the operator for mutation is implemented as follows:
Pick a random integer number Le [1; 6n+2]

L. If L € [1; n], then a random real number a € [ Grmins Grmax | 1S generated.
Replace ¢, with a.
1L If L € [n+1;2n], assign j= 2n-L+1; then a random real number a € [ pjin

Pjmax ] 1s generated. Replace p; with a. To enforce restriction (11) a random real
number b € B={xeR such that | (v +p)2—-x |<e (v~ p))} is generated. Replace u;
with b.

. If L € [2n+1;3n], assign j= 3n-L+1; then a random real number b € B is
generated; interval B is defined as in II. Replace u; with b.

IV. If L € [3n+1;4n], assign j= 4n-L+1; then a random real number a € [
Vimin' Vimax ] 15 generated. Replace v; with a. To enforce restriction (11) a random real
number b € {xeR , such that |(vj +p)2—x I< e (vi- p))}is generated; replace u;
with b.

V. If L € [4n+1;5n], assign j=5n-L+1; then a random real number a € [
TDjmin’ ¥Pjmax ] and @ 2> u; is generated.

VI. If L € [5n+1;6n], assign j= 6n-L +1; then a random real number a € [
Wimins Wimax ] 1 generated.

VII. If L = 6n+1, n real numbers k; € (0; 1) are randomly generated. As in
subsection 4.3 we use the approach proposed in [1]. n-1 uniform random numbers
are generated in (0;1); further, these are ranked 0< a; < a,...<a,; <l, and the
weights are calculated as k; = a; — a;.;. This particular mutation is considered valid
only if the constraints given by (9) hold. Otherwise, the random generation is
repeated.

VIII. If L = 6n+2, then a random real number a € [Apin; 1] (Anin20.5) is
generated. Replace A with a.

Note that the above defined genetic operators keep feasibility with respect to constraints
9, 10, 11, 13. The initial population is generated from a feasible individual by reiterative
mutations.

In a wide range, the algorithm performance was not very sensitive to the parameter
settlement. Finally, the parameters of the evolutionary search were settled as in subsection
4.3.

6. Some illustrative examples

6.1. First example: Inferring the ELECTRE III model parameters

Sometimes the DM can use information from past decisions, based upon personal
experiences or any other agent’s. The DM may not be inquired to provide new preferential
information since a set of reference pairs, with high enough cardinality, is available.
Nevertheless, when prior information is not available the DM must provide preferential
information in order to compose a set of reference pairs. To be practical a method for
inferring parameters must be capable of deriving good results from a moderate size set of
reference pairs, so the DM’s efforts can be exerted within manageable limits. The capacity
of the proposed method in regard to this issue is examined below.
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Let us consider the universe U composed of objects (Fy, F» ,F5 ,F3) e R* with F; taking
real values in [1, 7] and the symmetric multi-criteria functional model:

V=02 (F, +F,+F;+Fy+ (F\. Fy .F5 .F})**) (14)

Function V takes on values from [1, 7] (increasing preference). In order to build the
reference set and the preference information on this set, the decision policy will be
simulated by:

V(xy) €T xZy < V(x) = V(y) - 0.25 (15)

where 0.25 simulates certain preference threshold.

Note that the model V' is symmetric, and the differences | V(4,4,4,4) — V(5,5,5,1)| ,
| 1(5,5,5,5) — 1(6,6,6,2)|, | 11(6,6,6,6) — (7,7,7,3)| lie within the threshold 0.25. That is,
improvements in three criteria are compensated by a degradation of three units in a single
criterion. This suggests that v; may not be very different from 3. So, we accept the
constraints:

|k — K | <0.125 m=1,23;j>m (from 9)

Forj=1,...4 (from 10) (16)

0<g;<0.3

05<p;<09

1.0<y;<24

25<v,56

| (v +p)2—ul <01 (v-p)  (from 11)

Here, we simulate cases in which decisions are made for a limited set of actions for
which the DM can easily express preferential judgments. Thus, only small-size reference
sets are considered. Let us suppose that the DM is capable of revealing preference
judgments (simulated by Equation 15) on a small set D composed of eight actions. In total,

56 judgments such as xZy or not xZy can be made from the elements in D.

We attempt to minimize the cognitive effort from the DM making more effective the use
of his/her preference information. If we take subsets of six objects, the original 56-clements
set is partitioned into twenty eight 30-element subsets, which are composed of the same
original preference information. Thus, without additional cognitive effort from the DM, we
can multiply the number of experiments, making the evolutionary search more exhaustive,
and reducing the influence of the random character of the original set of eight objects.

