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Abstract

Baklagin V.N.: Selection of parameters and architecture of multilayer perceptrons for predicting 
ice coverage of lakes. Ekológia (Bratislava), Vol. 36, No. 3, p. 226–234, 2017.

The ice cover on lakes is one of the most influential factors in the lakes’ winter aquatic ecosystem. 
The paper presents a method for predicting ice coverage of lakes by means of multilayer perceptrons. 
This approach is based on historical data on the ice coverage of lakes taking Lake Onega as an ex-
ample. The daily time series of ice coverage of Lake Onega for 2004−2017 was collected by means of 
satellite data analysis of snow and ice cover of the Northern Hemisphere. Input signals parameters 
for the multilayer perceptrons aimed at predicting ice coverage of lakes are based on the correlation 
analysis of this time series. The results of training of multilayer perceptrons showed that perceptrons 
with architectures of 3-2-1 within the Freeze-up phase (arithmetic mean of the mean square errors 
for training epoch MSE = 0.0155) and 3-6-1 within the Break-up phase (MSE = 0.0105) have the 
least mean-squared error for the last training epoch. Tests within the holdout samples prove that 
multilayer perceptrons give more adequate and reliable prediction of the ice coverage of Lake Onega 
(mean-squared prediction error MSPE = 0.0076) comparing with statistical methods such as linear 
regression, moving average and autoregressive analyses of the first and second order.
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Introduction

Ice cover on lakes impacts theweather, fishing industry, oxygenation and penetration of sun-
light needed for photosynthesis within the lake (Karetnikov, Naumenko, 2008). Prediction of 
its spatial characteristics such as ice coverage of lakes is of considerable interest for solution 
of environmental and economic problems related with the lake (Atapaththu et al., 2017). 
Nowadays certain mathematical models have been developed to be widely used to reproduce 
the thermohydrodynamics of the lakes, such as POM, NEMO, ECOM, ELCOM and oth-
ers (Blumberg, Mellor, 1986; Madec, NEMO team, 2015; Quamrul Ahsan, Blumberg, 1999; 
Dallimore et al., 2003; Menshytkin et al., 2013; Sharif et al., 2013), including ice modelling. 
However, the listed models are complex and do not have sufficient flexibility in adaptation to 
specific lakes. Besides, they require collection of a large amount of diverse input information, 
which makes it difficult to use them in modelling and predicting ice coverage of lakes.
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Statistical methods based on the use of probabilistic models, such as regression, autoregres-
sive (ARIMAX, ARHCH), exponential smoothing, and others (Box et al., 2015) can be used to 
predict daily time series, including one for the ice coverage of lakes. These methods are simple 
enough, because they do not need a mathematical description of the physical processes in the 
lake. However, the abovementioned methods are not intended for modelling non-linear pro-
cesses, since they give large errors. Therefore, they are unsuitable for predicting ice coverage of 
lakes.

In accordance with a certain training sample, artificial neural networks show good results in 
solving problems related to the prediction of nonlinear processes (Hagan et al., 2014). The ad-
vantages of this method are flexibility, adaptability, ease of use and high accuracy of the forecast.

In this regard, the purpose of this study is to select the parameters of multilayer perceptrons 
(a specific instance of an artificial feedforward neural network) for predicting ice coverage of 
lakes taking Lake Onega as an example.

The main objectives of the study are:
1.	 Formation of training and holdout samples on the basis of daily time series of ice coverage 

of Lake Onega for 2004−2016 and 2016−2017 correspondingly.
2.	 Selection of optimal architecture and parameters of multilayer perceptrons for predicting 

ice coverage of Lake Onega and their training.
3.	 Testing of the trained perceptrons as well as statistical prediction methods within holdout 

samples in comparison with the actual values of ice coverage.

Material and methods

As a rule, the ice regime of lakes includes three phases: Freeze-up, Complete Ice cover, Break-up. Each of the phases 
is characterized by its own peculiarities of the ice coverage dynamics (growth, decrease or stagnation of values). This 
study considers two phases of the ice regime: Freeze-up and Break-up, since within the Complete Ice cover phase, the 
area of ice cover remains practically unchanged. Moreover, the perceptron parameters for predicting ice coverage were 
selected separately for each phase of the ice regime under consideration. This procedure facilitated the optimization of 
the training process of each perceptron substantially.

The database of the satellite observations (AQUA, TERRA, NOAA-14,15,16,17,18, GOES-9,10,11,13, etc.) on the 
ice cover of the Northern Hemisphere with a spatial resolution of 4 km was used as a basis for obtaining daily time se-
ries of ice coverage of Lake Onega. The observations are conducted from 2004 to the present with a temporal resolution 
of 1 day (http://nsidc.org/data/G02156). Daily indicators of ice coverage for the period of 2004−2017 were calculated 
(Fig. 1) and allocated into phases of the ice regime as a result of the automated analysis of used satellite data where the 
aquatic area coordinates of Lake Onega are identified.

