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Abstract

Shaukat S.S., Rao T.A., Khan M.A.: Impact of sample size on principal component analysis ordi-
nation of an environmental data set: effects on eigenstructure. Ekológia (Bratislava), Vol. 35, No. 
2, p. 173–190, 2016.

In this study, we used bootstrap simulation of a real data set to investigate the impact of sam-
ple size (N = 20, 30, 40 and 50) on the eigenvalues and eigenvectors resulting from principal 
component analysis (PCA). For each sample size, 100 bootstrap samples were drawn from envi-
ronmental data matrix pertaining to water quality variables (p = 22) of a small data set compri-
sing of 55 samples (stations from where water samples were collected). Because in ecology and 
environmental sciences the data sets are invariably small owing to high cost of collection and 
analysis of samples, we restricted our study to relatively small sample sizes. We focused atten-
tion on comparison of first 6 eigenvectors and first 10 eigenvalues. Data sets were compared 
using agglomerative cluster analysis using Ward’s method that does not require any stringent 
distributional assumptions.
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Introduction

Ordination methods belong to the group of multivariate analytical methods that are primar-
ily used by ecologists for exploratory data analysis. Many informal and formal ordination 
techniques, including polar ordination (Bray, Curtis, 1957), principal component analysis 
(PCA) (Goodall, 1953; Orloci, 1966), correspondence analysis (Hill, 1973), detrended cor-
respondence analysis (DCA) (Hill, Gauch, 1980), canonical correspondence analysis (CCA) 
(ter Braak, 1986) and so on have been proposed. Ecologists have often compared the results 
of different ordination methods (Gauch, Whittaker, 1972; Fasham, 1977; Gauch et al. 1977, 
1981; Minchin, 1987; Whittaker, 1987; Shaukat, Uddin, 1989a,b; Anderson, Willis, 2003; 
Shaukat et al. 2005; Hirst, Jackson, 2007; Legendre, Birks, 2012) and have pointed out their 
advantages and disadvantages (Orloci, 1978; Shaukat, Siddiqui, 2005).
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However, of all the ordination techniques developed so far, PCA continues to be the 
most popular technique in a number of biological sciences and other fields besides ecology 
and environmental sciences. The properties as well as the interpretation of the components 
of PCA have been investigated extensively (Rao, 1964; Jackson, 1991; Joliffe, 2002). PCA 
is a formal ordination technique basically used by ecologists for the purpose of parsimony 
and exploration of data in order to comprehend data and to seek the underlying trends and 
gradients in the data structure (James, McCulloch, 1990; Walker, Jackson, 2011).

In the context of environmental studies, although PCA is often useful for the analysis of 
samples in site space, it is still quite appropriate for the analysis of samples in environmen-
tal space. This is because it is likely for most environmental variables to be monotonically 
related to underlying factors and to each other. Also, PCA allows the use of variables that 
are not measured in the same units (e.g. salinity, biological oxidation demand (BOD), con-
centration of nutrients, temperature and pH). Conceptually, PCA exposes the underlying 
common covariance structure inherent in the data matrix resulting in a new set of coordi-
nates called principal components. The Principal components (Y1, …, Yt) are orthogonal 
to each other and reflect different dimensions of the data. PCA essentially identifies the 
direction of maximum variation contained in the multivariate hyperspace of data points. 
It partitions the total variance inherent within rows (variables) of a data matrix into new 
set of derived variables (Yi), which are linear combination of original variables. Thus the 
model of PCA is as follows:

Yij = Bi1 A1j + Bi2A2j + ….+ BipApj

i = 1, 2, …, p;
j = 1, 2,…, n, where Bi
are the eigenvectors and Aij are the (trivially transformed) observations on variable i and 
object j.

The components are such that

Var(Y1) ≥ Var(Y2) ≥ Var(Y3),… ≥ Var(Yt)

Or

λ1 ≥ λ2 ≥ λ3 ≥ λ4 …… ≥ λt

which essentially shows the order of their importance in terms of explained variance of each 
component.

where λi are the standardized values (eigenvalues) of the original variables, and Bik are the 
eigenvector coefficients. The first transformation converts the raw data matrix X or A (stand-
ardized form) into a variance–covariance matrix S (or correlation matrix R). The second 
transformation involves deriving the principal components Yij from the variance–covariance 
matrix S such that
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Y = Bʹ X
where B is a matrix of eigenvectors bi as follows:

B = [ b1 b2 b3…bt ] .