The following experiment was repeated three times:

Basic experiment:

1) eight actions are randomly generated;

2) these actions are separated in groups composed of six actions; 28 such
groups are formed; 30 judgments xZy or not xZy are associated to each group;

3) for each 30-judgment group, the algorithm of subsection 4.3 is applied
with 10 replications;

4) for each 30-judgments group the most central point of the obtained Pareto
set is found; this is a potential Ppeg™*;

5) the most central point of the whole distribution {P*}mp. is calculated.

For each experiment two particular points are considered: i) Py *(1), the most central
point of the whole distribution (step 5 of subsection 4.4); ii) Pp.*(2), the solution of step 4
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which is most compatible with the model symmetric form. The results of the first
experiment are shown in Table 1. In this table the most symmetric solution taken as
Py*(2) corresponds to row 18" If a fictitious decision maker were represented by the
model based on ¥, he/she might feel slightly more comfortable accepting Ppes*(2). In Table
2 standard deviations calculated on the non-dominated set in the parameter space are
provided.

Py *(2) agrees better with the whole system of preferences and beliefs from the DM,
but Py *(1) may be judged as more representative of the whole distribution of solutions.
Let us check their ability to restore some additional preference information not contained in
the original reference set (step 5, subsection 4.4). Let f; be the number of inconsistencies

with x S(A)y = xZy . Let £, be the number of inconsistencies with xZy => xS(A)y. Assume
a sample set C. The set C is a sample from the universe. We worked with C, C" and C”’,
each composed of 100 random actions and 9900 pairs (x,y). Considering C the results were:

For Pyest*(1), fi= 36, foi= 3013; for Pyes™(2), fi= 43, foi= 2823;

Due to the effects of intensity of preferences and incomparability, we have many times
V(x) > V(y) - 0.25 and, however, not xS(A)y still holds. Hence, f; is increased. This does not
mean an inappropriate parameter settlement; rather, this means that ELECTRE-III models
cannot fit very well preference function models such as V. The results for C’ and C’’ are
shown in Table 3. Both performances are similar. Py.*(2) is slightly in closer agreement
with the symmetry of function V.

Results of the second and third experiments are pointed out in Table 4.

Note that the results for Py *(2) were very similar in three different experiments.

6.2 Second example: Inferring reinforced preference model parameters
Here, the preference information comes from the same model of Equations 14 and 15, but
the outranking model handles reinforced preference on the concordance degree as was
described in Section 5.

Taking (16) as base the following constraints were imposed:

Lk — K | <0.125 m=1,23;>m a7

Forj=1,...4 (18)

0<g;<0.3

0.5<p;<09

1.0<y;<24

25<v,56

I<wy

25<m;<6

| (v + )2 —ui| 0.1 (v py)

The following experiment was performed twice. As in subsection 6.1 eight actions are
generated at random. These eight actions are divided into groups composed of six actions,

so 28 such groups are formed, and 30 judgments xZy or not xZy are associated with each
group. For every 30-judgment group, a central point Pn* is obtained for each group
distribution. Finally, the most central point for the whole distribution is selected. Like
before, Py.*(1) denotes the most central point of the whole distribution (step 5 of 4.4);
besides, Pye*(2) is the solution of step 4 which is most compatible with the model
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symmetric form. Nevertheless, Py.*(1) also satisfies symmetry considerations. Some

results of the first experiment are provided in Table 5. In this table the most symmetric

solution taken as Pys*(2) corresponds to the first row. The most central point of the whole
distribution of non-dominated points is shown in the last row.

As in 6.1, the appropriateness of S(1) is measured by the fulfilment of xx y < xS(A)y.
Like before, we shall consider a sample set C and functions f;, f; . The elements in C are
sampled from the universe. We work with C, C’ and C*’, each composed of 100 random
actions and 9900 pairs (x,p). Considering C, the results are: for Py *(1), fi= 46, f,= 1558.
For Py *(2), fi= 46, f,= 1558.

Due to incomparability, we have many times V(x) > V() - 0.25, still, not xS(A)y holds.

The comparison using other random sets is given in Table 6. Results of the second
experiment are presented in Table 7.

Partial conclusions:

e The results for Py *(2) are very robust. Only negligible changes can be perceived in
different solutions. Comparing results of Examples 1 and 2, although coming from
different outranking models, the common components of Pu.«*(2 ) (¢, p, u, v, k, 1%)
are almost identical.

e Regarding the appropriateness measures f;, f> there are no significant differences
between Ppes*(2) and Py ™(1); the first may be in more agreement with symmetry
considerations.

e  Regarding £, the model of Section 5 seems to perform better than ELECTRE III.