In accordance with the Fig. 1, it can be concluded that Lake Onega appears to be fully ice-covered and ice-free 
on an annual basis. Therefore, ice coverage behaviour of function of time fice(t) is cyclical and achieves limited values 
from 0 to 1. This behaviour of function fice(t) makes it possible to avoid the normalizing of input and output signals of 
perceptrons preconditioned by ice coverage of lake.

General processing algorithm of perceptrons for predicting ice coverage of lakes

In this study, multilayer perceptrons with one hidden layer were used (Fig. 2). The architecture of such perceptrons is 
represented by three layers: the input layer with number of neurons (m), the hidden layer with number of neurons (n), 
and the output layer with number of neurons (p).

Multilayer perceptrons transmit signals from neurons of one layer to another by means of synaptic connections 
that have definite weights different for each pair of neurons. The general processing algorithm for a neural network of 
this type is as follows (Fig. 2):
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Fig. 1. Ice coverage of Lake Onega according to the satellite observations for the period of 2004−2017.

Fig. 2. Scheme of applying of a multilayer perceptron for predicting ice coverage of lakes on the basis of previous values.
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1.	 The input neurons receive a signal a = [a1,a2,...ai,...am]. By means of established weights of the synaptic connec-
tions, signals from each input neuron are transformed, summed and fed forward into the neurons of the hidden 
layer as an input signal:                                 , where  xij is the weight of synaptic connection between neuron of the 
input layer and  neuron of the hidden layer, i = 1..m, j = 1..n.

2.	 Within each neuron of the hidden layer, the signal is transformed with an activation function boutput j = fa (binput j). 
Similarly, signals from the neurons of the hidden layer are transformed, summed and fed forward into the neu-
rons of the next (output) layer:                                        , where  yjk is the weight of synaptic connection between 
neuron of the hidden layer and  neuron of the output layer, k = 1..p..

3.	 Within each neuron of the output layer, the signal is transformed with an activation function: coutput k = fa(cinput k). 
Then, the result is interpreted.

Algorithm and parameters of training of multilayer perceptrons for predicting ice coverage of lakes

Within this study, the training of multilayer perceptrons was carried out with the backpropagation method (with 
teacher) (Haykin, 1999). The backpropagation method assumes the use of some training samples consisting of train-
ing sets (input and corresponding output signals). For training purposes, training epochs are formed. They include 
training sets of the given sample, which are randomly mixed for each epoch. The process of training of perceptrons 
is carried out for several training epochs with a number of iterations for each. The number of iterations corresponds 
to the number of training sets included in the training epoch. Each iteration includes the following procedures:
1.	 The training set is selected out of the training epoch, which consists of an array of input signals  a = [a1,a2,...ai,...am] 

and an array of target values (teacher) t = [t1,t2,...tk,...tp].
2.	 The values of the output signal coutput k are calculated for each neuron of the output layer, as well as the local 

gradient according to the formula:                                    , where  ek is the error signal calculated according to the 
formula: ek = tk - coutput k. Along with that, the value of weight adjustment of the synaptic connection is calcu-
lated: δyjk = α . σk . boutput j, where α is the training speed of perceptrons.

3.	 The local gradient is calculated for each neuron of the hidden layer according to the formula: 
                                                         , as well as the value of the weight adjustment of the synaptic connection: δxij = α . σj . boutput i.
4.	 The weight of each synaptic connection of the perceptron changes due to the addition of a corresponding cor-

rective value: xij
new = xij

old + σxij, yij
new = yij

old + σyij. 
In each iteration, within the process of training of the perceptron, the mean square error (mSE) of the output 

signal with respect to the target values (teacher) was calculated. The arithmetic mean of the mean square errors  MSE 
was calculated for each training epoch. The criterion for stopping of training was the restriction (Hagan et al., 2014):

                                     , where  ep is the number of the current training epoch.
The speed of training  α is chosen by experiment: α = 0.001. The initial weights of synaptic connections of neu-

rons were selected randomly from a uniform distribution with a mathematical expectation equal to 0, and the vari-
ance, which is determined by the formula (Hagan et al., 2014):            , where s is the number of synaptic connections 
of the neuron. Considering the variance formula for the uniform distribution:                 , where u, v are the upper 
and lower limits of the interval respectively, and also taking into account the fact that the mathematical expectation 
is 0, the interval is as follows:                    .

Formation of training and holdout samples

Training sets in the form of input and corresponding output signals were formed into training samples separately for the 
Freeze-up and Break-up phases on the basis of a daily time series of ice coverage of Lake Onega for the period 2004−2016.