The eigenvalues and eigenvectors are related as follows:

SB = λB

where λ is a matrix of eigenvalues λi. The eigenvalues are the generalized variances related to 
individual variances of the variables as follows:

∑ λii = ∑ Sii

An eigenanalysis is performed to obtain eigenvalues and eigenvectors. This involves solv-
ing the determinantal equation as follows:

| S – λI | = 0

where I is an identity matrix.
The dimensions of the data set are defined to be equal to the number of principal com-

ponents. Subsequently, the set of t principal components are reduced to a set of size k, where 
1 ≤ k <<t. The major advantage of parsimony (dimension reduction) is that it renders the 
analysis and interpretation easier whilst retaining most of the variation inherent in the data 
structure. Evidently, the closer the value of k is to t, the PCA model will more effectively fit 
the data because it would retain greater information contained in the data set.

To interpret the PCA axes effectively, it is pertinent to identify which of the multitude 
of variables are associated with specific axes (components). Ecologists have often corre-
lated the environmental variables with the principal components using standard univariate 
tests, which often suffer from different violations of the underlying assumptions, to say the 
least (e.g. Swan, Dix, 1970; Wikum, Wali, 1974). Others have relied on loadings (eigenvec-
tor coefficients) with larger magnitude to disclose the importance of variables with respect 
to contributing the variance associated with each of the component (Hirosawa et al., 1996; 
Gehlhausen et al., 2000). The effects of resampling and randomization procedures have been 
examined in a few studies (Diaconis, Efron, 1983; Knox, Peet, 1989; Stauffer et al., 1985; 
de Pillar, 1999; Chateau, Lebart, 1996). The bootstrap resampling technique can be used to 
generate large number of samples that may provide the means of evaluating the sampling 
error. Peres-Neto et al. (2003) presented some new Monte Carlo approaches for testing the 
significance of eigenvector coefficients. There are only a few studies of sample size (or implied 
sample size) on the results of PCA or other eigenvector ordination techniques. Manjarres-
Martinez et al. (2012) tested the performance of three ordination methods in terms of their 
stability to bootstrap-generated sampling variance. Gamito and Raffaelli (1992) found that 
first axis of various ordinations including PCA were insensitive to sample replication but 
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some applications of DCA, NMDS and HMDS appeared sensitive to second axis though 
PCA largely remained unaffected in this respect.

Burd et al. (1990) demonstrated that because of subtle changes in the multivariate proce-
dures, such as PCA-ordination, substantially different results can be obtained, leading to var-
ied interpretation and even differing conclusions. The users of multivariate methods such as 
factor analysis (FA) and PCA widely believe that the use of larger sample sizes tends to pro-
vide factor loadings and eigenvalues that are more precise estimates of population values and 
are also more stable across repeated sampling. Goff and Mitchell (1975) performed a com-
parison of species ordination results from plot and stand data (implied difference in sample 
size) and found that once a reliable set of species adaptation values are produced for a region, 
data from various plot sizes can be ordered. Okland et al. (1990) sampled the boreal conifer 
forest using plots of different sizes (implied sample size) and subjected the data to DCA ordi-
nation. It was found that the eigenvalues of axes invariably increased upon lowering sample 
plot size. Otypkova and Chytry (2006) examined the effect of plot size on PCA ordination of 
vegetation samples and concluded that smaller plot size produces less stable ordination pat-
tern particularly when beta diversity is low. Dengler et al. (2009) found that a two- to fourfold 
increase in plot size resulted in an increase in constancy of 20 percent or more.