6.3 The preference information comes from an outranking model
6.3.1 A four criteria problem
As before, the universe U is composed of objects (g1, 22, g3 g4) €R* with g; taking real
values in [1, 7]. Suppose that o(x,p) is calculated according to the model of Section 5, with
the following parameters:
q=(0.2,0.2,0.2,0.2)
p=1(0.8,0.8,0.8,0.8)
u=(2.0,2.0, 2.0, 2.0) 19)
v=(3.0,3.0, 3.0, 3.0)
rp=(3.0, 3.0, 3.0, 3.0)
w=(2.0, 2.0, 2.0, 2.0)
k=(0.25,0.25, 0.25, 0.25)

For every (x,y)e UxU we assume that ‘x is at least as good as y’ (xx y) if, and only if,
o(x,y)> 0.67. The experiment is similar to examples in 6.1 and 6.2. Eight actions are
randomly generated and separated into 28 different groups. For each group the algorithm of
subsection 4.3 is applied with 10 replications under constraints 17-18, and a Py * candidate
is found. Like before Py *(1) and Py *(2) are determined. Results of the first experiment
are shown in Table 8. In this table the most symmetric solution taken as Ppes™(2)
corresponds to the fourth row. The most central point (Pye*(1)) is pointed out in the last
row. An optimal ideal solution (0,0,0,0) was found in the objective space, to which
correspond many solutions in the parameter space. Some standard deviations are provided
in Table 9.
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The results of model evaluation on three sets, each composed of 100 random actions,
are shown in Table 10.

The above experiment was replicated from other eight random elements. Some results
are given in Table 11.

From this example we can conclude that:

1) The true values of model parameters were closely approached. Even
being slightly different from the true values, the inferred model achieved an
outstanding reflection of the simulated preferences;

2) Py *(2) seems to be robust and slightly outperforming Py *(1).

6.3.2 A ten criteria problem
This experiment generalizes 6.3.1 in order to test robustness with respect to the number of
criteria. Now, the universe U is composed of objects (g1, g2...., g10) €R'® with g; taking real
values in [1, 7]. o(x,p) is calculated according to the model of Section 5, with ten-
dimensional parameter vectors given by (20):
q=(0.2,0.2,...,0.2)
p=(0.8,08,...,0.8)
u=(2.0,2.0,...,2.0) (20)
v=(3.0,3.0, ...,3.0)
p=(3.0,3.0,...,3.0)
w=(2.0,2.0,...,2.0)
k=(0.25,0.25,...,0.25)
The set of constraints is given by:
[k —k; 1< 0.125 m=1,..9;j>m 1)
Forj=1,...10 (22)
0<g;<0.3
0.5<p;<09
1.0<u;<24
25<v,<6
1 <w;
25<m;<6
| (v + )2 —u 0.1 (v py)

Some results are given in Table 12. The most central point Py.,*(1) and the most
symmetric point Py, *(2) are shown in Table 13. Statistic variability calculated on the non-
dominated points gives similar results to the previous example. The results of model
evaluation on three random sets are presented in Table 14. No significant differences
between Py, *(1) and Py, ™(2) are found.

6.4 The preference information comes from a real DM

Let us consider the R&D project evaluation problem analyzed in [9]. In such example 81
projects from a set B were evaluated by a real decision-maker on four criteria; the
assignments are shown in Table 15.
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The g criteria were assumed functions with domain [1, 7], although only integer values
were considered. The DM stated that: i) full symmetry should exist in the criterion set; ii)
there is a one-dimensional strict preference when | gi(x) - gj(y)| =1 iii) there is no effect of
intensity of preference when | gi(x) - gj(y)| <2; iv) there are remarkable effects of intensity of
preferences when | gi(x) - gj(y)| ~3; v) the discordance threshold u; should not be far from
the middle point between strict preference and veto thresholds. In consequence, the DM
imposed the following constraints:

Lk — & | <0.125 m=1,23;>m (23)

Forj=1,...4 (24)

0<g;<0.5

05<p=<1

1.9<u;<2.5

25<y,<5

I<w

25<rmp;<5

| (v + p)2 —u;l 0.1 (v-p))

A subset D composed of 71 projects was randomly chosen from the original set B. The
reference set 7' was formed by all the pairs (a,b)e DxD (a# b). We consider:

ab < ‘the assignment of object a is at least as good as the assignment of 4’ (25)

After 20 runs of the evolutionary algorithm described in subsection 5.1, we obtained 7
non-dominated solutions in the objective space, which correspond to 841 different points in
the parameter space. Several representative solutions are given in Table 16. High values of
the fourth objective are consequence of incomparability, which is not taken into account by
the equivalence (25). Regarding the values of the most important objectives and symmetry
considerations, we chose as Py.* the solution shown in the first row of Table 16.