Along with training samples, holdout samples were formed separately for the Freeze-up and Break-up phases 
and included input and corresponding output signals based on a daily time series of ice coverage of Lake Onega for 
the period 2016−2017.

Within this study, the ice coverage values preceding the predicted value  icez were taken as input signals, where  z 
is the day number when the considered phase of the ice regime started (for which the prediction is performed) (Fig. 
2). Correlation analysis of the daily time series of ice coverage of Lake Onega for the period 2004−2016 showed a 
strong correlation (pair correlation coefficient r = 0.7..0.92) between the values of icez-d and icez, where is the number 
of days preceding the predicted day (d = 1 — 9). It was also found out that the day number when the considered 
phase of the ice regime started is also a significant factor (degree of correlation is: within the Freeze-up phase r = 
0.32..0.9, within the Break-up phase r = —0.55..—0.96). In addition, it was found out that the duration of time in-
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terval g between an origin date and phase start (Fig. 2) has a significant correlation with the duration of the phase: 
for the Freeze-up phase, r = —0.56 andfor the Break-up phase, r = —0.94. In this study, the origin date corresponds 
to the earliest for the period 2004-2016, start of the ice regime phase of Lake Onega: for the Freeze-up phase it is 
November 9th, for the Break-up phase it is February 28th.

For the optimal performance of perceptrons, all input signals should be normalized within the interval [0;1].
The ice coverage values satisfy the normalization condition and the input signal corresponding to the day num-

ber when the considered phase of the ice regime started, z was normalized within the study as follows:

                               , 

where l is the maximum value of duration of the considered phase of ice regime for the time period, measured 
in days (for the Freeze-up and Break-up phases of Lake Onega for the period 2004−2016, it is 80 and 71 days cor-
respondingly).

The input signal corresponding to the duration of the time interval  was also normalized as follows:
                                  
                               ,

where q is the maximum value of time interval g for the considered phase for the time period (for the Freeze-up 
and Break-up phases of Lake Onega for the period 2004−2016, it is 56 and 81 days correspondingly).

Thus, the array of input signals is as follows: az = [icez-w, ... , icez-2, icez-1, hz, hg], where ice is ice coverage value; w is 
the number of ice coverage values preceding the predicted value, and fed forward to the input of an artificial neural 
network (Fig. 2). In this study, w was assumed to be 1, since according to heuristic recommendations for improving 
the network performance, input variables should not be correlated (Haykin, 1999). In the case of preceding values, 
there is a strong correlation between the values icez-d-1 and icez-d (r > 0.9).

The array of output signals contains the predicted value of ice coverage for the corresponding day when phase 
started  and has the following form: cz = [icez].

Selecting parameters and architecture of multilayer perceptrons

The activation function was selected by experiment. The hyperbolic tangent function fa = φ . tanh(βx), where φ = 1.7159, 
β = 2/3 , demonstrated the best results in perceptrons training.

Within the study, the number of neurons of the input layer was determined by relation: m = w + 2 = 3. The 
number of neurons of the output layer resulted from one predicted value of ice coverage: p = 1. The number of 
neurons of the hidden layer was settled by experiment within several steps. At the first step, a perceptron with the 
simplest architecture (3-2-1) was trained. At each subsequent step, a perceptron for training was the one with one 
more hidden neuron than the perceptron in the previous step. At each step, MSE was calculated for the last training 
epoch. If at the current step, the value was less than in the previous step, the next step was performed; otherwise the 
procedure of selecting the optimal perceptron architecture was completed and the perceptron trained in the previ-
ous step was selected.

Results

Figures 3, 4 present the graphs of dependence of  MSE on the number of training epochs for 
perceptrons with different numbers of neurons in the hidden layer.

Perceptrons with architectures: 3-2-1 – in the Freeze-up phase (MSE = 0.0.155), 3-6-1 – 
in the Break-up phase (MSE = 0.0.105) demonstrated the least MSE in the last training epoch 
(within the training). These perceptrons were selected for testing on holdout samples.

The results of testing of perceptrons with architectures of 3-2-1 and 3-6-1 on the holdout 
samples in comparison with the actual values are shown in Figs 5, 6. The Figs 5, 6 also dem-
onstrate the results of predictionby means of various statistical methods: linear regression, 
moving average and autoregressions of the first and second orders.

ℎ𝑧𝑧 = {
𝑧𝑧
𝑙𝑙 ,  𝑧𝑧 ≤ 𝑙𝑙
1,  𝑧𝑧 > 𝑙𝑙

 

ℎ𝑔𝑔 = {

𝑔𝑔
𝑙𝑙 ,  𝑔𝑔 ≤ 𝑞𝑞
1,  𝑔𝑔 > 𝑞𝑞
0,  𝑔𝑔 < 0
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Fig. 3. Graph of dependence of MSE on the number of the training epochs when training perceptrons with different 
number of neurons in the hidden layer within the Freeze-up phase.