 In the context of PCA and FA, some workers have proposed rules of thumb for 
minimum sample size in relation to number of variables or correlation structure. Gorsuch 
(1983) recommended at least 100 samples. Hatcher (1994) recommended that the sample 
size should be larger than five times the number of variables (p). Hutcheson and Sofroniou 
(1999) suggested the sample size of 150 or more for highly correlated data. Cattell (1978) 
recommended a sample size (N) of 250. Garson suggested a sample size of 300 as appropri-
ate for FA. Comrey and Lee (1992) recommended N to be 300 as good and 500 as very good 
(see MacCallum et al. 1999). Generally, ecological data, which is always difficult to gather, 
has much smaller sample size. Velicer and Fava (1998) and MacCallum et al. (1999) in their 
comprehensive simulation studies showed that rules of thumb are not valid and that the 
lowest sample size depends on other aspects of sampling design. Levels of communality 
(correlation structure) have a great bearing on sample size. When this structure is strong, 
greater recovery can be achieved with a relatively small sample size (N). Various rules of 
thumb are given pertaining to objects-to-variable ratio. Bryant and Yarnold (1995) recom-
mended a ratio of not lower than 5. Cattell (1978) suggested a subject-to-variable ratio of 
3:1 up to 6:1. A ratio of 2 was suggested by Kline (1979). Osborne and Castello (2004) in 
an intensive simulation study of PCA found an interaction between the sample size and the 
subject-to-variable ratio and showed that the best outcomes occurred in analyses where 
large Ns and high ratios were used. Bandalos and Boehm-Kaufman (2009) recently sug-
gested that a suitable sample size would depend on the number of factors (Y,) the number 
of variables p associated with factors and to what extent the set of factors explain the vari-
ance inherent in the variables. Forcino (2012) concluded that a too small sample size would 
obviously lead to erroneous ecological conclusions, whilst an increasingly large sample size 
would follow the law of diminishing returns. Using paleoecological data sets of various 
sizes, Forcino (2012) demonstrated that a sample size for a multivariate analysis on a pale-
ocommunity is around 25–50.
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Recently, Dochtermann and Jenkins (2011) challenged the conventional views on sample 
size limitations in multivariate analysis. Using computer simulations, it was claimed that a 
model comparison procedure can correctly rank alternative models in about 90% of cases 
with the sample size of 19. Based on uncorrelated random normal deviates, they fitted a 
structural equation model, assuming that all variables were independent, and a similar mod-
el, assuming that all variables were intercorrelated because of an underlying latent construct. 
With respect to PCA, MacCallum et al. (2001) obtained good results with extremely small 
sample sizes and even for data with p > n, whilst Mundfrom et al. (2005) found some cases 
where large sample sizes (n > 100) were necessary. They also found that if the number of 
underlying factors stays the same, more variables (and not fewer, as implied by guidelines 
based on the observations-to-variables ratio) could lead to better results with small samples 
of observations.

The interpretation of PCA is, in general, subjective in ecology, environmental sciences, 
biology and many other disciplines (Orloci, 1978; Kendall, 1980; Shaukat, 1985; Shaukat, 
Uddin, 1989a; Cadima, Joliffe, 1995). The major reason behind it is that the ordination tools 
(such as PCA) are used as data exploratory techniques rather than as hypothesis testing pro-
cedures.

The principal objective of this study was to examine the influence of sample size on the 
eigenstructure, that is, eigenvalues and eigenvector coefficients using Monte Carlo simula-
tion used on a real data set pertaining to the field of environmental science. The water quality 
data of a river in Baluchistan was used. Therefore, the current study, as opposed to many 
other studies on sample size, is based on a real ecological data set pertaining to an aquatic 
environment.

Material and methods

The Data Set: The data set comprised of 55 water samples (N=55) collected from different locations (sites) of Hingol 
river. The surface water was collected in clean plastic bottles previously rinsed with nitric acid. The quantitative 
water quality variables were analysed using the procedures described in the American Public Health Association 
(APHA, 1992). Twenty-two water quality variables were analysed. Thus our complete data matrix was 22 × 55.

Simulations: Principal component analysis (PCA) was performed on randomly selected samples of sizes N =20, 
30, 40 and 50 from complete data set. PCA of complete data set N = 55 was also performed. For each sample size, 
100 bootstrap simulations were performed (Knox, Peet, 1989; Manly, 1998; Pillar, 1999; Peres-Neto et al., 2005) and 
eigenvalues and the associated eigenvector were retained. This involved resampling the original data with replace-
ment.