Let us check the appropriateness of S(1) with the selected solution by using the above
functions f] and f; . Let us consider the additional preference information contained in the
set of pairs C= {(x,y) € BxB, x or y belonging to (B-D), and x+y)}that was not included in
the reference set 7. We obtained f; = 0 and f,= 232 being card C= 1510. Compared with the
objective values of Table 16, the chosen Py.* seems to be a good result.

7. Concluding remarks

Several conditions precede an appropriate settlement of outranking model parameters:

i)  To be a settlement that minimizes error or inconsistency measures when predictions of
the model are compared with the real decision policy; that is, the settlement should
have the capacity to restore the reference information;

ii) To satisfy the DM’s additional information about criterion importance, symmetry,
asymmetry and acceptable parameter ranges; that is, the inferred values and their
relationship should be meaningful for the DM;

iii) To perform well when the inferred model is compared with preference statements
which are not contained in the reference set. That is, it should have capacity for
explaining new decisions.

In this paper, point i) has been approached through evolutionary multi-objective

optimization of several inconsistency measures. This yields the following advantages:
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- Compared with single-objective optimization, a multi-objective approach is more
flexible because it allows preferences on different objectives to be properly modelled.
The different inconsistency measures do not have the same importance and should not
be integrated into a single objective. For instance, inconsistencies regarding P(1) seem
to be more relevant than other types;

- Evolutionary optimization algorithms allow an easy handling of constraints (point ii);

- Evolutionary methods are more robust with respect to an increment of the model’s
complexity. They can handle more complex models, strong non-linearity and many
parameters. For instance, the parameter setting by indirect procedures based on
mathematical programming would hardly work with the model of Section 5, even
considering a few criteria;

- Evolutionary multi-objective optimization techniques allow a deep exploration of the
set of satisfactory solutions; this is an important issue, because as shown by the
examples, there could be many different solutions in the parameter space that satisfy
the above Condition i), and the DM-analyst should have a wide representation of this
set in order to select the most appropriate solution.

This proposal is able to obtain the whole set of ELECTRE III model’s parameters, in a
compatible way with the DM’s subjective information about criterion importance and
parameter value ranges. Beyond ELECTRE III, this paper shows the use of the
evolutionary methodology combined with the ELECTRE model with reinforced preference.
This is the most complex outranking model, so a good performance on it may be a
sufficient argument to support the general applicability of the method. Besides, there is no
precedent of the application of preference-disaggregation analysis to outranking models
with reinforced preference effects.

The manner in which the preference information is obtained from the DM is operational.
Here, we presented a method which uses judgmental information about only a few objects
and their comparisons. The way in which the judgments are required is the most
permissive. To know, given two propositions ‘x is at least as good as y’ and ‘x is not at least
as good as y’, the DM should select the one with respect to he/she is sufficiently confident
about. This paper gives evidence that such small size and easy of handling information is
enough to obtain satisfactory results.

The NSGA-II algorithm performed very well in some examples with four and ten
criteria, identifying parameter settlements satisfying Conditions 1), ii) and iii). In the
examples of subsection 6.3 the results agree with the true parameter values of the o-model
within a range justified by statistic variability. The proposal seems to be robust in a wide
range of criteria. The above advantages of evolutionary methods were tested in several
examples. The algorithm performed very well when the outranking model was enhanced to
considering reinforced preference.

In a decision support framework, from the collection of possible parameter-settlements,
the coupled DM-decision analyst should select the final solution of the parameter inference
problem. This selection should be made after considering the following criteria:

L representativeness of the particular solution in regard to the whole
distribution of parameter settlements;
11 ability of restoring additional preference information, which was not

included in the reference set;
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II1. agreement with additional DM information about criterion importance,

symmetry, asymmetry, and acceptable parameter ranges.
Experimental evidence provided by this research suggests that:

. Convenient results can be obtained when considering small size reference

sets whose construction requires minor effort by the DM. The different settlements
that arise in the evolutionary search, in all the examined cases, contain elements
satisfying criteria I, II, and III. This conclusion makes the proposal practical;

. When the reference set is small, criterion I often contradicts II and III.