Fig. 4. Graph of dependence of  MSE on the number of the training epoch when training perceptrons with different 
number of neurons in the hidden layer within the Break-up phase.
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The statistical analysis of test results (the mean-square error of the predicted and actual 
values MSPE, the mean value of absolute deviations of the predicted and actual values MAD, 
the maximum absolute deviation of the predicted and actual values  ∆max) of different meth-
ods for predicting ice coverage on the basis of holdout samples is presented in Table 1.

Fig. 5. Predicted and actual ice coverage of Lake Onega within the Freeze-up phase for the period 2015−2016 (holdout samples).

Fig. 6. Predicted and actual ice coverage of Lake Onega within the Break-up phase for the period 2015−2016 (holdout samples).
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Discussion

Perceptrons allow preforming more reliable prediction of the ice coverage than statistical 
methods. This is proved by the smallest value of  MSPE in holdout samples (Table 1).Howev-
er, it should be noted that in both holdout samples, the values of  MAD of statistical methods 
were lower than values of perceptrons. This results from the fact that at the intervals of linear 
behaviour of function of the ice coverage of time fice(t), statistical methods can give a more 
accurate prediction than perceptrons (absolute deviations predicted by statistical methods 
from actual values ∆ ≈ 0). In particular, this is relevant in the case when the area of ice 
formation remains constant. However, at intervals of nonlinear behaviour of the function 
fice(t) within both holdout samples, the statistical methods gave much more errors than per-
ceptrons. This is proved by the maximum values of the absolute deviations of predicted and 
actual values of ice coverage  ∆max (Table 1).

All in all, it could be concluded that multilayer perceptrons allow giving more adequate 
and reliable prediction of ice coverage of lake than statistical methods, especially when the 
function fice(t) behaves nonlinearly, which is a typical situation for lakes in most cases. Fur-
thermore, at the intervals of the nonlinear behaviour of the function fice(t), statistical methods 
give unacceptable errors in prediction (∆ > 0.3).

It should also be noted that the training sample for multi-layer perceptrons is formed on 
the basis of 12 years. This is an insignificant period for revealing all the patterns of ice cover 
formation; therefore, errors can occur in cases of abnormal situations. Therefore, the cover-
age changes significantly within a short period of time (> 0.1/day); the absolute deviations 
predicted by perceptrons from the actual values of ice coverage are not always satisfactory as 
well (∆ > 0.2). Data on the ice cover of lakes with necessary fractionality and spatial resolu-
tion for the formation of a training sample can be obtained only using satellite observations. 
Satellite observations in the necessary mode are conducted not so long ago (2000−2006); 
therefore, the increase in the volume of training sample is not available. To solve this prob-
lem, it is necessary to study additional factors affecting the ice coverage of lakes, such as air 
and water temperature and wind speed. The inclusion of these factors in the number of input 
signals of perceptrons greatly extends their functionality.

T a b l e 1. Results of testing of methods for predicting ice coverage on the basis of holdout samples.

Prediction     
methods

Freeze-up phase Break-up phase Total 
MSPEMSPE MAD ∆max MSPE ∆max MAD

Perceptrons 0.0108 0.065 0.439 0.0015 0.027 0.116 0.0076

Linear regression 0.0117 0.051 0.459 0.0017 0.026 0.123 0.0083

Moving average 0.0130 0.033 0.516 0.0023 0.024 0.152 0.0094

Autoregression of the first order 0.0136 0.035 0.516 0.0025 0.026 0.152 0.0099

Autoregression of the second order 0.0145 0.038 0.516 0.0028 0.028 0.152 0.0107
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Conclusion

The parameters and architecture of multilayer perceptrons were selected within the study 
for predicting ice coverage of Lake Onega during the Freeze-up and Break-up phases. It has 
been found through experiment that for predicting ice coverage of Lake Onega, the opti-
mal architectures of perceptrons are 3-3-1 within the Freeze-up phase and 3-6-1 within the 
Break-up phase. These perceptrons showed sufficient results when tested on holdout sam-
ples: the mean-squared errors are 0.0108 and 0.0015 within the Freeze-up and Break phases 
respectively. As a result of testing in accordance with all the holdout samples, it was found 
that in comparison with the statistical methods, perceptrons have a lower mean-squared pre-
diction error (MSPE = 0.0076), as well as lower maximum absolute deviation (∆max = 0.439). 
In this connection, it can be concluded that perceptrons give a more adequate prediction of 
ice coverage of lakes than statistical methods. However, it is required to improve the quality 
of perceptron prediction in cases of anomalous (nonlinear) behaviour of the function  fice(t) 
due to increase in the number of input neurons in the architecture of perceptrons.
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