Means and standard errors of the first 10 eigenvalues and the first 6 eigenvectors were computed. The effect of 
sample size (N = 20, 30, 40 and 50) on the stability of component patterns in PCA was investigated. The sample sizes 
are those typically used by environmental scientists and ecologists. The eigenvalues and eigenvectors for each sample 
set were compared using a hierarchical agglomerative cluster analysis, specifically Ward’s method of minimum with-
in group variance clustering strategy in conjunction with Euclidean distance as the resemblance function. Because 
of the exploratory nature of PCA components in ecological or environmental sciences, we used this approach that 
does not involve any distributional assumptions regarding the data. Multivariate inferential tests, though available 
in this respect (e.g. chi-square, Lawley’s test, Bartlett’s test, (see Lawley, Maxwell, 1971; Jackson, 1993; Peres-Neto 
et al., 2003), were not used because of their stringent underlying assumptions that are hardly ever met by the real 
data sets and also because the intermediate or final results of statistical analysis do not yield independent random 
variables following particular distributions assumed by the multivariate statistic. Most such techniques either suffer 
from an inherent subjectivity or have a tendency to yield under estimate or over estimate of the true dimensions 
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of the data (Jackson, 1993). Thus, these tests have limited utility (Dochtermann, Jenkins, 2011). Loadings are often 
considered as significant when their absolute value is larger than a certain pre-selected arbitrary value, for example, 
0.25 (Chatfield, Collins, 1980) and 0.3−0.5 (Richman, 1988). However, in ecological data sets, the loadings are usu-
ally smaller and their sizes depend on the characteristics of the data sets including their correlation structure and 
no rule of thumb can be realistically applied. They are interpreted according to their relative magnitude and direc-
tion with respect to the associated variable. Furthermore, in the present study, the object was to compare the PCA 
results pertaining to various sample sizes with those of the complete data set, rather than testing the significance of 
eigenvalues and eigenvectors. Cluster analysis was chosen for comparison of eigenvectors because it is flexible and 
capable of depicting similarities without the need to invoke strict distributional assumptions. To compare the set of 
eigenvalues (λ1, …, λ10), scree plots (Cattell, 1966) were developed to compare the ranked eigenvalues resulting from 
PCA of various sample sizes. In addition, a Euclidean distance matrix was computed between sets of eigenvalues to 
elucidate the differences across various sample sizes. Likewise, Pearson correlation coefficient matrix was also com-
puted to assess the similarities between sets of eigenvalues. The latter was used as a measure of similarity; therefore, 
no significance is attached. Cluster analysis was also used to evaluate the similarities between sets of eigenvalues 
pertaining to data of different sample sizes.

Results and discussion

The first 10 eigenvalues pertaining to data sets of different sizes were compared by using scree 
plots, Euclidean distance (D), correlation coefficient (r) and Ward’s agglomerative clustering. 
The scree plots given in Fig. 1a–e show slight differences in their shapes.

 The scree plots for sample sizes N = 20 and 30 (Fig. 1a and b) are closely similar, which is 
also depicted by their Euclidean distance (D12 = 1.661) and correlation coefficient (r = 0.999), 
whilst the scree plots of both these sample sizes exhibit marked difference with that of N = 
40, particularly with respect to second eigenvalue (λ2) (Fig. 1c), which is also shown by Eu-
clidean distance (D) and correlation coefficient (r) (D14= 4.968 , D24 = 4.629). The scree plot 
resulting from PCA of complete data set (N = 55) exhibited slight but discernable differences 
with those resulting from various sample sizes (N = 20, 30, 40 and 50), which can also be con-
firmed by relatively greater values of Euclidean distance (D15 = 6.190, D25 = 4.826, D35 = 6.839, 
D45 = 3.408). The scree plot for sample size of 50 (Fig. 1d) is surprisingly more similar to that 
for N = 20 and 30 than that for N = 40, which can also be seen by the relatively lower values of 
Euclidean distances (D14 = 3.292 and D24 = 2.276) (Table 1) and also by the relatively greater 
values of correlation coefficients (r14 = 0.998, r24 = 0.999) (Table 2). The set of eigenvalues for 
complete data set showed relatively greater distances (and lower correlation coefficient) with 
the sets of eigenvalues resulting from various sample sizes (Tables 1 and 2).

T a b l e  1. Euclidean distances between the set of first 10 eigenvalues of PCA for various sample sizes and complete 
data sets. The key for labels 1–5 are as follows: 1, N = 20; 2, N = 30; 3, N = 40; 4, N = 50 and 5 is complete data set 
(N = 55).