Although the most central point of the whole distribution of non-dominated points
may be considered as satisfactory, the evolutionary exploration provided some other
solutions which may slightly outperform such a central point.

Acknowledgements
We acknowledge support from CONACyT project grant 57255.

References

[1]

(3]

(6]

Butler, J., Jia, J., Dyer, J., Simulation techniques for the sensitivity analysis of
multi-criteria decision models, European Journal of Operational Research 103,
1997, 531-546.

Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A., Evolutionary Algorithms for
Solving Multi_Objective Problems, Second Edition. Springer, New York, 2007.
Deb, K., Multi-Objective Optimization using Evolutionary Algorithms, John Wiley
& Sons, Chichester-New Y ork-Weinheim-Brisbane-Singapore-Toronto, 2001.
Dias, L., Mousseau, V., Figueira, J., Climaco, J., An aggregation / disaggregation
approach to obtain robust conclusions with ELECTRE-TRI, European Journal of
Operational Research 138, 2, 2002, 332-348.

Dias, L.C., Mousseau, V., Inferring ELECTRE’s veto-related parameters from
outranking examples, European Journal of Operational Research, 170, 1, 2006,
172-191.

Doumpos, M., Zopounidis, C., Multicriteria Decision Aid Classification Methods,
Kluwer Academic Publishers, Dordrecht-Boston- London, 2002.

Doumpos, M., Marinakis, Y., Marimaki, M., Zopounidis, C., An evolutionary
approach to construction of outranking models for multicriteria classification: The
case of ELECTRE TRI method, European Journal of Operational Research, 199,
2,2009, 496-505.

Fernandez, E., Navarro, J. and Duarte, A., Multicriteria sorting using a valued
preference closeness relation, European Journal of Operational Research, 185, 2,
2008, 673-686.

Fernandez, E., Navarro, J., Bernal, S., Multicriteria sorting using a valued
indifference relation under a preference disaggregation paradigm, European
Journal of Operational Research, 198, 2, 2009, 602-609.

Goletsis, Y., Psarras, J., Samouilidis, J.E., Project Ranking in the Armenian
Energy Sector Using a Multicriteria Method for Groups, Annals of Operations
Research, 120, 2003, 135-157.



Evolutionary multi-objective optimization for inferring ... 183

[12]

[13]

[14]
[15]

[16]

[18]
[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

Greco, S., Mousseau, V., Slowinski, R., Ordinal regression revisited: Multiple
criteria ranking with a set of additive value functions, European Journal of
Operational Research, 191, 2008, 415-435.

Greco, S., Matarazzo, B., Slowinski, R., Zanakis, S., Global investing risk: a case
study of knowledge assessment via rough sets, Annals of Operations Research,
185, 2011, 103-138.

Jacquet-Lagreze, E., Siskos, J., Assessing a set of additive utility functions for
multicriteria decision making: The UTA method, European Journal of
Operational Research, 10, 2, 1982, 151-164.

Keeney R., Raiffa H., Decision with multiple objectives: preferences and value
tradeoffs, Wiley, New York, 1976.

Mangasarian, O.L., Multisurface method for pattern separation, [EEE
Transactions on Information Theory, 14, 6, 1968, 801-807.

Marchant, T., Debate on How to assign numerical values to different parameters
that aim at differentiating the role that the criteria have to play in a comprehensive
preference model?, 7/ Meeting of the Euro Working Group Multiple Criteria
Decision Aiding, Turin, Italy, 2010.

Mavrotas, G., Diakoulaki, D., Capros, P., Combined MCDA-IP Approach for
Project Selection in the Electricity Market, Annals of Operations Research, 120,
2003, 159-170.

Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs,
Springer Verlag, Berlin-Heidelberg-New York, 1996.

Mousseau, V., Slowinski, R., Inferring an ELECTRE-TRI model from assignment
examples, Journal of Global Optimization, 12,2, 1998, 157-174.

Mousseau, V., Figueira, J., Naux, J.Ph., Using assignment examples to infer
weights for ELECTRE TRI method: Some experimental results, European Journal
of Operational Research, 130, 2, 2001, 263-275.

Mousseau, V., Dias, L.C., Valued outranking relations in ELECTRE providing
manageable disaggregation procedures, European Journal of Operational
Research, 156, 2, 2004, 467-482.

Perny, P., Multicriteria filtering methods based on concordance and non-
discordance principles, Annals of Operations Research, 80, 1998, 137-165.
Pekelman, D., Sen, S.K., Mathematical programming models for the determination
of attribute weights, Management Science, 20,1974, 1217-1229.

Pirlot, M., Debate on How to assign numerical values to different parameters that
aim at differentiating the role that the criteria have to play in a comprehensive
preference model?, 7/ Meeting of the Euro Working Group Multiple Criteria
Decision Aiding, Turin, Italy, 2010.

Teixeira Almeida, A., Multicriteria Modelling of Repair Contract Based on Utility
and ELECTRE I Method with Dependability and Service Quality Criteria, Annals
of Operations Research, 138, 2005, 113-126.

Roy, B., The outranking approach and the foundations of ELECTRE methods, in:
Bana ¢ Costa, C.A., (ed.), Reading in Multiple Criteria Decision Aid, Springer-
Verlag, Berlin, 1990, 155-183.



184

E. Fernandez, J. Navarro, G. Mazcorro

[27]

(28]

Roy, B., Slowinski, R., Handling effects of reinforced preference and counter-veto
in credibility of outranking, European Journal of Operational Research, 188, 1,
2008, 185-190.

Srinavasan, V., Shocker, A.D, Linear programming techniques for
multidimensional analysis of preferences, Psichometrika, 38, 3, 1973, 337-396.

Received April, 2012



Evolutionary multi-objective optimization for inferring ... 185

Figures
Figure 1: Partial discordance index dj(x,p)
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Figure 3: Possible crossover points
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Table 3. Comparison using other random sets (example of 6.1)

Sample set| P pest™ f, f,
C' 1 38 2874
C' 2 39 2832
c" 1 39 2842
c" 2 40 2801

Table 4. Other results from the example of 6.1

Second experiment

Third experiment

(np . ng ,ny,ny)*=(000,1)

(np,ng,n;,ny)*=0,0,0,0)

pbest*(l) Pbest*(2) pbest*(l) pbest*(z)
k (0.246,0.252,0.248,0.254) {(0.251,0.251,0.250,0.249) (0.247,0.259,0.244,0.250) 1(0.249,0.251,0.249,0.250)
q (0.150,0.176,0.153,0.155) (0.150,0.150,0.150,0.152) §(0.150,0.196,0.154,0.193) {(0.148,0.147,0.149,0.151)
p (0.676,0.708,0.689,0.695) 1(0.694,0.694,0.695,0.692) ](0.699,0.725,0.701,0.718) |(0.698,0.699,0.690,0.693)
u (1.764,2.098,1.982,2.040) {(2.042,2.025,2.053,2.041) ](2.052,2.034,2.049,1.830) |(2.061,2.043,2.032,2.057)
v (3.023,3.581,3.364,3.469) [(3.490,3.459,3.500,3.475) |(3.478,3.427,3.487,3.091) |(3.512,3.477,3.463,3.503)
A 0.698 0.700 0.698 0.700
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Table 6. Comparison using other random sets (Example of 6.2)

Sample set| P pest™ f, f,
C' 1 53 1888
C' 2 53 1888
c" 1 43 1802
c" 2 43 1802

Table 7. Other results from the example of 6.2

Second experiment

(nP> nQy ny, N> )* = (0909034)

Pbest*(l)

Pbest*(z)

(0.248,0.256,0.237,0.258)

(0.250,0.250,0.250,0.251)

(2.313,2.352,1.993,2.191)

(2.067,1.923,1.997,2.025)

(3.255,3.442,3.376,2.983)

(3.274,3.413,3.298,3.285)

(0.171,0.180,0.147,0.151)

(0.156,0.147,0.151,0.152)

(0.726,0.707,0.709,0.684)

(0.687,0.696,0.696,0.700)

(2.211,2.187,2.232,1.990)

(2.061,2.068,2.038,2.049)

(3.785,3.782,3.843,3.385)

(3.551,3.531,3.488,3.475)

SNkl EIE

0.697

0.700
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Table 10. Comparison using random sets (Example of 6.3.1)

Sample set| ppest™ f, f,
C' 1 4 49
C' 2 0 0
c" 1 8 60
c" 2 0 0
c" 1 3 61
c" 2 0 0

Table 11. Other results from the example of 6.3.1

Second experiment

(np , Ng, N, Ny )* =(0,0,0,0)

pbest*(l)

pbest*(2)

(0.249,0.247,0.253,0.252)

(0.248,0.253,0.249,0.251)

(2.114,2.152,1.995,2.068)

(2.001,2.305,1.952,2.128)

(3.181,3.365,3.202,3.169)

(3.262,3.282,3.275,3.156)

(0.195,0.150,0.159,0.150)

(0.153,0.148,0.161,0.150)