Size  1    2     3     4      5
1  X
2 1.661     X
3 4.968 4.629   X
4                 3.292 2.276 5.998    X
5 6.190            4.826 6.839 3.408  X
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Fig. 1a: Scree Plot 
Sample Size= 20 
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Fig. 1b: Scree Plot 
Sample Size= 30 
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Fig. 1c: Scree Plot 
Sample Size= 40 
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Fig. 1d: Scree Plot 
Sample Size= 50 
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Fig. 1e: Scree Plot  
55 Sampling Sites 

Fig. 1. Scree plots for various sample sizes ((a) 20, (b) 
30, (c) 40, (d) 50 and (e) 55)and for the complete data 
set. ± Standard errors are shown on the mean values for 
the different sample sizes in (a)–(e).

Size  1    2      3       4       5
1  X
2 0.999     X
3 0.986 0.986   X
4              0.998 0.999  0.976 X
5 0.987           0.992 0.973 0.994  X

T a b l e  2. Pearson correlation coefficients between the first 10 eigenvalues of PCAs for various sample sizes and 
complete data sets: 1, N = 20; 2, N = 30; 3, N = 40; 4, N = 50 and 5 is complete data set (N = 55).
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Statisticians have focused attention on the question of sample size with respect to mul-
tivariate analysis such as FA and PCA for decades. Some have looked specifically at sample 
size (N), whilst others at the ratio of sample to variable (N:p). In case of real data sets (e.g. 
in ecology or environmental sciences), the number of variables chosen are generally those 

Fig. 2. (1−6) First six eigenvector loading at various sample sizes N = 20,30.40, 50 and for the complete population 
(55 sites). For variables associated with each eigenvector, coefficient standard symbols are used. Key to symbols: pH, 
water pH; sal, salinity; Temp, temperature; BOD, biological oxidation demand; COD, chemical oxidation demand; 
Chl, Chlorine conc.; DO, dissolved oxygen; Oil, Oil and Grease; Cyn, cynide; Phl, phenol; TKN, total Kjeldahl nitro-
gen; As, arsenic; Pb, lead; Cu, copper; Zn, zinc; Fe, iron; Mn, manganese; Ni, nickle; Cr, chromium; P, phosphorus; 
Tcc, total coliform bacteria; TFC, total faecal coliform.
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Fig. 2.1: Eigenvector 1 
Sample Size= 20 
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Fig. 2.2: Eigenvector 2 
Sample Size= 20 
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Fig. 2.3: Eigenvector 3 
Sample Size= 20 
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Fig. 2.4: Eigenvector 4 
Sample Size= 20 
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Fig. 2.5: Eigenvector 5 
Sample Size= 20 
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Fig. 2.6: Eigenvector 6 
Sample Size= 20 
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Fig. 2.7: Eigenvector 1 
Sample Size= 30 
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Fig. 2.8: Eigenvector 2 
Sample Size= 30 
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Fig. 2.9: Eigenvector 3  
Sample Size= 30 

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

pH Sa
l

Te
m

p
BO

D
C

O
D

C
hl

D
O

C
yn O

il
Ph

l P
TK

N As Fe C
r

C
u Pb M
n N
i

Zn
TC

C
TF

C

M
ea

n 
V

al
ue

s 

Fig. 2.10: Eigenvector 4 
Sample Size= 30 
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Fig. 2.11: Eigenvector 5 
Sample Size= 30 
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Fig. 2.12: Eigenvector 6 
Sample Size= 30 

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

pH Sa
l

Te
m

p
BO

D
C

O
D

C
hl

D
O

C
yn O

il
Ph

l P
TK

N As Fe C
r

C
u Pb M
n N
i

Zn
TC

C
TF

CM
ea

n 
V

al
ue

s 

Fig. 2.13: Eigenvector 1  
Sample Size= 40 
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Fig. 2.14: Eigenvector 2  
Sample Size= 40 

Fig. 2. (7−14) First six eigenvector loading at various sample sizes N = 20,30.40, 50 and for the complete population 
(55 sites). For variables associated with each eigenvector, coefficient standard symbols are used. Key to symbols: pH, 
water pH; sal, salinity; Temp, temperature; BOD, biological oxidation demand; COD, chemical oxidation demand; 
Chl, Chlorine conc.; DO, dissolved oxygen; Oil, Oil and Grease; Cyn, cynide; Phl, phenol; TKN, total Kjeldahl nitro-
gen; As, arsenic; Pb, lead; Cu, copper; Zn, zinc; Fe, iron; Mn, manganese; Ni, nickle; Cr, chromium; P, phosphorus; 
Tcc, total coliform bacteria; TFC, total faecal coliform.



182

   

   

   

   

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20
pH Sa

l
Te

m
p

BO
D

C
O

D
C

hl
D

O
C

yn O
il

Ph
l P

TK
N As Fe C
r

C
u Pb M
n N
i

Zn
TC

C
TF

C

M
ea

n 
V

al
ue

s 

Fig. 2.15: Eigenvector 3  
Sample Size= 40 
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Fig. 2.16: Eigenvector 4  
Sample Size= 40 
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Fig. 2.17: Eigenvector 5  
Sample Size= 40 
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Fig. 2.18: Eigenvector 6  
Sample Size= 40 
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Fig. 2.19: Eigenvector 1 
Sample Size= 50 
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Fig. 2.20: Eigenvector 2 
Sample Size= 50 
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Fig. 2.21: Eigenvector 3  
Sample Size= 50 
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Fig. 2.22: Eigenvector 4  
Sample Size= 50 

Fig. 2. (15−22) First six eigenvector loading at various sample sizes N = 20,30.40, 50 and for the complete population 
(55 sites). For variables associated with each eigenvector, coefficient standard symbols are used. Key to symbols: pH, 
water pH; sal, salinity; Temp, temperature; BOD, biological oxidation demand; COD, chemical oxidation demand; 
Chl, Chlorine conc.; DO, dissolved oxygen; Oil, Oil and Grease; Cyn, cynide; Phl, phenol; TKN, total Kjeldahl nitro-
gen; As, arsenic; Pb, lead; Cu, copper; Zn, zinc; Fe, iron; Mn, manganese; Ni, nickle; Cr, chromium; P, phosphorus; 
Tcc, total coliform bacteria; TFC, total faecal coliform.
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Fig. 2.23: Eigenvector 5  
Sample Size= 50 
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Fig. 2.24: Eigenvector 6  
Sample Size=50 
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Fig. 2.25: Eigenvector 1 
Sample Size= 55 
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Fig. 2.26: Eigenvector 2 
Sample Size= 55 
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Fig. 2.27: Eigenvector 3 
Sample Size= 55 
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Fig. 2.28: Eigenvector 4 
Sample Size= 55 
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Fig. 2.30: Eigenvector 6 
Sample Size= 55 

Fig. 2. (23−30) First six eigenvector loading at various sample sizes N = 20,30.40, 50 and for the complete population 
(55 sites). For variables associated with each eigenvector, coefficient standard symbols are used. Key to symbols: pH, 
water pH; sal, salinity; Temp, temperature; BOD, biological oxidation demand; COD, chemical oxidation demand; 
Chl, Chlorine conc.; DO, dissolved oxygen; Oil, Oil and Grease; Cyn, cynide; Phl, phenol; TKN, total Kjeldahl nitro-
gen; As, arsenic; Pb, lead; Cu, copper; Zn, zinc; Fe, iron; Mn, manganese; Ni, nickle; Cr, chromium; P, phosphorus; 
Tcc, total coliform bacteria; TFC, total faecal coliform.
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 It is also evident from Fig. 2 that the standard deviations of loadings were high because of 
the melded fluctuations owing to sampling and to the mixture of factor solutions. The inter-
pretation of these standard deviations is not straightforward. Therefore, future investigations 
are required to further explore this area.

The dendrograms derived from cluster analysis of the first six eigenvectors of the sets per-
taining to different sample sizes are given in Figs 3−7. Figure 3 shows the dendrogram based 
on cluster analysis using the first two components (first two eigenvectors) of all sample sizes 
and that of complete data set. The first and second eigenvectors are clearly separated out.

A perusal of dendrograms based on eigenvectors 3−6 (Figs 3−7) disclosed that the fist ei-
genvector of all the data sets was neatly segregated out and formed a compact group in each of 
the cluster analysis depicting its stability. Where the first three eigenvectors were used (Fig. 4), 
the second eigenvector tended to be separated from the third with slight intermixing. In other 
dendrograms (Figs 5−7), the first eigenvector was well separated but there was some amalga-
mation of higher order eigenvector (3−6) particularly the third eigenvector exhibited low-order 
segregation. However, the second eigenvector was separated to a considerable extent.