(0.712,0.695,0.707,0.695)

(0.699,0.692,0.716,0.697)

(2.039,2.061,1.984,1.991)

(2.032,2.044,2.046,2.054)

(3.459,3.519,3.332,3.384)

(3.444,3.489,3.466,3.509)

i< (st leBs]x

0.700

0.700
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Table 12. Some potencial Py i* from the example of 6.3.2

[0.100,0.099,0.100,0.100,0.101,0.099,0.100,0.100,0.100,0.101]

[2.112,1.895,1.893,1.892,2.375,2.257,1.939,2.338,1.917,2.994]

[3.132,3.419,3.219,3.353,2.941,3.289,3.278,3.178,3.024,2.662]

[0.169,0.145,0.199,0.159,0.244,0.151,0.141,0.146,0.122,0.155]

[0.693,0.724,0.784,0.665,0.735,0.697,0.687,0.709,0.669,0.682]

[2.045,2.072,2.050,2.168,2.009,2.131,2.066,2.096,1.968,1.981]

[3.502,3.602,3.401,3.727,3.385,3.696,3.639,3.648,3.385,3.398]

N<lspleB|s >

0.690

x

[0.100,0.099,0.100,0.100,0.100,0.100,0.100,0.100,0.100,0.101]

[1.952,1.952,2.202,1.574,2.112,1.840,2.117,2.057,2.046,2.998]

[3.292,3.332,3.248,3.404,3.141,3.356,3.290,3.367,3.119,2.717]

[0.162,0.142,0.204,0.148,0.232,0.140,0.156,0.174,0.153,0.160]

[0.668,0.665,0.803,0.706,0.712,0.722,0.701,0.706,0.715,0.685]

[1.974,2.137,2.050,2.195,2.036,2.144,1.983,2.111,1.988,2.007]

[3.369,3.648,3.343,3.759,3.368,3.585,3.444,3.614,3.432,3.480]

(< |e oo |8

0.695

[0.100,0.100,0.100,0.100,0.100,0.100,0.100,0.100,0.100,0.100]

[1.951,2.013,2.006,2.000,2.162,2.217,2.000,2.359,2.036,2.069]

[3.317,3.249,3.285,3.232,3.126,3.065,3.256,3.217,3.214,3.278]

[0.153,0.147,0.155,0.148,0.147,0.148,0.151,0.146,0.148,0.148]

[0.698,0.692,0.721,0.696,0.701,0.703,0.692,0.696,0.704,0.691]

[2.046,2.053,2.019,2.038,2.049,2.040,2.039,2.047,2.033,2.043]

[3.482,3.488,3.416,3.463,3.477,3.455,3.468,3.475,3.438,3.450]

vi<lsft BT >

0.700

[0.100,0.100,0.100,0.100,0.100,0.100,0.100,0.100,0.100,0.100]

[1.944,1.837,2.065,2.025,2.060,1.944,1.661,2.087,2.051,2.998]

[3.214,3.147,3.499,3.515,3.183,3.263,3.254,3.272,3.347,2.740]

[0.136,0.149,0.194,0.152,0.228,0.156,0.156,0.145,0.148,0.133]

[0.692,0.690,0.810,0.688,0.714,0.673,0.673,0.730,0.703,0.734]

[1.994,2.051,2.130,2.244,2.010,2.153,2.044,2.004,2.004,1.974]

[3.382,3.551,3.509,3.880,3.436,3.657,3.379,3.407,3.430,3.323]

oi<lsP B |x

0.699

[0.100,0.100,0.100,0.100,0.100,0.100,0.100,0.100,0.100,0.100]

[2.026,1.970,2.000,2.010,2.245,2.216,1.962,2.280,1.971,1.972]

[3.304,3.273,3.282,3.315,3.076,3.055,3.322,3.306,3.258,3.365]

[0.151,0.146,0.155,0.151,0.146,0.145,0.161,0.152,0.152,0.151]

[0.692,0.693,0.713,0.697,0.702,0.700,0.704,0.707,0.697,0.702]

[2.022,2.045,2.025,2.052,2.028,2.021,2.058,2.050,2.038,2.039]

[3.460,3.493,3.407,3.538,3.438,3.454,3.492,3.478,3.458,3.458]

bi<lstlRB|s >

0.700
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(1,19, 1y, 0 )*=(0,0,0,0)
* X
Pies (1) Pres’ (D)
k (0.100,0.100,0.100,0.100,0.100,0.100,0.100,0.100,0.100,0.100) | (0.100,0.100,0.100,0.100,0.100,0.100,0.100,0.100,0.100,0.100)
W (2.033,1.984,2.003,2.002,2.117,2.131,1.958,2.212,2.016,2.431) | (1.982,2.017,1.974,2.009,2.012,2.030,2.003,1.988,2.007,2.013)
m (3.278,3.272,3.265,3.330,3.167,3.231,3.276,3.297 3. 1253052) (3. 242324832753284326432583282325732983309)
q (0.150,0.150,0.173,0.150,0.185,0.147,0.150,0.152,0.151,0.151) | (0.152,0.150,0.154,0.147,0.144,0.151,0.151,0.145,0.153,0.150)
p (0.692,0.691 07500694070406950693069506970699) (0. 694068607000702069506990696069406930698)
u (2.039,2.050,2.030,2.107,2.024,2.069,2.040,2.043,1.903,2.026) | (2.040,2.052,2.023,2.050,2.044,2.035,2.046,2.039,2.046,2.052)
v (3.492,3.493,3.393,3.599,3.430,3.524,3.477,3.474,3.197,3.448) | (3.476,3.497,3.411,3.483,3.497,3 4703 489,3.473,3.492,3.477)
A 0.700 0.695
Table 14. Comparison using random sets (Example of 6.3.2)
Sample set| P pest™ f, f,
C 1 24 139
C' 2 26 137
c" 1 19 125
c" 2 22 122
c" 1 20 111
c" 2 16 113
Table 15. Reference assignments (example of 6.4)
# C C2 | C3 C4 Global Impact # Cl | C2 | C3 | C4 | Global Impact
1 7 4 7 7 Exceptional 42 | 2 7 6 3 Very High
2 6 6 6 6 Exceptional 43 |3 6 2 3 High
3 4 4 4 4 Very High 44 | 6 3 1 7 Very High
4 2 4 4 4 High 45 1 1 2 3 Below Average
5 2 2 4 4 Above Average 46 | 3 2 1 2 Average
or High
6 2 2 2 4 Above Average 47 |5 5 6 3 Very High
7 2 2 2 2 Average 48 | 4 5 6 4 Very High
8 1 2 2 2 Low or Below 49 | 4 4 2 5 High
Average
9 1 1 1 1 Very Low 50 [ 3 2 2 2 Above Average
10 |3 3 3 6 High 51 | 6 5 6 1 Very High
11 |3 [3 |6 3 High 52 |4 |6 |2 |1 |High
12 |3 3 6 6 Very High 53 |1 6 2 4 High
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13 3 6 3 3 High 54 |1 6 3 4 High

14 3 6 3 6 Very High 55 |3 1 4 1 Average

15 3 6 6 3 Very High 56 |5 2 3 6 High

16 |3 6 6 6 Very High 57 | 6 3 7 2 Very High

17 | 6 3 3 3 High 58 |3 4 2 6 High

18 6 6 3 6 Very High 59 | 6 6 7 1 Very High

19 |6 3 6 3 Very High 60 | 4 2 4 3 High

20 6 3 6 6 Very High 61 |2 1 4 5 Above Average
or High

21 6 6 3 3 Very High 62 |5 4 1 3 High

22 6 3 3 6 Very High 63 | 6 6 7 7 Exceptional

23 6 6 6 3 Very High 64 |3 4 6 4 High

24 2 2 5 1 Average 65 | 4 3 2 7 Very High

25 5 1 2 2 Average 66 | S 2 6 6 Very High

26 5 5 1 2 High 67 |2 7 3 3 Very High

27 2 5 1 2 Average 68 | 6 5 1 6 Very High

28 1 5 1 3 Average 69 | 2 5 7 3 Very High

29 3 7 7 7 Exceptional 70 | 4 1 4 2 Average

30 7 7 3 7 Exceptional 71 | 4 7 3 1 Very High

31 7 7 7 3 Exceptional 72 1 6 5 6 Very High

32 5 5 3 1 High 73 | 4 3 6 2 High

33 7 2 5 3 Very High 74 | 6 1 6 4 Very High

34 1 1 4 4 Average 75 |3 5 5 1 High

35 1 1 5 1 Average 76 | 2 4 3 5 High

36 1 3 6 1 High 77 |5 3 2 2 High

37 1 1 1 6 Above Average 78 |1 4 4 6 High

38 1 1 1 2 Very Low 79 | 6 5 2 3 High

39 1 1 1 7 High 80 | 2 2 5 2 Above Average
or High

40 1 1 1 3 Low 81 1 7 5 6 Very High

41 1 1 1 4 Below Average
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