Evidently, PCAs based on N = 40 and N = 50 returned stable and consistent eigenvectors 
(Figs 6 and 7) compared to those of sample sizes N = 20 and N =3 0.

Fig. 3. Dendrogram derived from first two eigenvectors for various sample sizes and complete data set. The symbols 
Tw, Th, Fu, Fi and Ff represent N = 20,30,40,50, and 55, respectively. The associated letters 1 or 2 indicate eigenvector 
1 and 2, respectively.
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Fig. 4. Dendrogram derived from first three eigenvectors for different sample sizes and complete data set. The sym-
bols Tw, Th, Fu, Fi and Ff represent N = 20,30,40,50, and 55, respectively. The associated letters 1, 2 or 3 indicate 
eigenvectors 1, 2 and 3, respectively.

Fig. 5. Dendrogram derived from first four eigenvectors for different sample sizes and complete data (see Fig. 3). The 
associated numbers with the symbols 1, 2, 3 and 4 indicate eigenvectors 1, 2, 3 and 4, respectively.
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Fig. 6. Dendrogram derived from first five eigenvectors of various sample sizes and complete data set. Symbols as in 
Fig. 3. The associated numbers 1−5 represent eigenvectors 1−5, respectively.

Fig. 7. Dendrogram derived from first six eigenvectors of various sample sizes and complete data set. Symbols as in 
Fig. 3. The associated numbers 1−6 represent eigenvectors 1−6, respectively.
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which are important for a particular study. Therefore, they are more or less fixed. On the 
other hand, the number of samples is deterministically chosen on the criteria of time and 
cost of collection and analysis of samples. Field data collection is often considerably time 
consuming, and the analysis of collected samples such as water or soil samples is expensive. 
This puts constraints on sample size. Thus, sampling is restricted and sample sizes are usu-
ally small even for large areas. This paper attempts to examine the effect of sample size on 
eigenstructure in the context of a real data set pertaining to environmental science. It must 
be mentioned that most of the studies of the impact of sample size on PCA ordinations have 
been conducted on simulated data sets with different properties such as standard deviation 
of variables and correlation structure of the resemblance matrix. Therefore, evidently, many 
of the results are dependent on the specific properties of simulated data sets. The sample-to-
variable ratio has not been investigated here, though obviously it will vary with the sample 
size. The conclusions of different workers that are mostly based on simulated data are highly 
contradictory, and most of such studies usually recommend a sample size of 200−500, which 
is not realistic for ecologists or environmentalists. The ecological data sets because of time 
and economic constraints (high cost of sample collection and analysis) are much smaller (e.g. 
N = 20−80). These data sets are often subjected to PCA as a data exploratory technique. Our 
study showed that a sample size N = 40 was sufficient to achieve the stability of eigenvalues 
and eigenvectors of PCA. Barrett and Kline (1981) recommended a minimum sample size N 
= 50 for behavioural studies. Forcino (2012) prescribed a sample size N = 50 in paleocom-
munity research with regard to the recovery of first few components that are most often used 
for the explanation of trends in the data structure. Because of a fair bit of consistency in PCA 
ordinations of various sample sizes compared to that of complete data set (N = 55), particu-
larly with respect to first two components (which are generally interpreted by ecologists or 
environmental scientists), we conclude that small sample sizes (e.g. N ≥ 40) may be used 
when sampling and analysis of collected samples (e.g. water or soil samples) is expensive. 
However, larger sample sizes could be more reliable (e.g. N = 50–80), though there must be 
a trade-off between sampling effort and cost, on one hand, and the quality of information 
extracted from PCA, on the other hand. Nonetheless, it should be mentioned here that the 
study was based on a real environmental data set that comprised of continuous variables 
without zero entries. Whilst ecologists or environmentalists often use species data sets in 
vegetation analysis studies (or other communities) for which the data matrix usually contains 
excessive zero entries (sparse matrix). Such data sets would probably require greater sample 
sizes to attain stability of eigenstructure.

Therefore, we are led to conclude that a sample size of 40 or 50 is sufficient in ecological 
and environmental studies to recover the first few components that are necessary to explore, 
comprehend and summarise the multivariate data.
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